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1. Turbulence scales in the atmospheric surface layer 

� Friction velocity, ∗u = 2/1)''( wu− , where 'u  and 'w  are, respectively, turbulent fluctuations of 
the horizontal and vertical velocities and the overbar signifies (Reynolds) averaging over the 
ensemble of turbulent fluctuations, is employed as turbulence velocity scale in the 
atmospheric surface layer (ASL) under the usual ASL assumption that wind is directed along 

the shear stress. The vertical variation of kinematic momentum flux ''wu  (which is negative of 

shear stress divided by density) is relatively small within the surface layer. Thus, ''wu  
characterizes the whole near-surface portion of the boundary-layer flow and is usually regarded 
as surface kinematic momentum flux. 

� Hereafter, the overbars will be omitted in the notation for mean (Reynolds-averaged) velocity, 
temperature, humidity and associated meteorological variables. 

� Near-surface (vertical kinematic) turbulent fluxes of heat and humidity are given by ' 'w θ  

(where 'θ  is the turbulent fluctuation of the potential temperature) and ' 'w q  (where 'q  is the 
turbulent fluctuation of the specific humidity), respectively. They are used together with the 
friction velocity to construct the surface-layer temperature and humidity turbulence scales: 

' ' /w uθ θ∗ ∗= −  and ∗∗ −= uqwq /'' . Changes of ' 'w θ  and ' 'w q  with height in the idealized 
(stationary and horizontally homogeneous) ASL flow are relatively small and near-surface 
values of both fluxes are considered representative of the whole atmospheric surface layer. 

� In the ASL flow analyses, it is convenient to introduce also the buoyancy turbulence scale 

∗∗ −= ubwb /'' , where buoyancy b is defined as ( / )( )c cb g ρ ρ ρ= − − = ( / )( )vc v vcg θ θ θ−  

and subscript c denotes reference values of density ρ  and virtual potential temperature vθ . 
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� Taking into account that '' vw θβ = ''bw = ∗∗− bu = ∗∗− vu θβ , where / vcgβ θ=  is the buoyancy 

parameter, b∗  can be expressed in terms of the virtual potential temperature scale vθ ∗  as 

b∗ = vβθ ∗ . By using 

∗∗− bu = '' vw θβ = ''θβ w +0.61 ' 'gw q = ∗∗∗∗ −− qguu 61.0θβ = )61.0( ∗∗∗ +− gqu βθ , 

it can further be expressed through the temperature and humidity scales as b∗ = 0.61gqβθ∗ ∗+ . 

Since / /vc cg gβ θ θ= � , it also follows from the above relationships that vθ ∗ = 0.61 cqθ θ∗ ∗+ . 

� Summary of surface-layer scales: ∗u = 2/1)''( wu−  (for velocity), ∗∗ −= uw vv /''θθ  (for virtual 

potential temperature), ∗∗ −= uw /''θθ  (for potential temperature), ∗∗ −= uqwq /''  (for 

humidity), and ∗∗ −= ubwb /''  (for buoyancy). 
� Note that signs of temperature, humidity, and buoyancy scales are opposite to those of fluxes 

and therefore coincide with signs of the corresponding vertical gradients. 

Under unstable (convective) conditions:  '' vw θ >0, 0/ <∂∂ zvθ , and ∗vθ <0. 

      ' 'w b >0, / 0b z∂ ∂ < , and b∗ <0. 

In the stable surface layer:    '' vw θ <0, 0/ >∂∂ zvθ , and ∗vθ >0. 

      ' 'w b <0, / 0b z∂ ∂ > , and b∗ >0. 

Under neutral conditions:    '' vw θ =0, 0/ =∂∂ zvθ , and ∗vθ =0. 

      ' 'w b =0, / 0b z∂ ∂ = , and b∗ =0. 
 
2. The Monin-Obukhov similarity hypothesis; Monin-Obukhov length 
� Fundamental underlying assumption of the Monin-Obukhov hypothesis: at z>> 0z  in the 

atmospheric surface layer, the turbulence regime on all scales of motion except for the 
dissipation range depends only on distance z from the surface and kinematic fluxes of 

momentum 
2'' ∗−= uwu  and buoyancy ' ' ' 'v vw b w u u bβ θ β θ∗ ∗ ∗ ∗= = − = − . 

