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ABSTRACT

This paper is pedagogically motivated to qualitatively demonstrate basic concepts related to Galilean invariance
and partial cancellation in the individual forcing terms in the traditional form of the omega equation. The analysis pro-
vides examples of the vertical distribution of the primary quasigeostrophic (QG) forcing, showing how the individual
forcing terms vary in different coordinate systems while their sum remains constant. The QG forcing is described ana-
lytically using an unstable Eady wave solution, which allows depictions of QG forcing similar to those in basic atmo-
spheric dynamics texts. The perturbation streamfunction, temperature, and vertical velocity are seen to be invariant under
change of horizontal coordinate system, while the individual magnitudes of the QG vertical motion forcing are not. The
total QG forcing remains invariant in all cases and is equal to the QG forcing found from the divergenQevefctioe.

The figures provided can supplement those used for traditional study and may be useful to provoke classroom discus-
sion of related QG concepts.

1. Introduction Durran and Snellman 1987). Despite the benefits of
the Q-vector form of the omega equation, students’
TheQ-vector form of the omega equation (Hoskinstroduction to quasigeostrophic concepts usually in-
et al. 1978) is superior to the traditional, r@+vec- volves the traditional form of the omega equation,
tor form. InQ-vector form (assuming = 0), there is which is introduced first in popular atmospheric dy-
a single forcing term (related to divergence@f namics textbooks (e.g., Holton 1992 and Bluestein
while the traditional form has two primary forcingl992).
terms (differential vorticity advection and the Durran and Snellman (1987) and Bluestein (1992)
Laplacian of thermal advection), which partially carpoint out that the individual forcing terms in the
cel. (Forcing mechanisms involving friction, diabatiomega equation are different for identical weather
heating, and thg? effect are not discussed here 3ystems that are embedded in mean flows moving at
Additionally, the Q-vector forcing can be deducedlifferent wind speeds. The individual primary forc-
gualitatively from the geopotential and temperatuieg terms differ in each situation because they depend
distribution at a single level (unlike the primary forcen the motion of the coordinate system in which they
ing in the traditional form), leading to relatively easgre measured, that is, they are not Galilean invariant,
interpretation and deduction of regions of strong foratthough the total primary forcing is Galilean invari-
ing of quasigeostrophic (QG) vertical motion. The adnt. As Durran and Snellman (1987) and Bluestein
vantages and applications of Qevector form of the (1992) point out, the Galilean variance of the indi-
omega equation are well described in the literature, aridual primary forcing terms shows that the terms
are not described further here (e.g., Hoskins et al. 19¢&nnot have physical significance in the forcing of
vertical motion when considered independently.
However, it is difficult for some students to visualize
Corresponding author addresgt. Col. Michael K. Walters, how the p_nmary forcmg ter_ms d.epend on coordinate
Department of Engineering Physics, Air Force Institute of Tec_ﬁyStem' since the Galilean invariance of the total forc-

nology, 2950 P. Street, Wright-Patterson AFB, OH 45433.  Ing is typically demonstrated only in a mathematical
In final form 31 October 2000. way (e.g., see the derivation in Bluestein 1992, p. 347).
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Here, we provide pedagogically motivated figuregergence above due to upward motion and mass
demonstrating the Galilean invariance and partial cazentinuity. The upward motion produces adiabatic
cellation in the individual forcing terms. cooling which offsets the affect of the horizontal warm

The next section briefly reviews QG interpretatioadvection. In each case the secondary circulation

of the omega equation, as well as a brief descriptiopposes the horizontal advection and acts to restore

of the Eady wave solution, which was the basis of ttiee atmosphere to hydrostatic and geostrophic balance,
results shown later. The third section presents twdich is an example of LeChatelier’'s principle

specific examples of QG forcing that differ only in thgBluestein 1992). While these two examples are useful,
they are embedded in different mean flows; the finadterpreting the terms individually avoids the
section provides conclusions based on these resultsncellation in the individual forcing terms in the

omega equation discussed below. The concepts

described here also disregard the fact that the primary

2. Background forcing terms do not really have physical significance
because they are not Galilean invariant. The use of the

a. Forcing of vertical motion in the omega word “forcing” to describe these terms in unfortunate,
equation as it is just as accurate to say that the vertical motion

