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1. Introduction

The Q-vector form of the omega equation (Hoskins
et al. 1978) is superior to the traditional, non Q-vec-
tor form. In Q-vector form (assuming b = 0), there is
a single forcing term (related to divergence of Q),
while the traditional form has two primary forcing
terms (differential vorticity advection and the
Laplacian of thermal advection), which partially can-
cel. (Forcing mechanisms involving friction, diabatic
heating, and the b effect are not discussed here.)
Additionally, the Q-vector forcing can be deduced
qualitatively from the geopotential and temperature
distribution at a single level (unlike the primary forc-
ing in the traditional form), leading to relatively easy
interpretation and deduction of regions of strong forc-
ing of quasigeostrophic (QG) vertical motion. The ad-
vantages and applications of the Q-vector form of the
omega equation are well described in the literature, and
are not described further here (e.g., Hoskins et al. 1978;

Durran and Snellman 1987). Despite the benefits of
the Q-vector form of the omega equation, students’
introduction to quasigeostrophic concepts usually in-
volves the traditional form of the omega equation,
which is introduced first in popular atmospheric dy-
namics textbooks (e.g., Holton 1992 and Bluestein
1992).

Durran and Snellman (1987) and Bluestein (1992)
point out that the individual forcing terms in the
omega equation are different for identical weather
systems that are embedded in mean flows moving at
different wind speeds. The individual primary forc-
ing terms differ in each situation because they depend
on the motion of the coordinate system in which they
are measured, that is, they are not Galilean invariant,
although the total primary forcing is Galilean invari-
ant. As Durran and Snellman (1987) and Bluestein
(1992) point out, the Galilean variance of the indi-
vidual primary forcing terms shows that the terms
cannot have physical significance in the forcing of
vertical motion when considered independently.
However, it is difficult for some students to visualize
how the primary forcing terms depend on coordinate
system, since the Galilean invariance of the total forc-
ing is typically demonstrated only in a mathematical
way (e.g., see the derivation in Bluestein 1992, p. 347).
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This paper is pedagogically motivated to qualitatively demonstrate basic concepts related to Galilean invariance
and partial cancellation in the individual forcing terms in the traditional form of the omega equation. The analysis pro-
vides examples of the vertical distribution of the primary quasigeostrophic (QG) forcing, showing how the individual
forcing terms vary in different coordinate systems while their sum remains constant. The QG forcing is described ana-
lytically using an unstable Eady wave solution, which allows depictions of QG forcing similar to those in basic atmo-
spheric dynamics texts. The perturbation streamfunction, temperature, and vertical velocity are seen to be invariant under
change of horizontal coordinate system, while the individual magnitudes of the QG vertical motion forcing are not. The
total QG forcing remains invariant in all cases and is equal to the QG forcing found from the divergence of the Q vector.
The figures provided can supplement those used for traditional study and may be useful to provoke classroom discus-
sion of related QG concepts.
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Here, we provide pedagogically motivated figures
demonstrating the Galilean invariance and partial can-
cellation in the individual forcing terms.

The next section briefly reviews QG interpretation
of the omega equation, as well as a brief description
of the Eady wave solution, which was the basis of the
results shown later. The third section presents two
specific examples of QG forcing that differ only in that
they are embedded in different mean flows; the final
section provides conclusions based on these results.

2. Background

a. Forcing of vertical motion in the omega
equation
Although the Q-vector formulation of the omega