� The Monin-Obukhov hypothesis states that in the surface layer flow at z>> 0z  the vertical 

gradients of (mean) meteorological variables u, vθ  θ , q, and b as well as turbulence statistics 

of these variables (turbulence moments) are universal functions of dimensionless height z/L 
when they are normalized by the corresponding surface-layer turbulence scales (∗u , ∗vθ , ∗θ , 

∗q  and ∗b , see above the definitions of these scales) and length scale L. 
� This length scale L is called the Monin-Obukhov length. It is introduced (according to 

fundamental assumption of the Monin-Obukhov theory, see above) as a combination of the 
surface momentum and buoyancy fluxes: 
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� In the case of dry atmosphere: 
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3. Universality of dimensionless gradients of meteorological variables 
� According to the Monin-Obukhov hypothesis, 
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Universal functions mϕ  and hϕ  of dimensionless height ζ =z/L 
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where 'mϕ , 'hϕ , 'qϕ , 'hvϕ , and 'bϕ  are universal functions of dimensionless height Lz /≡ζ . 

� The above relationships can be rewritten in the following way: 
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where mϕ , hϕ , qϕ , hvϕ , and bϕ  are some other universal functions of the dimensionless height 

Lz /≡ζ . 

� In the neutral surface layer (where L → ∞ ), ζ =z/L=0 and 
z

u

u

z

∂
∂

∗

κ
=1, and we have )0(mϕ =1. 

Heat and water vapor in this case are transported as passive scalars and this transport should be 
independent of L. Therefore, corresponding universal functions hϕ , qϕ , hvϕ , and bϕ  should 

become constants. This yields logarithmic profiles of temperature, buoyancy, and humidity 

under (quasi-)neutral conditions in the ASL. For instance, 
z

u

u

z
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∗

κ
=1 integrates to 
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u

u z C
κ

∗= + . 

� Measurements of the vertical gradients of u, θ , and q in the ASL generally support predictions 
of the Monin-Obukhov similarity theory. Experimental data suggest that hϕ � qϕ . Examples 

of measured mϕ  and hϕ  functions are shown in the plot from Sorbjan (1989) reproduced 

above. 
 
4. Empirical approximations of Monin-Obukhov universal functions 
� A series of specialized surface-layer experiments have been conducted in the 1960s and 1970s 

in different countries to prove/refute the Monin-Obukhov theory (or to determine limits of its 
applicability) and to obtain analytical approximations for )(ζϕm  and )(ζϕh . 

� Numerous sets of analytical approximations for the Monin-Obukhov universal functions have 
been proposed. Two most commonly used sets are those of Businger et al. (1971) and Dyer 
(Dyer and Hicks 1970, Dyer 1974), see corresponding references in Sorbjan (1989). 

Convective (unstable) surface layer ( 0/ ≤= Lzζ ). 
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Stable surface layer ( 0/ ≥= Lzζ ). 

Businger et al.: 
L
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Lzm 7.41)/( +=ϕ , )/( Lzhϕ =0.74

L

z
7.4+ , κ =0.35. 

Dyer: 
L

z
Lzm 51)/( +=ϕ , )/( Lzhϕ =1

L

z
5+ , κ =0.4 (originally, 0.41). 

Note that Dyer's set provides hC =1, while Businger's set provides hC =0.74. 

 
5. Turbulent exchange coefficients in terms of universal functions 
� In the ASL flow, kinematic fluxes of momentum and heat are related to gradients of the 

corresponding mean fields through the turbulent exchange coefficients as 
2'')/( ∗=−=∂∂ uwuzuk , where k  is the turbulent exchange coefficient for momentum (it is 

often called eddy viscosity) and *'')/( θθθ ∗=−=∂∂ uwzkh , where hk  is the turbulent 

exchange coefficient for momentum (it is often called eddy diffusivity). 

� Combining 
2'')/( ∗=−=∂∂ uwuzuk  and 

z
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∗

κ
= mϕ (ζ ), we have: 
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)(ζϕ

κ
m

zu∗ =
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u L
ζκ

ϕ ζ∗ , 

which for the neutral conditions (ζ =z/L=0) provides k (z)= zu∗κ . 

� Using Dyer's expressions of mϕ  for unstable conditions and stable conditions (see above), we 

have 

k (z)= 1/ 4(1 16 / )u z z Lκ ∗ −   for unstable conditions, ζ =z/L≤0, and 

k (z)=
Lz

zu

/51+
∗κ

   for stable conditions, ζ =z/L≥0). 