Although theQ-vector formulation of the omega“forces” the differential vorticity advection and
equation is superior to the traditional form, student®rizontal temperature advection, or that the differen-
usually begin their study of QG theory with the tradttal vorticity advection forces both the vertical motion
tional form of the omega equation. This approaand the horizontal temperature advection. It must be
emphasizes a conceptual understanding of the primanyphasized that there is not a cause and effect rela-
forcing mechanisms and the importance of the resuibnship between the primary forcing terms and
ing secondary circulation field in maintaining hydroQG vertical motion, since each occurs simultaneously.
static and geostrophic balance. These physical A similar physical interpretation can also be made
interpretations are thoroughly discussed by Durran aiodthe forcing in th&-vector form of the omega equa-
Snellman (1987), Holton (1992), Bluestein (1992) artihn. The derivation of th€ vector mathematically
others. As a simple example, consider a verticalflemonstrates that horizontal geostrophic advection
uniform vorticity field advected by a wind withbreaks down the thermal wind balance in the absence
vertical speed shear and no directional shear, resaftcompensating ageostrophic motions, which are
ing in differential vorticity advection without thermalrequired to maintain hydrostatic and geostrophic bal-
advection. In this case, positive differential vorticitgnce. The&) vector itself is proportional to the rate of
advection produces increasing cyclonic vorticity witbthange of the horizontal temperature gradient follow-
height associated with a decrease in thickness. Am@geostrophic advection. Therefore, convergence of
result, there must be a decrease in temperature forttieQ vector implies a local increase in thickness. For
atmosphere to remain hydrostatic. In the absencetla atmosphere to remain hydrostatic and geostrophic,
horizontal temperature advection, this temperatuttgere must be an increase in anticyclonic thermal vor-
change is linked to adiabatic cooling associated wiilaity (an upward motion according to the vorticity
an upward secondary circulation. The upward secoradjuation) or a compensating decrease in temperature
ary circulations are associated with upper-level divdrom other mechanisms (such as upward motion and
gence and lower-level convergence (due to maamdiabatic cooling through the thermodynamic equa-
continuity), which produce an opposing change tion). As a result, a geostrophic disturbance is ac-
thermal vorticity. In an analogous way, warm advecompanied by both horizontal adjustments in the
tion, in the absence of differential vorticity advectioiemperature field as a result of spatially varying ver-
is associated with an increase in thickness typically éisal motions, and adjustments in the vertical wind
sociated with a decrease in the Laplacian of the thidleld due to vertical variations in the ageostrophic
ness. Because geostrophic vorticity is proportionalwand. The resulting temperature changes (from the
the Laplacian of the geopotential, increasing thicknessrtical motion) and the parcel accelerations (due to
implies increasingly anticyclonic thermal vorticity fothe ageostrophic wind) both act to offset the disrup-
the atmosphere to remain geostrophic. In the absetioa in thermal wind balance and act to restore the
of vorticity advection, this change in thermal vortichydrostatic and geostrophic balance (Durran and
ity can be associated with convergence below and 8inellman 1987; Holton 1992; Bluestein 1992).
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Studying the physical interpretation of the primargumed to be constant. A drawback of the Eady solu-
forcing terms in the traditional form of the omegéon is that it does not allow for meridional tilt of the
equation involves assessing their sign at strategitstable waves, which is unrealistic because it does
locations in the midlevel geopotential field while neaot allow for meridional momentum flux [which is
glecting the cancellation between the terms (i.e., thkso true for the Charney (1947) baroclinic instability
terms are considered individually). Such exercises an@del, which is somewhat more complicated].
often based on simplified schematic synoptic condsecause the Eady model is capped by arigid lid, it pre-
tions, which show the tilt with height of perturbatiomlicts an upper-level boundary wave, which is not re-
geopotential and perturbation temperature that aléstic in the atmosphere. The presence of the rigid
characteristic of a developing baroclinic wave (e.g., seper lid is necessary for baroclinic instability to oc-
Fig. 6.6 in Holton 1992). Also, the assumption is usour in the Eady model because the potential vorticity
ally made that the left-hand side of the omega equadient in the interior is zero (Pedlosky 1987). Despite
tion is proportional to- due to the elliptic form of the fact that the Eady wave is unrealistic in compari-
the operator. These exercises are useful to learn alsmut to the actual atmosphere in some respects, the
the mathematical and physical nature of the omeBady solution is mathematically consistent with the
equation and to introduce the role of the secondary tinearized quasigeostrophic momentum and thermo-
culation in maintaining hydrostatic and geostrophiynamic equation. Therefore, the Eady solution pro-
balance described above. However, students mayimes a valid example of Galilean invariance in the
frustrated in attempts at deciphering the signs of thmega equation described previously. Finally, because
primary forcing terms at locations in the wave whetbere is some dynamic similarity between a rigid up-
cancellation between the terms makes the situatioer lid and the tropopause (Morgan and Nielson-
more problematic. This frustration is not alleviate@ammon 1998), it can be argued that the distribution
when students subsequently learn that the forciofjvariables beneath the rigid lid should be analogous
terms are not really physically meaningful due tota the distribution of variables bene#tetropopause
coordinate-dependent partial cancellation between thehe reabtmosphere.
two forcing terms.

