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1. The C-vector form of the quasigeostrophic ω equation

The forcing function in the Q-vector form of the quasigeostrophic ω equation is

expressed in terms of the quasihorizontal divergence of a two-dimensional vector, the Q
vector.  Qin Xu recently showed how the quasigeostrophic ω equation can be expressed

in terms of the vertical component of the curl of a three-dimensional vector, the C vector.

He also showed how the Q vector is related to the C vector.  The C-vector form of the ω

equation is a three-dimensional extension of the Q-vector ω equation.

We define

                C1 ≡  Q2                                                                                             (1)

                C2 ≡  - Q1                                                                                           (2)

From (1) and (2) it can be can be seen that
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                         CH = Q X k  =  C1 i   +   C2 j                                                     (3)

Thus, the horizontal component of the C vector (CH) is perpendicular and to the right of

the Q vector, and of the same magnitude as the Q vector.

Consider the frictionless form of the quasigeostrophic equations of motion

(5.7.43) and (5.7.44) expressed as follows:

(∂/∂t + ug∂/∂x + vg∂/∂y) ug =  fo va + β y vg                                      (4)

(∂/∂t + ug∂/∂x + vg∂/∂y) vg  = -fo ua - β y ug                                       (5)

Instead of forming a vorticity equation as we did when we derived the Q-vector

formulation of the quasigeostrophic ω equation, we now form a divergence equation.

Differentiating (4) with respect to x, and adding the result to the derivative of (5) with
respect to y, we find that

∂/∂x( fo
2 va ) - ∂/∂y (fo

2 ua) = - fo 2 (∂ug/∂x ∂vg/∂y  - ∂vg/∂x ∂ug/∂y)
                                  + β fo ug - fo β y ζg                                    (6)

which, with the neglect of the β terms, we define as 2 C3.  The former two mathematical

operations are equivalent to forming a divergence equation;  however, since the

divergence of the “theoretician’s” geostrophic wind is zero (5.7.49), the time derivative
term involving the geostrophic wind vanishes. It follows from (6) that

                                                C3 =  fo
2 ζa / 2  ∝  ζa                                        (7)

The vertical component of the C vector (C3) is proportional to the vorticity of the

ageostrophic part of the wind.  Equation (7) can be expanded, by using the definition of
C3 and (6), in terms of geostrophic vorticity (5.6.1) and the geostrophic resultant

deformation ((3.1.66), (5.7.36) and (5.7.37)) as follows:
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                            C3 =  fo / 4 ( Dg
2 -  ζg

2) = (fo
2 / 2) ζ a                              (8)

The vertical component of the C vector is therefore also related to the geostrophic

resultant deformation and the geostrophic vorticity. Equation (8) is a useful way to
compute the ageostrophic vorticity from the geostrophic wind field.  However, it provides

no information about the more important divergent part of the ageostrophic wind.

Consider the equations (5.7.50) and (5.7.51), which represent one step in the
derivation of the Q-vector formulation of the quasigeostrophic w equation, expressed as

follows in terms of the components of the Q vector (5.7.55) (recall that it has been

assumed that s is independent of x and y):

            ∂ω/∂y - fo
2/σ ∂va/∂p = - 2Q2 - (R/σp) β y ∂T/∂x                                      (9)

            ∂ω/∂x - fo
2/σ ∂ua/∂p = - 2Q1 + (R/σp) β y ∂T/∂y                                     (10)

We scale the vertical height coordinate by (N/fo)2 (see the handout on the vertical

scaling of the quasigeostrophic ω and height-tendency equations) and denote the three

dimensional wind vector involving the ageostrophic wind and vertical velocity by vaω =

va - (ω/ρg)k. Using (9) and (10) without the β terms, and using the definition of the

horizontal components of the C vector, (1) and (2), we see that the components of the C
vector can be expressed in terms of the ageostrophic vertical circulation va - ω as follows:

 fo
2/σ ∂va/∂p - ∂ω/∂y = 2 C1     ∝    i• ∇ X vaω                      (11)

- fo
2/σ ∂ua/∂p + ∂ω/∂x = 2 C2      ∝  j • ∇ X vaω                    (12)

 ∂va/∂x - ∂ua/∂y = 2 C3 / fo
2 = k • ∇ X vaω                             (13)

The C vector may therefore be interpreted as the three-dimensional vorticity vector

associated with the ageostrophic, vertical circulation (Fig. 1).
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Fig. 1.  The circulations associated with the horizontal and vertical vorticity of the
ageostrophic vertical circulation.