� Taking into account that *'')/( θθθ ∗=−=∂∂ uwzkh  and 
z

z

∂
∂

∗

θ
θ
κ

= hϕ (ζ ), see sections 2 and 

3, we obtain the following expression for the turbulent heat exchange coefficient 

hk (z)=
)(ζϕ

κ
h

zu∗ =
( )h

u L
ζκ

ϕ ζ∗ . 

� Note that because qϕ (ζ ) � hϕ (ζ ) the turbulent exchange coefficient for humidity qk (z) is 

approximately equal to hk (z). 

� In terms of Dyer's universal functions: 

hk (z)= 1/ 2(1 16 / )u z z Lκ ∗ −   for unstable conditions, ζ =z/L≤0, and 

hk (z)=
Lz

zu

/51+
∗κ

   for stable conditions, ζ =z/L≥0). 

�  Note that under stable conditions, the considered approximations of the universal functions 
provide equality of the exchange coefficients for momentum and heat hk (z)= k (z). Under 

neutral conditions, when ζ =z/L=0: hk (z)= k (z)= zu∗κ . 
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� Based on the above relationships, the turbulent Prandtl number Prt = hkk /  can be expressed in 

terms of universal functions mϕ (ζ ) and hϕ (ζ ) as Pr ( )t ζ = hϕ / mϕ . With Dyer's functions, 

this provides Pr ( )t ζ = 4/1)/161( −− Lz  in the unstable surface layer (ζ =z/L≤0), and Pr ( )t ζ =1 

in the stable surface layer (ζ =z/L≥0). 

� Due to qϕ (ζ ) � hϕ (ζ ), the turbulent Schmidt number )(Sc ζt = qkk /  is approximately equal 

to the turbulent Prandtl number Pr ( )t ζ . 

� Note that under neutral conditions: Pr (0)t = )0(Sct = )0(hϕ / )0(mϕ = hC . 

 
6. Relationships between z/L and Richardson numbers 
� Richardson numbers, specified as 

' '
Ri

' '( / )
v

f

w

u w u z

β θ=
∂ ∂

=
' '

' '( / )

w b

u w u z∂ ∂
 (flux Richardson number) and 

( )2

( / )
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/
v z

u z

β θ∂ ∂=
∂ ∂

=
( )2

/

/

b z

u z

∂ ∂
∂ ∂

 (gradient Richardson number), 

where RiRi
k

kh
f = =

Ri

Prt
, characterize proportion between buoyancy and shear contributions to the 

turbulence kinetic energy production in a turbulent flow. 
� The following sequence of relationships is worth of memorizing: 

Prt � tSc = hϕ / mϕ = k / hk = fRi/Ri . 

� In terms of Dyer's functions, under unstable conditions, when ζ =z/L≤0: Ri=
L

z
=ζ ≤0 (because 

2
mh ϕϕ = ) and fRi = 1/ 4(1 16 )ζ ζ− ≤0; under stable conditions, when (ζ =z/L≥0): 

Ri= fRi = )51/( ζζ + ≥0. 

� Note that in the latter case ζ =Ri/ )Ri51( −  at Ri=0.2 corresponds to the infinitely large 

positive ζ  (or infinitesimal positive L) that is the case of extreme stability when turbulence 
cannot exist. In other words, Dyer's approximation yields the critical Richardson number value 

cRi =0.2. 

 
Exercise 1 
1. Based on hϕ = qϕ , show that hvϕ = bϕ = hϕ . 

2. Obtain expressions Ri= 2
h

m

z

L

ϕ
ϕ

=
Prt

m

ζ
ϕ

 and fRi =
1

m

z

Lϕ
=

Prt

h

ζ
ϕ

 taking into account that 

bϕ � hϕ  and Prt = hϕ / mϕ . 

3. Based on Dyer's universal functions, obtain the following expressions for k  and hk = qk  as 

functions of Ri: 

k (z)= 1/ 4(1 16Ri)u zκ ∗ − , hk (z)= 1/ 2(1 16Ri)u zκ ∗ −   for ζ =z/L≤0, Ri≤0,  

k (z)= hk (z)= (1 5Ri)u zκ ∗ −      for ζ =z/L≥0, Ri≥0. 