c. Procedure
b. The Eady solution The Eady wave solution used here is a slight modi-

The Eady wave (Eady 1949) provides a concepfication of that derived in James (1994), which is based
ally simple and elegant model of baroclinic instabibn a basic state with equal and opposite zonal winds
ity. In particular, the unstable Eady wave solutioat the top and bottom boundary. Here, the basic-state
shows the westward tilt with height of perturbatioatreamfunction is modified to allow the addition of a
geopotential and eastward tilt with height of the petonstant zonal wind at all levels (defined as the con-
turbation temperature that is characteristic of a devstantc). The influence of this modification on the Eady
oping baroclinic wave. The Eady model successfullyave derivation is described in the appendix.
predicts the characteristic wavelength and growth rate A constant thermal wind &¥/H is assumed, where
of midlatitude transient disturbances, as well aslhis the difference in zonal wind from top to bottom,
poleward temperature flux consistent with energetiehich are ag* = +H/2 whereH is the depth. Two sepa-
explanations of baroclinic instability (Pedlosky 198fate cases are considered—one witt0, which is the
Holton 1992; James 1994). The relationship betwesame as the solution in James (1994), and one with
the geopotential and temperature is similar to thatdm U/2, where the wind at the bottom is 0 and the zonal
the simple baroclinic waves used to study QG theowyind at the top i&J. In each case the thermal wind is
Because the Eady solution can be described analifte same, and the resulting Eady solutions are identi-
cally for a given constant thermal wind, it is relativelgal (except for the difference in phase; they are iden-
straightforward to calculate the QG forcing in thécal when the abscissaxs- ct).
omega equation by assuming the horizontal wind in There are two forms of the omega equation of in-
the Eady solution is geostrophically balanced. terest here. Details of the derivation and the definition

The Eady wave solution is derived for a fluid thaif the symbols are provided in the appendix. The first
is situated between two rigid surfaces on an f plafe;m of the omega equation is the standard form (in
so theg effect is not included. The meridional temlog-pressure coordinates),
perature gradient (and therefore thermal wind) is as-
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The right-hand side of Eq. (2) is positive in this deri-
vation, as convergence Qfis associated with upward
vertical motion W* > 0) if the left side of the equa-
tion is proportional te-w*. Because the total forcing
determined from the divergence @fis identical to
Q1+ Q2 (shown in the appendix), tiigvector form
of the omega equation is not discussed further here.
The Eady wave parameters are chosen so that the
resulting perturbation has complex frequency and is
therefore unstable. Specifying the frequency also de-
termines the vertical tilt of the geopotential and tem-
perature perturbations. From the resulting form of
perturbation streamfunctiop’ and the basic-state
streamfunctiony, the various quantities on the right-
hand side of Egs. (1) and (2) can be calculated using
their analytical forms given in the appendix. The re-
sults are consistent, in thatl + Q2 and % - Q are
equivalent. In addition, the advection of relative vor-
ticity by the thermal wind (following the approxima-
tion in Trenberth 1978) is also proportional to the total

(x 105 m?s ) for c = 0 case. (b) Cross section of perturbation tem-
peraturel” (K) for ¢ = 0 case.