equation is superior to the traditional form, students
usually begin their study of QG theory with the tradi-
tional form of the omega equation. This approach
emphasizes a conceptual understanding of the primary
forcing mechanisms and the importance of the result-
ing secondary circulation field in maintaining hydro-
static and geostrophic balance. These physical
interpretations are thoroughly discussed by Durran and
Snellman (1987), Holton (1992), Bluestein (1992) and
others. As a simple example, consider a vertically
uniform vorticity field advected by a wind with
vertical speed shear and no directional shear, result-
ing in differential vorticity advection without thermal
advection. In this case, positive differential vorticity
advection produces increasing cyclonic vorticity with
height associated with a decrease in thickness. As a
result, there must be a decrease in temperature for the
atmosphere to remain hydrostatic. In the absence of
horizontal temperature advection, this temperature
change is linked to adiabatic cooling associated with
an upward secondary circulation. The upward second-
ary circulations are associated with upper-level diver-
gence and lower-level convergence (due to mass
continuity), which produce an opposing change in
thermal vorticity. In an analogous way, warm advec-
tion, in the absence of differential vorticity advection,
is associated with an increase in thickness typically as-
sociated with a decrease in the Laplacian of the thick-
ness. Because geostrophic vorticity is proportional to
the Laplacian of the geopotential, increasing thickness
implies increasingly anticyclonic thermal vorticity for
the atmosphere to remain geostrophic. In the absence
of vorticity advection, this change in thermal vortic-
ity can be associated with convergence below and di-

vergence above due to upward motion and mass
continuity. The upward motion produces adiabatic
cooling which offsets the affect of the horizontal warm
advection. In each case the secondary circulation
opposes the horizontal advection and acts to restore
the atmosphere to hydrostatic and geostrophic balance,
which is an example of LeChatelier’s principle
(Bluestein 1992). While these two examples are useful,
interpreting the terms individually avoids the
cancellation in the individual forcing terms in the
omega equation discussed below. The concepts
described here also disregard the fact that the primary
forcing terms do not really have physical significance
because they are not Galilean invariant. The use of the
word “forcing” to describe these terms in unfortunate,
as it is just as accurate to say that the vertical motion
“forces” the differential vorticity advection and
horizontal temperature advection, or that the differen-
tial vorticity advection forces both the vertical motion
and the horizontal temperature advection. It must be
emphasized that there is not a cause and effect rela-
tionship between the primary forcing terms and
QG vertical motion, since each occurs simultaneously.

A similar physical interpretation can also be made
for the forcing in the Q-vector form of the omega equa-
tion. The derivation of the Q vector mathematically
demonstrates that horizontal geostrophic advection
breaks down the thermal wind balance in the absence
of compensating ageostrophic motions, which are
required to maintain hydrostatic and geostrophic bal-
ance. The Q vector itself is proportional to the rate of
change of the horizontal temperature gradient follow-
ing geostrophic advection. Therefore, convergence of
the Q vector implies a local increase in thickness. For
the atmosphere to remain hydrostatic and geostrophic,
there must be an increase in anticyclonic thermal vor-
ticity (an upward motion according to the vorticity
equation) or a compensating decrease in temperature
from other mechanisms (such as upward motion and
adiabatic cooling through the thermodynamic equa-
tion). As a result, a geostrophic disturbance is ac-
companied by both horizontal adjustments in the
temperature field as a result of spatially varying ver-
tical motions, and adjustments in the vertical wind
field due to vertical variations in the ageostrophic
wind. The resulting temperature changes (from the
vertical motion) and the parcel accelerations (due to
the ageostrophic wind) both act to offset the disrup-
tion in thermal wind balance and act to restore the
hydrostatic and geostrophic balance (Durran and
Snellman 1987; Holton 1992; Bluestein 1992).
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Studying the physical interpretation of the primary
forcing terms in the traditional form of the omega
equation involves assessing their sign at strategic
locations in the midlevel geopotential field while ne-
glecting the cancellation between the terms (i.e., the
terms are considered individually). Such exercises are
often based on simplified schematic synoptic condi-
tions, which show the tilt with height of perturbation
geopotential and perturbation temperature that are
characteristic of a developing baroclinic wave (e.g., see
Fig. 6.6 in Holton 1992). Also, the assumption is usu-
ally made that the left-hand side of the omega equa-
tion is proportional to -w due to the elliptic form of
the operator. These exercises are useful to learn about
the mathematical and physical nature of the omega
equation and to introduce the role of the secondary cir-
culation in maintaining hydrostatic and geostrophic
balance described above. However, students may be
frustrated in attempts at deciphering the signs of the
primary forcing terms at locations in the wave where
cancellation between the terms makes the situation
more problematic. This frustration is not alleviated
when students subsequently learn that the forcing
terms are not really physically meaningful due to a
coordinate-dependent partial cancellation between the
two forcing terms.