4. Expanding Dyer’s )(ζϕm  and )(ζϕh  for 0ζ ≤  in the Maclaurin series around 0=ζ  and 

neglecting terms of the order higher than 1, obtain the following approximations of )(ζϕm  and 

)(ζϕh  for 0≤ζ  and 1<<ζ : ζζϕ 41)( +=m  and )(ζϕh = ζ81+ . Find values of 0ζ < , at 
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which differences between the above linear approximations )(ζϕm  and )(ζϕh  and regular 

Dyer's universal functions exceed 10%. 
 
7. Integral forms of flux-profile relationships 
� The dimensionless gradients of velocity, temperature, and humidity, which are universal 

functions of Lz /≡ζ , can be integrated over z to obtain the explicit expressions of the 
corresponding profiles. 

� Integration of )/( Lzmϕ =
z
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 between levels 1z  and z> 1z  in the surface layer leads to the 

following expression for the wind velocity profile: 
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� If the lower integration level is taken to be the surface roughness height (length) 0z , where the 

mean flow velocity is assumed to be zero, the wind profile appears as 
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. The latter expression indicates that function 
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0,ψ = ( )0,ζζψ m  describes the deviation of the velocity profile from the logarithmic 

law due to the effect of atmospheric stability/instability. It is commonly called the stability 
correction function, or simply stability correction. 

� In practical applications, 0 0 /z Lζ =  in ( )0,ζζψ m  is often replaced by zero and the stability 

correction is taken as ( )m ζΨ ≡ ( ),0mψ ζ , so that the velocity profile has the following 

approximate form: 

0
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. 

� Dyer’s universal functions )(ζϕm  provide (see Exercise 2) 
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, where ( ) 4/1161 ζ−=x ,  for 0ζ ≤  (unstable 

flow) and 
( )m ζΨ = ζ5−  for ζζϕ 51)( +=m        for 0ζ ≥  

(stable flow). 
� Integration of the universal function )(ζϕh  between levels 1z  and z> 1z  leads to 
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� Using the concepts of roughness lengths for temperature and specific humidity (θ = sθ  at 

z= θ0z , q = sq  at z= qz0 ), we can express the temperature and humidity profiles as 
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� Approximate forms of these profiles are  

0

( ) lns h

z z
z

z Lθ

θθ θ
κ

∗   = + − Ψ   
  

 and 

0

( ) lns h
q

q z z
q z q

z Lκ
∗
  = + − Ψ  

  
, 

where ( )h ζΨ ≡ ( ),0hψ ζ . 

� If )(ζϕh  is taken after Dyer (see section 4), the corresponding integral function is 

( )h ζΨ =
2

1
ln2

y+
, where ( ) 2/1161 ζ−=y , for 0ζ ≤  (unstable conditions) and 

( )h ζΨ = ζ5−  for 0ζ ≥  (stable conditions), see Exercise 2. 

 
Exercise 2 
1. Show that Dyer’s universal functions )(ζϕm  provide 

( )m ζΨ =
2

tan2
2

1
ln

2

1
ln2 1

2 π+−+++ − x
xx

, where ( ) 4/1161 ζ−=x ,  for 0ζ ≤  (unstable 

flow) and 
( )m ζΨ = ζ5−  for ζζϕ 51)( +=m       for 0ζ ≥  (stable 

flow). 

2. Show that )(ζϕh  after Dyer provides ( )h ζΨ =
2

1
ln2

y+
, where ( ) 2/1161 ζ−=y , for 0ζ ≤  

(unstable conditions) and ( )h ζΨ = ζ5−  for 0ζ ≥  (stable conditions). 

 
8. Calculation of surface fluxes from meteorological measurements at two levels 
� In sections 3 and 4 we obtained in following expressions, which relate the surface layer 

turbulence scales ∗u , ∗θ , and ∗q  (and therefore, surface layer vertical kinematic turbulent 

fluxes of momentum: 
2'' ∗−= uuw , heat: ∗∗−= θθ uw '' , and humidity: ∗∗−= quqw '' ) to 

gradients of corresponding meteorological variables: 
z

u

u

z

∂
∂

∗

κ
= mϕ (ζ ), 

z

z

∂
∂

∗

θ
θ
κ

=
z

q

q

z

∂
∂

∗

κ
= hϕ (ζ ), where mϕ  and hϕ  are universal functions of dimensionless height 

ζ =z/L. After Dyer, these functions may be approximated as 4/1)161()( −−= ζζϕm , 

)(ζϕh = 2/1)161( −− ζ  for ζ ≤0 and )(ζϕm = )(ζϕh = ζ51+  for ζ ≥0. 