N?Dw + fozi*
z

wherew* = dz*/dtis the vertical velocity. The primaryZ
forcing termQ1 represents differential vorticity advec-
tion, while Q2 represents the Laplacian of the thick-
ness advection in the following discussion. These
primary forcing terms are described in the appendix.
The vertical motion field described by Eq. (1) is due

0
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to the sun21+ Q2, and there is no time derivative in

the equation, which is therefore diagnostioftrAs
described previously and shown in the apperdik,
andQ2 can be rearranged to show that they each in-
clude a common factor, which cancels between them.
As a result, for a given thermal wind, there is an infiz’
nite number of Eady solutions (each with a different
c¢) that produces the same (phase shifted) QG vertical
motion field. In each case, the distribution€Xif and

02 will be different, while the total forcinQ1 + Q2

is identical (although phase shifted).

The second form of the omega equation of inter-

(b) w

est (briefly discussed in the appendix) is the equiva-. 2. (a) Cross-section meridional velooitym s?) for ¢ =
lent Q-vector form

466

0 case. (b) Cross section of vertical velogity(cm s?) forc = 0.
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tureT'. The results shown are for the= O case; the
results for the = AU/2 case are identical after account-
ing for the phase difference. These figures show the
westward slope with height of perturbation stream-
function and eastward slope with height of perturba-
tion temperature that is characteristic of developing
baroclinic waves. This vertical structure is very simi-
lar to schematic models often used to introduce QG
concepts. Figures 2a and 2b show the corresponding
vertical cross sections of the meridional veloeitgnd

the vertical velocityw*.

Figures 3a and 3b show vertical cross sections of
Q1 + Q2 for each case. Also shown in each figure
(dashed) is the* = 0 contour from Fig. 2b to delin-
eate the two regions of vertical motion. The common
assumption that the left side of Eq. (1) is proportional
to —w* can be checked by comparing the sign of
Q1 + Q2 with the sign of the vertical velocity from
Fig. 2b. For example, if the assumption is valid, re-
gions ofQQ1 + Q2 < 0 will correspond to upward ver-
tical motion,w* > 0. These examples show that the
assumption holds over most of the domain, except for
small areas near thg = O contour. These figures

Fic. 3. (a) Cross section of the total primary forcidgy + 2
(x 107 (m s®) forc = 0. (b) As in (a) but foc = AU/2.

(a) Q1

primary forcing and is invariant to changes in constant
zonal wind because it is not a functioncof his re-
sult is also consistent with the derivation presentedjn

Bluestein (1992), since the derivation here is carriedp

out for constant f and the deformation of the horizon-
tal wind is identically zero (not shown here). The in-
dividual terms21 andQ2 are each functions of so
they are not Galilean invariant as described above.

3. Results

A few selected results are shown for each case det

scribed above to describe the Galilean invariance of
the total primary forcing and the Galilean variance o}
the individual terms. The first case= 0) results in a
zonal wind, which is zero at the ground ahat the

top of the model, while the second cases (AU/2)
results in an antisymmetric zonal wind about the
midlevel. The perturbation Eady wave structure of
each case is identical, provided the horizontal coordi-
nate in the plots ig + ct.
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) ) ) Fic. 4. (a)Cross section dhe primary forcing21 (x 107 mt s3)
Figures 1a and 1b show vertical cross sectionsait = 0. The dash—dot contour in each figureris= 0. (b) As in

y = 0 of perturbation streamfunctigri and tempera- (a) but forc = AU/2.