b. The Eady solution
The Eady wave (Eady 1949) provides a conceptu-

ally simple and elegant model of baroclinic instabil-
ity. In particular, the unstable Eady wave solution
shows the westward tilt with height of perturbation
geopotential and eastward tilt with height of the per-
turbation temperature that is characteristic of a devel-
oping baroclinic wave. The Eady model successfully
predicts the characteristic wavelength and growth rate
of midlatitude transient disturbances, as well as a
poleward temperature flux consistent with energetic
explanations of baroclinic instability (Pedlosky 1987;
Holton 1992; James 1994). The relationship between
the geopotential and temperature is similar to that in
the simple baroclinic waves used to study QG theory.
Because the Eady solution can be described analyti-
cally for a given constant thermal wind, it is relatively
straightforward to calculate the QG forcing in the
omega equation by assuming the horizontal wind in
the Eady solution is geostrophically balanced.

The Eady wave solution is derived for a fluid that
is situated between two rigid surfaces on an ƒ plane,
so the b effect is not included. The meridional tem-
perature gradient (and therefore thermal wind) is as-

sumed to be constant. A drawback of the Eady solu-
tion is that it does not allow for meridional tilt of the
unstable waves, which is unrealistic because it does
not allow for meridional momentum flux [which is
also true for the Charney (1947) baroclinic instability
model, which is somewhat more complicated].
Because the Eady model is capped by a rigid lid, it pre-
dicts an upper-level boundary wave, which is not re-
alistic in the atmosphere. The presence of the rigid
upper lid is necessary for baroclinic instability to oc-
cur in the Eady model because the potential vorticity
gradient in the interior is zero (Pedlosky 1987). Despite
the fact that the Eady wave is unrealistic in compari-
son to the actual atmosphere in some respects, the
Eady solution is mathematically consistent with the
linearized quasigeostrophic momentum and thermo-
dynamic equation. Therefore, the Eady solution pro-
vides a valid example of Galilean invariance in the
omega equation described previously. Finally, because
there is some dynamic similarity between a rigid up-
per lid and the tropopause (Morgan and Nielson-
Gammon 1998), it can be argued that the distribution
of variables beneath the rigid lid should be analogous
to the distribution of variables beneath the tropopause
in the real atmosphere.

c. Procedure
The Eady wave solution used here is a slight modi-

fication of that derived in James (1994), which is based
on a basic state with equal and opposite zonal winds
at the top and bottom boundary. Here, the basic-state
streamfunction is modified to allow the addition of a
constant zonal wind at all levels (defined as the con-
stant c). The influence of this modification on the Eady
wave derivation is described in the appendix.

A constant thermal wind of U/H is assumed, where
U is the difference in zonal wind from top to bottom,
which are at z* = ±H/2 where H is the depth. Two sepa-
rate cases are considered—one with c = 0, which is the
same as the solution in James (1994), and one with
c = U/2, where the wind at the bottom is 0 and the zonal
wind at the top is U. In each case the thermal wind is
the same, and the resulting Eady solutions are identi-
cal (except for the difference in phase; they are iden-
tical when the abscissa is x + ct).

There are two forms of the omega equation of in-
terest here. Details of the derivation and the definition
of the symbols are provided in the appendix. The first
form of the omega equation is the standard form (in
log-pressure coordinates),
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where w* = dz*/dt is the vertical velocity. The primary
forcing term W1 represents differential vorticity advec-
tion, while W2 represents the Laplacian of the thick-
ness advection in the following discussion. These
primary forcing terms are described in the appendix.
The vertical motion field described by Eq. (1) is due
to the sum W1 + W2, and there is no time derivative in
the equation, which is therefore diagnostic for w*. As
described previously and shown in the appendix, W1
and W2 can be rearranged to show that they each in-
clude a common factor, which cancels between them.
As a result, for a given thermal wind, there is an infi-
nite number of Eady solutions (each with a different
c) that produces the same (phase shifted) QG vertical
motion field. In each case, the distributions of W1 and
W2 will be different, while the total forcing W1 + W2
is identical (although phase shifted).