� Now imagine that we have mean (Reynolds-averaged) values of u, T (absolute temperature), 
and q measured at two heights in the surface layer: 1z  and 2z , with 2z > 1z . This gives us three 

pairs of quantities: (1u , 2u ), ( 1θ ≈ 1T , 2θ ≈ 2T ), and ( 1q , 2q ), where subscripts denote 
corresponding measurement levels. We can also calculate finite differences of these variables 
across the layer 2 1z z z∆ = − : 2 1u u u∆ = − , 2 1θ θ θ∆ = − , and 2 1q q q∆ = − . 
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� We have to define a level between 1z  and 2z , to which values of the finite gradients and 

2
Ri v z

u

θβ ∆ ∆=
∆

, where 
vc

gβ
θ

=  is the buoyancy parameter, can be referred to in this case. 

Based on the fact that gradients of meteorological variables in the surface layer decrease fast 
with distance from the surface (in the neutral case they decrease as 1/z), the reference level for 

Ri is usually specified as 21zzzs = . It is also possible to take 2 1 2 1( ) / ln( / )sz z z z z= − , 

which is the height where /u z∆ ∆ = /u z∂ ∂  in the case of perfectly logarithmic profile (please 
demonstrate it yourself). 

� The reference value of virtual potential temperature vcθ  in 
vc

gβ
θ

=  may be taken constant, for 

instance, vcθ =300 K. 

� For calculation of actual (dynamic) turbulent fluxes (which are expressed through their 

kinematic counterparts as ' 'w uρ , ' 'pc wρ θ , and ' 'w qρ ) we will also need the values of air 

density ρ  and specific heat at constant pressure pc = -1 -11004 J kg  K . Due to small vertical 

variations of air density in the surface layer, ρ  can be evaluated from p (usually known) and T 

at one of measurement levels. For instanceρ = )/( 1RTp , if we take temperature at the first 
measurement level. 

 
Flux calculation algorithm 
1. The Richardson number at the reference level sz  is evaluated from the approximate relationship: 

Ri( sz )=
2

( / ) 0.61 ( / )

( / )

z g q z

u z

β θ∆ ∆ + ∆ ∆
∆ ∆

, where 21zzzs = . 

2. If Ri( sz )≥0.2, further derivations make no sense because the value of Ri is beyond the critical 

limit. 
3. If Ri( sz )<0.2, we proceed with calculation of dimensionless height sζ = sz /L that is related to 

Richardson number Ri(sz ) as 

  sζ =Ri( sz )    if Ri( sz )≤0 (unstable stratification) and 

  sζ =Ri( sz )/ )]Ri(51[ sz−   if Ri( sz )≥0 (stable stratification), see section 

6. 
4. From sζ , the value of Monin-Obukhov length scale L can be calculated as L= sz / sζ . In the 

present algorithm, L is a supplementary parameter. 
5. The calculated sζ  enters the expressions of the universal functions mϕ  and hϕ : 

4/1)161()( −−= ssm ζζϕ   if Ri( sz )≤0 (unstable),  )( sm ζϕ = sζ51+  

 if Ri( sz )≥0 (stable); 

) ( sh ζϕ 2/1)161( −−= sζ   if Ri( sz )≤0 (unstable),  )( sh ζϕ = sζ51+ , 

 if Ri( sz )≥0 (stable). 

6. From the universal function, we calculate the surface layer turbulence velocity, temperature, and 

humidity scales from 
( )

s

m s

z u
u

z

κ
ϕ ζ∗

∆=
∆

, 
( )

s

h s

z

z

κ θθ
ϕ ζ∗

∆=
∆

, and 
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s

h s

z q
q

z

κ
ϕ ζ∗

∆=
∆

, where κ =0.4 

is the von Kármán constant. 
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7. The kinematic surface turbulent fluxes are calculated from ∗u , ∗θ , and ∗q  as 
2'' ∗−= uuw  

(momentum), ∗∗−= θθ uw ''  (heat), and ∗∗−= quqw ''  (humidity). 

