Optimization and data assimilation

- Linear problem without error
 \[y = Ax \]

 \(A: m \times n \) matrix, \(m > n \): measurements > unknown

 rank of matrix: \(p \), \(p < n \): under-determined problem

- Linear problem with error

 \[y = Ax + \delta \]

 \[y_1 = x_1 + 0.99x_2 + \delta_1 \]

 \[y_2 = 0.99x_1 + x_2 + \delta_2 \]

 \(x_1 = \frac{y_1 - \delta_1 - 0.99(y_2 - \delta_2)}{1 - 0.99^2} \)

Linear estimator

- Linear forward model

 \[y = F(x) + \delta = Ax + \delta \]

 \[p(y \mid x) = \frac{1}{(2\pi)^{n/2} \left| S_\delta \right|^{1/2}} \exp\left[-\frac{1}{2} (y - Ax)^T S_\delta^{-1} (y - Ax) \right] \]

 \[-2 \ln p(y \mid x) = (y - Ax)^T S_\delta^{-1} (y - Ax) + c_1 \]

 \[-2 \ln p(x) = (x - x_a)^T S_a^{-1} (x - x_a) + c_2 \]

 \[-2 \ln p(x \mid y) = (y - Ax)^T S_\delta^{-1} (y - Ax) + (x - x_a)^T S_a^{-1} (x - x_a) + c_3 \]

- Estimator

 \[\hat{x} = x_a + (A S_\delta^{-1} A^T + S_a^{-1})^{-1} A^T S_\delta^{-1} (y - Ax_a) \]
Nonlinear inversion

• Nonlinear forward problem

\[y = F(x) \]

• Not exactly a problem of solving a set of nonlinear eqs.
 – Prior information
 – Error characterization
 – Cost function, not quadratic

Degree of nonlinearity

• Linearization

\[\hat{y} - y_a = F(\hat{x}) - F(x_a) = A(\hat{x} - x_a) + \Delta_y \]

\[\Delta_y = F(\hat{x}) - F(x_a) - A(\hat{x} - x_a) \]

• Nonlinearity

\[c^2 = \Delta_y^T S_0^{-1} \Delta_y \]
Newton iteration method

- Extension from linear solution
 \[\hat{x} = x_a + (AS^{-1}_0 A^T + S^{-1}_a)^{-1} A^T S^{-1}_0 (y - Ax_a) \]
 \[y - Ax_a \Rightarrow y - F(\hat{x}) - A(\hat{x} - x_a) \]
 \[\hat{x}_{i+1} = x_a + (AS^{-1}_0 A^T + S^{-1}_a)^{-1} A^T S^{-1}_0 (y - F(\hat{x}_i) - A(\hat{x}_i - x_a)) \]

- Simplified form (Levenberg-Marquardt method)
 \[\hat{x}_{i+1} = \hat{x}_i + (AA^T + \gamma I)^{-1} A^T (y - F(\hat{x}_i)) \]

Data assimilation as inversion

- Numerical weather prediction: Initialization with observations
 - Not straightforward
 - Observation error
 - Compatibility problem

- As inverse problem, taking both prior information and measurement error into account in retrieval process
Assimilation methods

\[J = [x - x_a]^T S_a^{-1} [x - x_a] + [y - F(x)]^T S_\delta^{-1} [y - F(x)] \]

- Successive correction

\[\hat{x}_i - x_{ai} = \sum_k \frac{\sigma^2_w w_{ik}}{\sigma^2_a w_{ik} + \sigma^2_k} (y_k - y_{ak}) \]

- Variational analysis: adjoint method

- Ensemble Kalman filtering

Adjoint method

- Iterative solution

\[x_{i+1} = x_i - [\nabla_x (\nabla_x J)^\top] \nabla_x J \]
\[x_{i+1} = x_i - \gamma \nabla_x J \]

- Adjoint solution

\[x_t = M_t x_{t-1} \]
\[y_t = F(x_t) + \delta_t = F(M_t ... M_1 x_0) + \delta_t \]
\[J = \sum_{i=0}^T [(y - F(x_i))^T S_\delta^{-1} [y - F(x_i)]] \]
\[\nabla_{x_0} J = -\sum_{i=0}^T [\partial F_i(x_i)/\partial x_0]^T S_{\delta,2}^{-1} [y - F(x_i)] = 0 \]