The equation of continuity (5.7.53) can be written as

 ∂ ua/∂x + ∂ va/ ∂y + ∂ω/∂p = 0                                                                           (14)

Differentiating (12) with respect to x, and subtracting from it the result of (11)
differentiated with respect to y, and retaining the β terms in (9) and (10), and using (14),

we obtain the following form of the quasigeostrophic ω equation:

 (∇p
2 + fo

2 /σ  ∂2/∂p2 ) ω = 2 k • ∇ X C  - R/σp β ∂T/∂x                              (15)

[Alternatively, we could have derived this equation easily by using (3), solving for Q,
and plugging the resultant expression (Q = k X CH) into the Q-vector form of the

quasigeostrophic ω equation.] In this form, quasigeostrophic vertical motion is induced

by the vertical component of the vorticity of C.  We note an interesting parallel between
the C-vector and Q-vector formulations of the quasigeostrophic  ω equation:  The forcing

for the former is the vertical vorticity of a vector field, while the forcing for the latter is

the divergence of a vector field. In other words, the C-vector formulation involves

forcing by the nondivergent part of a vector field, while the Q-vector formulation
involves forcing by the irrotational part of a vector field. Since the horizontal component
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of the C vector and Q vector have the same magnitude, and since the horizontal

component of the C vector is orthogonal to the Q vector, the former contains the same
information as the Q vector.  However, the three-dimensional C vector also contains

information about the tilt of the ageostrophic circulation.  It has therefore been suggested
that it may be more versatile than the Q vector.

Consider, for example, diffluence in the geostrophic wind (geostrophic stretching

deformation) acting on a temperature gradient (Fig. 2).  We can perform our analysis first
by using natural coordinates for Q vectors to compute the Q vectors, and then rotate the

Q vectors to the right by 90o to get the CH vectors; alternatively, we can compute the CH

vectors directly by working in a natural coordinate system for CH vectors. Q vectors are

directed from the warm to the cold side;  convergence (divergence) of Q and rising

(sinking) motion are found on the cold (warm) side.  Let us now analyze the problem
using C vectors:  The horizontal component of C in this example points in the

downstream direction.  The vertical component of the curl of CH is cyclonic (positive) on

the left side of the flow, and anticyclonic (negative) on the right side.  Thus, according to
(15) there is rising (sinking) motion on the cyclonic (anticyclonic), cold (warm) side.

Thus, the C-vector analysis is so far consistent with the Q-vector analysis.

Fig. 2.  Illustration of the use of the C-vector field to diagnose vertical velocity and
ageostrophic circulation.  Geostrophic wind (streamlines), isotherms (dashed lines).

However, we know from (8) that since there is no geostrophic vorticity, and there is
nonzero resultant geostrophic deformation, that
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                                     C3  ∝  Dg
2  >   0

i.e., the vertical component of the circulation is cyclonic. Hence the three-dimensional C

vector tilts upward to the right, and the ageostrophic circulation is tilted as shown in Fig.
3; in other words, the plane of the vertical circulation leans to the west (towards lower

values of x) with height. The reader should, as an exercise, consider the Q-vector field

shown in Fig. 5.27c, and (a) show that the C-vector form of the quasigeostrophic
ω equation yields the same vertical-motion field as the Q-vector form of the

quasigeostrophic  ω equation, and (b) that the plane of the vertical circulation leans

toward the warm air at low centers (and toward the cold air at high centers).

Fig. 3.  Illustration of the tilt of the plane of the ageostrophic vertical circulation.

So, we use the geostrophic wind to calculate the resultant geostrophic deformation and

geostrophic vorticity. Using (8), we find C3, from which we can find the tilt of the
ageostrophic vertical circulation and the ageostrophic vorticity.