8. Finally, we obtain the surface vertical turbulent fluxes of momentum, ''uwρ , heat, ' 'pc wρ θ , 

and humidity, ''qwρ . 
 
Exercise 3 
You are given four datasets with mean velocity, temperature, and specific humidity values 

measured at two levels in the atmospheric surface layer. 
Set 1. Measurement levels: 1z =0.5m and 2z =2m. Data: 1u =3m/s, 2u =4m/s, 1T =36ºC, 2T =29ºC, 

1q =0.008, 2q =0.003, 1p =1000hPa. 

Set 2. Measurement levels: 1z =2m and 2z =8m. Data: 1u =4m/s, 2u =8m/s, 1T =20ºC, 2T =22ºC, 

1q =0.004, 2q =0.006, 1p =1000hPa. 

Set 3. Measurement levels: 1z =1m and 2z =4m. Data: 1u =3m/s, 2u =6m/s, 1T =15ºC, 2T =15ºC, 

1q =0.009, 2q =0.009, 1p =1000hPa. 

Set 4. Measurement levels: 1z =4m and 2z =9m. Data: 1u =2m/s, 2u =3m/s, 1T = 2− ºC, 2T =8ºC, 

1q =0.001, 2q =0.005, 1p =1000hPa. 
For each of the above datasets (as long as physical limitations allow): 
a. Determine class of stability (unstable, stable, or neutral), and evaluate corresponding value of L; 
b. Calculate the surface layer turbulence scales and turbulent fluxes of momentum, heat, humidity, 

and buoyancy; 
c. Find values of turbulent exchange coefficients for momentum, k , and heat, hk , and calculate 

turbulent Prandtl number at 21zzzs = ; 

d. Calculate mean wind velocity, temperature, and specific humidity at sz  and z=10m. 

 
9. Calculation of surface turbulent fluxes in the case of non-coinciding measurement levels 
� In this case, we have mean values of u, T (absolute temperature), and q measured at following 

levels: 1u , 2u  at 1uz , 2uz  ( 2uz > 1uz ), 1T � 1θ , 2T � 2θ  at 1θz , 2θz  ( 2θz > 1θz ), and 1q , 2q  at 

1qz , 2qz  ( 2qz > 1qz ). 

� Like in the previously considered case of two-level measurements (see section 8), 

pc = -1-1 KkgJ1004 ⋅⋅ , atmospheric pressure is assumed to be known, and the buoyancy 

parameter is / vcgβ θ=  with vcθ =300 K. Note that, like in the previous case, this is only one 

of several possible ways of evaluating vcθ  in this case. The air density can be calculated as 

ρ = )/( 1RTp . 
 
Flux calculation algorithm 
1. In a first approximation, the profiles of u, θ , and q in the surface layer may be taken logarithmic. 

Thus, we may express the increments of variables as 
1

2
12 ln

u

u

z

zu
uu

κ
∗=− , 

1

2
12 ln

θ

θ

κ
θθθ

z

z∗=− , 

and 
1

2
12 ln

q

q

z

zq
qq

κ
∗=− . These expressions provide first approximations for the surface layer 

turbulence scales ∗u , ∗θ , and ∗q . 
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2. Based of the calculated turbulence scales, the Monin-Obukhov length is evaluated as 

L=
)61.0(

2

∗∗

∗

+ gq

u

βθκ
. 

3. If ez /│L│<<1, where ez  is the highest measurement level of the three (2uz , 2θz , 2qz ), the 

stratification of the surface layer may be considered neutral. One make take, for instance, 

ez /│L│=0.01 as the lowest limit for the non-neutral case. After that, the kinematic fluxes can 

be directly evaluated from scales ∗u , ∗θ , and ∗q  as 
2'' ∗−= uuw  (momentum), ∗∗−= θθ uw ''  

(heat), and ∗∗−= quqw ''  (humidity). 

4. If ez /│L│≥0.01, we have to calculate new approximations of ∗u , ∗θ , and ∗q  from 

2 2 1
2 1

1

ln u u u
m m

u

u z z z
u u

z L Lκ
∗     − = − Ψ + Ψ    

    
, 

2 2 1
2 1

1

ln h h

z z z

z L L
θ θ θ

θ

θθ θ
κ

∗     − = − Ψ + Ψ    
    

, 

2 2 1
2 1

1

ln q q q
h h

q

z z zq
q q

z L Lκ
∗
    − = − Ψ + Ψ    

    
, 

taking into account the sign of L and using appropriate integral functions from section 7. 