X+ct




cases. In the = 0 case, the basic state wind is anti-
symmetric about the midlevet*(= 0) and the maxi-

=0
0.4
/ xo.{ mum vertical velocity occurs at a level where the
o e i horizontal vorticity advection is zero. While this is a

| contrived example, this result emphasizes that the
Y mechanism of interest in the diagnosis of QG vertical
motion is differential vorticity advection and not hori-
zontal vorticity advection at a particular level.

Since the total primary omega equation forcing is
invariant to changes in coordinate system, we are free
to choose any such moving coordinate system to de-
scribe the total forcing. As shown in the appendix, the

c=AU/2 partial cancellation between the primary forcing terms
EEr \J vanishes whem* = —cH/U. This occurs foc = 0 at

02/ 7¢ - the levelz = 0 (exactly at midlevel) as shown in
0 Fig. 6a. Therefore, far = 0, the individual primary
' \|  forcing terms in the omega equation can be interpreted
| at the midlevelZ* = 0) in a way that describes well
Y LeChatelier’s principle as applied to the maintenance
circulations. As a result, the total forcing terms at
m midlevels forc = 0 conform well to the concepts de-

of hydrostatic and geostrophic balance via secondary
scribed in section 2 and the interpretation of vertical

Fic. 5. (a)Cross section dhe primary forcingd22 (x 10" mis3)
for ¢ = 0. The dash—dot contour in each figureris= 0. (b) As in
(a) but forc = AU/2. (a) Cancellation c=0
0.4.]
o

. . . . — 0.6 -0.4
show that the total forcin@1 + Q2 is invariant to S ' L
changes ir. oz 0z

Vertical cross sections of the individual primar)Z*
forcing terms are shown in Figs. 4a and @ft)(and

Figs. 5a and 5b{¥2) for each case with the dashed \ 07 oy ’O'_ZO_‘,

w* = 0 contour (from Fig. 2b). These figures show |os_ . // o,e/\ 05

areas where the sign of each of the individual primary [-s \ o8 (g
X

forcing terms is not proportional ten*; these areas

are different in each case. As described akfate; 0

would be associated witi# > 0, if we assume the left-  (b) Cancellation c=AU/2
hand side of Eq. (1) is proportional+te* (and ne-
glect the contribution af22). Using this assumption,

it may not be accurate to usH (or Q2) by itself to
diagnose QG vertical motion in regions wh@ke(or _-
Q2) andw* are the same sign. Figures 4 and 5 sho%
that the individual primary forcing terms vary between
cases (they are not Galilean invariant).

Figures 6a and 6b shows contours of the term that
cancels between the primary forcing te@isand?2
(described in the appendix). The region of cancella- X+ct
tion is different in each case. Finally, the horizontal ¢ g (5 cross section of the cancellation [given by (A16)]

relative QG vorticity advectior_ - V¢, sShown in petweern1 andQ2 (x 107 mis?) for ¢ = 0. (b) As in (a) but for
Figs. 7a and 7b, is considerab?y different betweers AU/2.
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(a) Relative vorticity advection c=0 < Becaus&l andQ2 are not invariant in two iden-

&j 4j tical systems embedded in mean flows moving at
\2 3 -
xw O _1

different wind speeds, there are regions where ei-
ther term (considered by itself) may not be a good
indication of vertical motion. These regions may

Z vary considerably between cases.
; . * Becaus®1+Q2 isinvariant, the region where the
) ,2\ total primary forcing accurately predicts vertical
: s fas motion (assuming that the left side of the omega
320\ 4 N equation is the negative of vertical velocity) is al-
X ways the same. For the wave structure chosen here,

this region is quite large, which indicates that the
(b) Relative vorticity advection ¢=AU/2 vertical motion determined by th@ vector at
midlevels would be quite accurate in this example.
e There may be regions of the wave at midlevels
where individual interpretation of the primary forc-
ing mechanisms is less helpful in diagnosis of the sign
of vertical motion, as in the case where AU/2.
e These results reemphasize that@eector form
of the omega equation is preferable.
e The general rule that cyclonic vorticity advection
(anticyclonic vorticity advection) aloft is indicative