2. The P-vector form of the quasigeostrophic height-tendency equation

The P-vector form of the quasigeostrophic height-tendency equation allows one to
diagnose height tendency from a vector field, just as the Q and C-vector forms of the

quasigeostrophic ω equation allow one to diagnose vertical motion from vector fields.
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We define the three-dimensional P vector, from which we can use the geostrophic wind

relations (5.5.7) and (5.5.8), and the equation of continuity (5.7.49), to show that its
horizontal components can be expressed as follows:

P1 ≡  ∂vg/∂x • ∇Φ  = - fo vg • ∇p vg                                     (16)

P2 ≡   ∂vg/∂y • ∇Φ  =  fo vg •  ∇p ug                                    (17)

 We use the same geostrophic wind relations and the thermal-wind relations (4.1.120) and
(4.1.121), to show that its vertical component can be expressed as follows:

P3 ≡  fo
2 /σ  ∂vg/∂p • ∇Φ  = fo

2 /σ  R/p  vg • ∇p T              (18)

Thus, it is seen that the horizontal components of P represent geostrophic advection of

geostrophic momentum, and the vertical component of P represents geostrophic
advection of temperature (or thickness).

Consider the frictionless form of the quasigeostrophic equations of motion (4) and

(5) expressed, using the “theoretician’s definition” of the geostrophic wind (5.5.7) and
(5.5.8), as follows:

 ∂/∂t (- 1/ fo ∂Φ/∂y) + vg• ∇ug = fo va +  β y vg                         (19)

 ∂/∂t (1/ fo ∂Φ/∂x)   + vg• ∇vg = - fo ua -  β y ug                        (20)

The adiabatic form of the quasigeostrophic thermodynamic equation (5.5.19), expressed
using the hydrostatic equation (5.6.2), is

 ∂/∂t (-p/R  ∂Φ/∂p) +  vg• ∇p T= ω σ p/R                               (21)
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Solving for ua, va, and ω from (19), (20), and (21), respectively, and using the

definition of geopotential-height tendency (5.6.4), we find using the definition of the P

vector (16) - (18) that

ua =   P1 / fo
2 - 1 / fo

2 ∂χ/∂x -   β y ug / fo                 (22)

va =  P2 / fo
2 - 1 / fo

2 ∂χ/∂y - β y vg / fo                    (23)

 ω  =  P3 / fo
2 - 1/σ ∂χ /∂p                                           (24)

Let us assume that the static-stability parameter σ is independent of pressure.

Differentiating (22), (23), and (24) with respect to x, y, and p respectively, and adding the

expressions up, we obtain the following P-vector form of the quasigeostrophic height-
tendency equation:

 (∇p
2 + fo

2 /σ  ∂2/∂p2 ) χ    =   ∇p • P + ∂P3 / ∂p - fo β vg              (25)

The height tendency can therefore be related to the three-dimensional divergence of the

P-vector field:  Divergence (convergence) of P is therefore associated with falling (rising)
heights.

Differentiating (22) and (23) separately with respect to x and y, respectively, and
adding the resulting expressions together, we find that

 ∂ζg /∂t = 1 / fo  ∇p • P - fo  δ  -  β vg                                                               (26)

Comparing (26) to the quasigeostrophic vorticity equation (5.5.20), we find that

 - vg •  ∇ ζg = 1 / fo ∇p • P                                                                                 (27)

Thus, the quasihorizontal divergence of the P-vector field is equivalent to geostrophic
advection of geostrophic vorticity. It is easily seen using (18) that the vertical derivative
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of the vertical component of P is equivalent to differential (mean) temperature advection,

i. e.,

 ∂P3 / ∂p = - fo
2 / σ  ∂/∂p [ - ( R / p ) vg •  ∇p T ]                                                (28)

Therefore in an equivalent barotropic or barotropic atmosphere, P3 = 0, and in the

absence of the b term we only have to consider the forcing function  ∇p • P. From the

definitions of the horizontal components of the P vector (16) and (17) in terms of the

geopotential-height gradient (∇Φ), we find that they can be expressed more easily in a

natural coordinate system for the horizontal components of P, i.e., one in which the x axis
is oriented along the geopotential-height contours, and the y axis is directed toward lower

heights as below in Fig. 4.

Fig. 4.  A natural coordinate system for the horizontal components of the P vector.