The second form of the omega equation of inter-
est (briefly discussed in the appendix) is the equiva-
lent Q-vector form
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The right-hand side of Eq. (2) is positive in this deri-
vation, as convergence of Q is associated with upward
vertical motion (w* > 0) if the left side of the equa-
tion is proportional to -w*. Because the total forcing
determined from the divergence of Q is identical to
W1 + W2 (shown in the appendix), the Q-vector form
of the omega equation is not discussed further here.

The Eady wave parameters are chosen so that the
resulting perturbation has complex frequency and is
therefore unstable. Specifying the frequency also de-
termines the vertical tilt of the geopotential and tem-
perature perturbations. From the resulting form of
perturbation streamfunction y¢ and the basic-state
streamfunction y, the various quantities on the right-
hand side of Eqs. (1) and (2) can be calculated using
their analytical forms given in the appendix. The re-
sults are consistent, in that W1 + W2 and 2Ñ × Q are
equivalent. In addition, the advection of relative vor-
ticity by the thermal wind (following the approxima-
tion in Trenberth 1978) is also proportional to the totalFIG. 1. (a) Cross section of perturbation streamfunction Y¢

(´ 10-6 m2s-1) for c = 0 case. (b) Cross section of perturbation tem-
perature T¢ (K) for c = 0 case.

FIG. 2. (a) Cross-section meridional velocity v¢ (m s-1) for c =
0 case. (b) Cross section of vertical velocity w* (cm s-1) for c = 0.
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primary forcing and is invariant to changes in constant
zonal wind because it is not a function of c. This re-
sult is also consistent with the derivation presented in
Bluestein (1992), since the derivation here is carried
out for constant ƒ and the deformation of the horizon-
tal wind is identically zero (not shown here). The in-
dividual terms W1 and W2 are each functions of c, so
they are not Galilean invariant as described above.

3. Results

A few selected results are shown for each case de-
scribed above to describe the Galilean invariance of
the total primary forcing and the Galilean variance of
the individual terms. The first case (c = 0) results in a
zonal wind, which is zero at the ground and U at the
top of the model, while the second case (c = DU/2)
results in an antisymmetric zonal wind about the
midlevel. The perturbation Eady wave structure of
each case is identical, provided the horizontal coordi-
nate in the plots is x + ct.

Figures 1a and 1b show vertical cross sections at
y = 0 of perturbation streamfunction y¢ and tempera-

ture T¢. The results shown are for the c = 0 case; the
results for the c = DU/2 case are identical after account-
ing for the phase difference. These figures show the
westward slope with height of perturbation stream-
function and eastward slope with height of perturba-
tion temperature that is characteristic of developing
baroclinic waves. This vertical structure is very simi-
lar to schematic models often used to introduce QG
concepts. Figures 2a and 2b show the corresponding
vertical cross sections of the meridional velocity v¢ and
the vertical velocity w*.

Figures 3a and 3b show vertical cross sections of
W1 + W2 for each case. Also shown in each figure
(dashed) is the w* = 0 contour from Fig. 2b to delin-
eate the two regions of vertical motion. The common
assumption that the left side of Eq. (1) is proportional
to -w* can be checked by comparing the sign of
W1 + W2 with the sign of the vertical velocity from
Fig. 2b. For example, if the assumption is valid, re-
gions of W1 + W2 < 0 will correspond to upward ver-
tical motion, w* > 0. These examples show that the
assumption holds over most of the domain, except for
small areas near the w* = 0 contour. These figures

FIG. 3. (a) Cross section of the total primary forcing W1 + W2
(´ 1017 (m-1 s-3) for c = 0. (b) As in (a) but for c = DU/2.

FIG. 4. (a) Cross section of the primary forcing W1 (́  1017 m-1 s-3)
for c = 0. The dash–dot contour in each figure is w* = 0. (b) As in
(a) but for c = DU/2.
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show that the total forcing W1 + W2 is invariant to
changes in c.