X+ct of vorticity advection increasing (decreasing) with
Fi. 7. (a) Horizontal geostrophic vorticity advectidf); V¢, height and Upward (downward) mot!on IS gener-
(x 101%?), for c = 0. (b) As in previous figure but far= AU/2. ally accurate in the =U/2 case, but misleading in

thec =0 case if applied at or below the level where
the horizontal vorticity advection is zero (which is
motion using either of the primary forcing terms is the level of maximum vertical velocity).
qualitatively the same as using the total primary forcing.
Because the schematic wave used here is Sim’gleAcknowledgmentﬂ'.he author acknowledges the helpful com-

isi f inal ber hori tall ents of Dr. John Nielson-Gammon, which greatly improved the
(consisting of a single wavenumber horizontally), rﬁanuscript. The views expressed in this article are those of the

Caveat_ is appropriate. The qssqmption that the l&ftthor and do not reflect the official policy or position of the
hand side of the omega equation is proportionad United States Air Force, Department of Defense, or the

is very accurate here as shown above, so the correspof-government.

dence between the individual forcing terms and the

vertical motion is also very good. In reality, there ma ) ) )

be significant areas at midlevels where this assunfdPPendix: Mathematical details

tion is not accurate (see Durran and Snellman 1987 for o )

a good example). As a result, the estimation of verti- 1"¢ QG omega equation in log-pressure coordi-
cal motion from the total primary forcing in such aftes follows directly from the frictionless QG mo-

eas may be less useful (even using @heector MeNtum equations on the f plane where §:= f

formulation).

ou, ‘U ou, oy ou, fv.=0 (A1)
at  ‘ox %oy

4. Conclusions

The figures shown provide graphical examples of % +u % +vV % +fu =0. (A2)
the Galilean variance of the primary forcing terms in ot Toax ° o

the omega equation and the resulting variation in the
distribution of QG forcing of vertical motion. The fol-in Egs. (A1) and (A2) the subscriptefers to the geo-
lowing points can be summarized. strophic wind and the subscriptrefers to the
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ageostrophic wind. The adiabatic thermodynamic
equation is Q=- Eﬁu 4 %Q vy i?% (A9)
ay X dy dy Loz

0o 0 0 Lo - ) . . "
+Uu —+Vv,— —+w N° =0, (A3) The right-hand side of Eq. (A7) is positive, so that con-
o + % 3 gayg—az (A3) g g.(A7)isp

vergence of) gives upward vertical motion as in the

typical definition inp coordinates. Equations (A8) and
whered is the geopotential aidlis the Brunt—Vaisala (A9) are analogous to the definition in Holton.
frequency. The vertical log-pressure coordinate is de- The derivation of the Eady solution (Eady 1949)

fined by used here follows the derivation in James (1994),
which assumes a vertically symmetric basic state in
OpO log-pressure coordinates, with the top of the domain

Z =-H InE_E (A4) atz* = H/2 and the bottom at = —H/2. The basic-

Po state streamfunctiog is a slight modification of the

form given in James (1994) and is given by
Following the general procedure (e.g., see Holton

1992, 170-173 Bluestein 1992, 350-353), the QG omega 3 Uyz
equation can be found to be W= T cy+F, (AL0)
o W WO wherec represents a constant zonal wind throughout

N OwW + f? _E_ Q1+Q2, (A5) the depth of the modeH) andy is related to
geopotential of the f plane byyf = ®, andF repre-

sents an additive constant. In Eq. (A10JH repre-

0z Ea_

where the forcing terms are sents the constant thermal wind. Because the additive
constanf is not a function ok andy, it does not ap-
0 1 pear in the following derivation and does not need to

Q1= f,— D2d> (A6) be considered further.
62 %Jg aX Y Gy%— E The termc was added to make it easy to show the

invariance of the QG forcing to the addition of a con-
which represents differential vorticity advection, anstant zonal wind. Witk = 0 the Eady solution follows

the same as in James (1994, 138-141). We assume a

solution for the perturbation streamfunctidti

O a
—? _
EJQ@X gay%Q y’= ¢ (z") cos (y) exp fi(kx- wt)],

which is the Laplacian of the thickness advection. wherek andl are horizontal wavenumbersxmandy.