5. With new scales ∗u , ∗θ , and ∗q  we calculate new approximation for L=
)61.0(

2

∗∗

∗

+ gq

u

βθκ
. 

6. Steps 4 and 5 are repeated until the relative difference between new and old values of L becomes 
reasonably small (let say, of the order of 0.01) 

7. Based on the resulting values of ∗u , ∗θ , and ∗q , the turbulent fluxes are calculated using 
2'' ∗−= uuw , ∗∗−= θθ uw '' , and ∗∗−= quqw '' , and then multiplying kinematic fluxes by 

pc = -1-1 KkgJ1004 ⋅⋅ and ρ . 

8. Finally, velocity, temperature, and humidity at any level z within the surface layer can be 
obtained from 

1
1

1

( ) ln u
m m

u

u z z z
u z u

z L Lκ
∗     = + − Ψ + Ψ    

    
, 

1
1

1

( ) ln h h

z z z
z

z L L
θ

θ

θθ θ
κ

∗     = + − Ψ + Ψ    
    

, 

1
1

1

( ) ln q
h h

q

zq z z
q z q

z L Lκ
∗
   = + − Ψ + Ψ    

    
. 

Note that for such evaluation one can use velocity, temperature, and humidity values from any 
measurement level (for instance, 2u , 2θ , and 2q  along with corresponding measurement levels 

may be used instead of 1u , 1θ , and 1q ). 
 
10. Retrieval of surface roughness length values from the gradient measurements 
� In the case, when the lower measurement levels in the surface layer are taken as (or assumed to 

be) roughness heights (lengths) 1uz = 0z , 1θz = θ0z , 1qz = qz0 , at which, according to the 

definitions of roughness lengths, the meteorological variables reach their surface values u=0, 
θ = sθ , and q = sq , the flux-profile relationships can be written as 
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2
2 2 0

0

( ) ln ( ) ( )u
u m u m

u z
u z

z
ζ ζ

κ
∗  

= − Ψ + Ψ 
 

, 

2
2 2 0

0

( ) ln ( ) ( )s h h

z
z

z
θ

θ θ θ
θ

θθ θ ζ ζ
κ

∗  
= + − Ψ + Ψ 

 
, 

2
2 2 0

0

( ) ln ( ) ( )q
q s h q h q

q

zq
q z q

z
ζ ζ

κ
∗
 

= + − Ψ + Ψ 
 

. 

� These expressions can be used for calculation of surface-layer turbulence scales and turbulent 
fluxes from meteorological measurements at a single level in the surface layer. However, for 
such calculation we need values of 0z , θ0z , qz0 , sθ , and sq , which generally are not very 

easy to obtain. 
� On the other hand, given the surface values of temperature sθ  and humidity sq , as well as 

velocity, temperature, and humidity turbulence scales (determined, for instance, from the two-
level measurements in the surface layer), the above expressions can be used for evaluation of 
surface roughness lengths 0z , θ0z , and qz0 . 

 
Exercise 4 
You are given two sets of meteorological variables measured at different levels in the atmospheric 

surface layer. 
 
Set 1. Measurement levels: 1uz = 1θz = 1qz =0.5m and 2uz = 2θz = 2qz =2m. Data: 1u =3m/s, 2u =4m/s, 

1T =36ºC, 2T =29ºC, 1q =0.008, 2q =0.003, 1θp =1000hPa. For this dataset: 

a. Calculate the surface turbulent fluxes employing the algorithm described in section 9. 
b. Estimate mean velocity, temperature, specific humidity, turbulent exchange coefficients, and Ri 

at z=10m. 
c. Compare results with your calculations for the Set 1 in Exercise 3. 
 
Set 2. Measurement levels: 1uz =1m, 1θz = 1qz =2m, 2uz =8m, 2θz = 2qz =6m. Data: 1u =2m/s, 

2u =8m/s, 1T =8ºC, 2T =11ºC, 1q =0.004, 2q =0.006, 1θp =1000hPa. For this dataset: 

a. Calculate the surface turbulent fluxes employing the algorithm described in 9. 
b. Estimate mean velocity, temperature, specific humidity, turbulent exchange coefficients, and Ri 

at z=10m. 
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