Vertical cross sections of the individual primary
forcing terms are shown in Figs. 4a and 4b (W1) and
Figs. 5a and 5b. (W2) for each case with the dashed
w* = 0 contour (from Fig. 2b). These figures show
areas where the sign of each of the individual primary
forcing terms is not proportional to -w*; these areas
are different in each case. As described above, W1 < 0
would be associated with w* > 0, if we assume the left-
hand side of Eq. (1) is proportional to -w* (and ne-
glect the contribution of W2). Using this assumption,
it may not be accurate to use W1 (or W2) by itself to
diagnose QG vertical motion in regions where W1 (or
W2) and w* are the same sign. Figures 4 and 5 show
that the individual primary forcing terms vary between
cases (they are not Galilean invariant).

Figures 6a and 6b shows contours of the term that
cancels between the primary forcing terms W1 and W2
(described in the appendix). The region of cancella-
tion is different in each case. Finally, the horizontal
relative QG vorticity advection, V

g
 × Ñz

g
, shown in

Figs. 7a and 7b, is considerably different between

cases. In the c = 0 case, the basic state wind is anti-
symmetric about the midlevel (z* = 0) and the maxi-
mum vertical velocity occurs at a level where the
horizontal vorticity advection is zero. While this is a
contrived example, this result emphasizes that the
mechanism of interest in the diagnosis of QG vertical
motion is differential vorticity advection and not hori-
zontal vorticity advection at a particular level.

Since the total primary omega equation forcing is
invariant to changes in coordinate system, we are free
to choose any such moving coordinate system to de-
scribe the total forcing. As shown in the appendix, the
partial cancellation between the primary forcing terms
vanishes when z* = -cH/U. This occurs for c = 0 at
the level z* = 0 (exactly at midlevel) as shown in
Fig. 6a. Therefore, for c = 0, the individual primary
forcing terms in the omega equation can be interpreted
at the midlevel (z* = 0) in a way that describes well
LeChatelier’s principle as applied to the maintenance
of hydrostatic and geostrophic balance via secondary
circulations. As a result, the total forcing terms at
midlevels for c = 0 conform well to the concepts de-
scribed in section 2 and the interpretation of vertical

FIG. 5. (a) Cross section of the primary forcing W2 (́  1017 m-1s-3)
for c = 0. The dash–dot contour in each figure is w* = 0. (b) As in
(a) but for c = DU/2.

FIG. 6. (a) Cross section of the cancellation [given by (A16)]
between W1 and W2 (́  1017 m-1s-3) for c = 0. (b) As in (a) but for
c = DU/2.
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motion using either of the primary forcing terms is
qualitatively the same as using the total primary forcing.

Because the schematic wave used here is simple
(consisting of a single wavenumber horizontally), a
caveat is appropriate. The assumption that the left-
hand side of the omega equation is proportional to -w*
is very accurate here as shown above, so the correspon-
dence between the individual forcing terms and the
vertical motion is also very good. In reality, there may
be significant areas at midlevels where this assump-
tion is not accurate (see Durran and Snellman 1987 for
a good example). As a result, the estimation of verti-
cal motion from the total primary forcing in such ar-
eas may be less useful (even using the Q-vector
formulation).

4. Conclusions

The figures shown provide graphical examples of
the Galilean variance of the primary forcing terms in
the omega equation and the resulting variation in the
distribution of QG forcing of vertical motion. The fol-
lowing points can be summarized.

• Because W1 and W2 are not invariant in two iden-
tical systems embedded in mean flows moving at
different wind speeds, there are regions where ei-
ther term (considered by itself) may not be a good
indication of vertical motion. These regions may
vary considerably between cases.

• Because W1 + W2 is invariant, the region where the
total primary forcing accurately predicts vertical
motion (assuming that the left side of the omega
equation is the negative of vertical velocity) is al-
ways the same. For the wave structure chosen here,
this region is quite large, which indicates that the
vertical motion determined by the Q vector at
midlevels would be quite accurate in this example.