Following the basic derivation in Holton (1992)Conservation of potential vorticity leads to an ordinary
theQ-vector form of the QG omega equation followdifferential equation for the perturbation streamfunc-
from the momentum, thermodynamic, and continuitjon amplitudeg (z*) whose solution is
equations and is given by

¢ (z*) = [Acosh gH ) + B sinh @H )],
N?O°w + f2 9 éﬁl W @— 2V 10, (A7) whereA andB are constants that can be determined
oz Doz H from the boundargonditionsw* = 0 at the top and bot-
tom of the model. Theesulting dispersioaquation for

where the components of tevector are given by the Eady solution including the phageft c is given by

[du, a% avgagg 0O 0Ox0xm 0Ox0 k0
Q=- =z A8 on oo oo (ALl
0X 0X @ ox dy z*%( ) \@t hDZK O« thDZK O « B :
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whereK =k? +12 represents the total wavenumber . S
andK_ = f/(NH). This result is the same as the result 1, cos{ly)k expi (ko = at)]
in James (1994) with the addition of the constant ba- BUZ* +cH)(AS+ BC) O (Al6)
sic state frequendyc. For complexw, the solution is x(k* +1?) O
unstable. For the Eady solutions plotted hé&re,|, HH, g
which results in a square wave in the horizontal, and
K =1.6K , which is the total wavenumber of the sothis expression is related to the advection of thermal
lution with the fastest growth rate for= 0 (James vorticity by the constant zonal wind, since
1994). This choice dk does not result in the fastest
growing wave for the square wave used here, but thea P
result is representative of an unstable baroclinic wave.— % DZCD@: —icf, cos(ly)k expl[i(kx — ct)]
By assuming appropriate values foand assum- ox Loz
ing that the total horizontal wind in the Eady solution AS+ BCO
is in geostrophic balance, we can find the various forc- x (K +1*)————Q
ing terms, which appear in the omega equation. These H,
include the relative vorticity

The factotUz* + cH vanishes wheo=-Uz*/H or z*
¢ = —cos(ly) exp[i(kx - wt)](K* +1%)¢(z), (A12) =-cH/U, whichis the level wher# =0 by Eq. (A10).
Therefore, ar* = 0 andc = 0, the cancellation between
the relative vorticity advection the terms is zero. The existence of this term shows that
the individual terms are not invariant to changes in
The total forcing of they equation in the form of

“%ﬁ ¥ "% = —igcos(ly)k expli(kx —wt)] Eq. (A5) is given by
Uz* +cH (A13) Q1+Q2=-2i fO COS(|y)kexp[| (kX _ M)]
x (K2 +1%) ————, ’
i x (K* + |2)ﬁ¢, (A17)

the differential vorticity advection
This result shows that the total forcing is invariant to

the additional of a constant zonal wind as expected and
Q1 = -if, cos(ly)k exp[i(kx — wt)] (k" +1%) is linear with respect to the thermal wittiH.

[UH_AC + UH,BS+ (UZ + cH)(AS+ BC) [ (A14) Similarly, the components of th@ vector can be
x H T found to be

. U
1= —gk*f, cos(ly)exp[i(kx —wt)] —  (A18)
and the Laplacian of the thickness advection Q ¢k, coslly) expli( ) H

and
Q2 =if, cos(ly)k expli(kx - wt)](k" +1°)

[QUZ +cH)(AS+ BC) - UH, AC - UH, Bs[J (A15) Q2 = —igl expli(kx - wt)]
X

H HH, E o [0 expli(kx — wt)](HAS+ HBC) +sin(ly)uH, [
’ HH

whereS = sinh K/2K ), C = cosh K/2K)) following  from which

the notation in James (1994). Equations (A14) and

(A15) show that each of the individual forcing termsp gy = —;j f, cos(ly)kexp[i(kx —wt)]  (A19)
in the traditional form of the omega equation vary by

the addition of a constant zonal wirgl (The common x (k2 +12) u 0=0Q1+Q2, (A20)
expression that cancels between the terms is H
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which is identical to the previous result in Eq. (A17References
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