Then,

P1 = ∂vg/∂x ∂Φ/∂y                                                    (29)

P2 = ∂vg/∂y ∂Φ/∂y                                                    (30)

In the equivalent barotropic wave train shown below (Fig. 5), we can use (29) and (30) to

sketch the field of the horizontal component of the P vector, and then determine
χ qualitatively.  Note that ∂Φ/∂y < 0, ∂vg/∂y = 0 along the trough and the ridge axes, and

that ∂vg/∂x < 0 (>0) along the ridge (trough) axis.
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Fig. 5.  Illustration of the use of the P-vector to diagnose geopotential-height tendency

So, P = - |∂Φ/∂y| (∂vg/∂x i - ∂ug/∂x j), where the equation of continuity has been used to

substitute for ∂vg/∂y. Then the quasi-horizontal part of the P vector

Pp = |∂Φ/∂y| (k X ∂vg/∂x).

The quasi-horizontal component of the P vector therefore points in the direction normal
and to the left of ∂vg/∂x. (Recall that in the natural-coordinate calculation of the Q vector,

the latter points in the direction normal to and the right of ∂vg/∂x. But be careful here!

The natural coordinate system in which the Q vector is calculated is defined in terms of
the orientation of the isotherms; the natural coordinate system in which the P vector is

calculated is defined in terms of the orientation of the geopotential height contours.)
How is the P vector related to the Q vector and the C vector?  Differentiating (22)

and (23) with respect to p, and (24) with respect to x, and with respect to y, we obtain the

following:

 ∂ua/∂p = - 1 / fo [ ∂/∂t ( ∂vg/∂p) - 1 / fo ∂P1/∂p ] -    β y / fo ∂ug/∂p                 (31)

 ∂va/∂p =  1 / fo [ ∂/∂t ( ∂ug/∂p) + 1 / fo ∂P2/∂p ] -    β y / fo ∂vg/∂p                  (32)
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 ∂ω/∂x = 1 / σ  [ R / p ∂/∂t (∂T/∂x) +  σ / fo
2 ∂P3/∂x ]                                         (33)

 ∂ω/∂y = 1 / σ  [ R / p ∂/∂t (∂T/∂y) +  σ  / fo
2 ∂P3/∂y ]                                        (34)

Using the thermal-wind relation (4.1.121) in (31), we eliminate ∂/∂t (∂T/∂x) from  (33)

and (31), and find that

∂ω/∂x - fo
2/σ ∂ua/∂p = 1 / fo

2 ∂P3/∂x - 1/σ ∂P1/∂p +   β y / σ  R / p ∂T/∂y       (35)

Using the thermal-wind relation (4.1.120) in (32), we eliminate  ∂/∂t (∂T/∂y) from (34)
and (32), and find that

∂ω/∂y - fo2/σ ∂va/∂p = 1 / fo
2 ∂P3/∂y - 1/σ ∂P2/∂p -   β y / σ  R / p ∂T/∂x        (36)

Comparing (35) to (5.7.51), and (36) to (5.7.50), we find that

Q1 =   1 / σ  ∂P1/∂p - 1 / fo
2 ∂P3/∂x                                                                (37)

Q2 =   1 / σ  ∂P2/∂p - 1 / fo
2 ∂P3/∂y                                                                (38)

It follows that the Q vector is directed perpendicular and to the right of the horizontal
component of the curl of the P vector.  In other words, the horizontal component of the C

vector is directed in the direction opposite that of the horizontal component of the curl of

the P vector.
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Fig.  6. Relationship among Q, CH, and ∇p X P.

Differentiating (23) with respect to x, differentiating (22) with respect to y, and
subtracting the latter from the former, we find that

        ζa = 1 / fo
2 ( ∂P2/∂x - ∂P1/∂y ) - β y/fo (∂vg/∂x - ∂ug/∂y) +  β y ug / fo =

1 / fo
2 k • ∇ X P  -    β y/fo  ζg    +    β y/fo ug                          (39)

Thus, the vertical component of the curl of the P-vector field is proportional to the
vorticity of the ageostrophic wind.  We noted earlier (7) that the vertical component of

the C vector is also proportional to the vorticity of the ageostrophic wind.  Therefore the

vertical component of the C vector is proportional to the vertical component of the curl of
the P-vector field.  We conclude that the C vector is proportional to the curl of the P-

vector field. It remains to be seen whether or not either ever get used operationally and
become as in vogue as the Q-vector field is now!

A final thought:  The Q, C, and P vectors are the synoptic meteorologist’s version of the
physicist’s unified field theory.