• There may be regions of the wave at midlevels
where individual interpretation of the primary forc-
ing mechanisms is less helpful in diagnosis of the sign
of vertical motion, as in the case where c = DU/2.

• These results reemphasize that the Q-vector form
of the omega equation is preferable.

• The general rule that cyclonic vorticity advection
(anticyclonic vorticity advection) aloft is indicative
of vorticity advection increasing (decreasing) with
height and upward (downward) motion is gener-
ally accurate in the c = U/2 case, but misleading in
the c = 0 case if applied at or below the level where
the horizontal vorticity advection is zero (which is
the level of maximum vertical velocity).
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Appendix: Mathematical details

The QG omega equation in log-pressure coordi-
nates follows directly from the frictionless QG mo-
mentum equations on the ƒ plane where ƒ = ƒ
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In Eqs. (A1) and (A2) the subscript g refers to the geo-
strophic wind and the subscript a refers to the

FIG. 7. (a) Horizontal geostrophic vorticity advection, V
g 
× Ñz

g

(´ 1010s-2), for c = 0. (b) As in previous figure but for c = DU/2.
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ageostrophic wind. The adiabatic thermodynamic
equation is
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where F is the geopotential and N is the Brunt–Väisälä
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Following the general procedure (e.g., see Holton
1992, 170–173 Bluestein 1992, 350–353), the QG omega
equation can be found to be
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where the forcing terms are
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which represents differential vorticity advection, and
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which is the Laplacian of the thickness advection.
Following the basic derivation in Holton (1992),

the Q-vector form of the QG omega equation follows
from the momentum, thermodynamic, and continuity
equations and is given by
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where the components of the Q vector are given by
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The right-hand side of Eq. (A7) is positive, so that con-
vergence of Q gives upward vertical motion as in the
typical definition in p coordinates. Equations (A8) and
(A9) are analogous to the definition in Holton.

The derivation of the Eady solution (Eady 1949)
used here follows the derivation in James (1994),
which assumes a vertically symmetric basic state in
log-pressure coordinates, with the top of the domain
at z* = H/2 and the bottom at z* = -H/2. The basic-
state streamfunction y is a slight modification of the
form given in James (1994) and is given by

Ψ = − − +Uyz

H
cy F

*
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where c represents a constant zonal wind throughout
the depth of the model (H) and y is related to
geopotential of the ƒ plane by ƒ

0
y = F, and F repre-

sents an additive constant. In Eq. (A10), U/H repre-
sents the constant thermal wind. Because the additive
constant F is not a function of x and y, it does not ap-
pear in the following derivation and does not need to
be considered further.

The term c was added to make it easy to show the
invariance of the QG forcing to the addition of a con-
stant zonal wind. With c = 0 the Eady solution follows
the same as in James (1994, 138–141). We assume a
solution for the perturbation streamfunction Y¢:

y¢ = f (z*) cos (ly) exp [i(kx - wt)],

where k and l are horizontal wavenumbers in x and y.
Conservation of potential vorticity leads to an ordinary
differential equation for the perturbation streamfunc-
tion amplitude f (z*) whose solution is

f (z*) = [A cosh (z/H
r
) + B sinh (z/H

r
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where A and B are constants that can be determined
from the boundary conditions w* = 0 at the top and bot-
tom of the model. The resulting dispersion equation for
the Eady solution including the phase shift c is given by

ω = ± − −
























kc kU
K

K

K

K

K

K

K

K
r

r

r

r
1

2 2

1

2 2
tanh coth , (A11)

Ñ
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where K k l= +2 2  represents the total wavenumber
and K

r
 = ƒ/(NH). This result is the same as the result

in James (1994) with the addition of the constant ba-
sic state frequency kc. For complex w, the solution is
unstable. For the Eady solutions plotted here, k = l,
which results in a square wave in the horizontal, and
K = 1.61K

r
, which is the total wavenumber of the so-

lution with the fastest growth rate for l = 0 (James
1994). This choice of K does not result in the fastest
growing wave for the square wave used here, but the
result is representative of an unstable baroclinic wave.

By assuming appropriate values for w and assum-
ing that the total horizontal wind in the Eady solution
is in geostrophic balance, we can find the various forc-
ing terms, which appear in the omega equation. These
include the relative vorticity

 ζ φ= − − +cos( ) exp[ ( )]( ) ( ),*ly i kx wt k l z2 2 (A12)

the relative vorticity advection

u
x

v
y

i ly k i kx wt

k l
Uz cH

H

∂
∂

+ ∂
∂

= − −

× + +

ζ ζ φ cos( ) exp[ ( )]

( ) ,
*

2 2

(A13)

the differential vorticity advection

Ω1
0

2 2= − − +

×
+ + + +





i f ly k i kx wt k l

UH AC UH BS Uz cH AS BC

H H

r r

r

cos( ) exp[ ( )]( )

( )( )
*

,
(A14)

and the Laplacian of the thickness advection

Ω2
0

2 2= − +

×
+ + − −





i f ly k i kx wt k l

Uz cH AS BC UH AC UH BS

HH

r r

r

cos( ) exp[ ( )]( )

( )( )
*

,
(A15)

where S = sinh (K/2K
r
), C = cosh (K/2K

r
) following

the notation in James (1994). Equations (A14) and
(A15) show that each of the individual forcing terms
in the traditional form of the omega equation vary by
the addition of a constant zonal wind (c). The common
expression that cancels between the terms is

−− −−

×× ++ ++ ++











i f ly k i kx t

k l
Uz cH AS BC

HHr

0

2 2

cos( ) exp[ ( )]

( )
( * )( )

.

ω
(A16)

This expression is related to the advection of thermal
vorticity by the constant zonal wind, since

c
x z

ic f ly k i kx t

k l
AS BC

Hr

∂
∂

∂
∂

∇



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= − −

× + +









2
0

2 2

Φ cos( ) exp[ ( )]

( ) .

ω

The factor Uz* + cH vanishes when c = -Uz*/H or z*
= -cH/U, which is the level where Y = 0 by Eq. (A10).
Therefore, at z* = 0 and c = 0, the cancellation between
the terms is zero. The existence of this term shows that
the individual terms are not invariant to changes in c.

The total forcing of the w equation in the form of
Eq. (A5) is given by

Ω Ω1 2 2 0

2 2

+ = − −

× +

i f ly k i kx t

k l
U

H

cos( ) exp[ ( )]

( ) .

ω

φ (A17)

This result shows that the total forcing is invariant to
the additional of a constant zonal wind as expected and
is linear with respect to the thermal wind U/H.
Similarly, the components of the Q vector can be
found to be

Q k f ly i kx t
U

H
1 2

0= − −φ ωcos( )exp[ ( )] (A18)

and

Q i l i kx t

k f
l i kx t HAS HBC ly UH

HH

r

r

2

0

== −− −−

××
−− ++ ++





φ ω

ω

exp[ ( )]

exp[ ( )]( ) sin( )
,

from which

2 2

1 2

0

2 2

∇∇⋅⋅ == −− −−

×× ++ == ++

Q i f ly k i kx t

k l
U

H

cos( ) exp[ ( )]

( ) ,

ω

φ Ω Ω (A20)

(A19)
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which is identical to the previous result in Eq. (A17).
It is interesting to note that the advection of vor-

ticity by the thermal wind is given by

∂
∂

⋅ ∇ = − −

× + = +

Vg

z
i ly k i kx t

k l
U

H f

ζ ω

φ

cos( ) exp[ ( )]

( ) ( ),2 2

0

1

2
1 2Ω Ω

(A21)

which is Trenberth’s approximation (Trenberth 1978).
Another interesting feature of this solution is that

Ω Ω1 2
2 2 2+ = − +

v
k l U

f

H
( ) , (A22)

so that the perturbation meridional velocity is propor-
tional to the negative of the total omega forcing for this
choice of Y. This relationship can be seen clearly in
the figures.
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