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ABSTRACT

This study investigates relationships between vertical velocity, perturbation pressure, updraft size, and

dimensionality for cumulus convection. Generalized theoretical expressions are derived from approximate

analytic solutions of the governing momentum and mass continuity equations for both two-dimensional (2D)

and axisymmetric quasi-three-dimensional (3D) steady-state updrafts. These expressions relate perturbation

pressure and vertical velocity to updraft radius R, height H, and thermal buoyancy. They suggest that the

vertical velocity at the level of neutral buoyancy is reduced from perturbation pressure effects by factors offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 8L2

c

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11 2L2

c

p
in 2D and 3D, respectively, where Lc [aR/H is a nondimensional length, with

somewhat different scalings lower in the updraft (a is a parameter equal to the ratio of vertical velocity

horizontally averaged across the updraft to that at the updraft center). They also indicate that updrafts are

weaker in 2D than 3D, all else being equal, with a difference of up to a factor of 2 in vertical velocity for

Lc � 1 as a direct result of differences in mass continuity between 2D and axisymmetric 3D flow. Differences

between these expressions and other analytic solutions, including those derived from single normal mode

Fourier/Fourier–Bessel expansion of the buoyant perturbation pressure Poisson equation, are discussed. Part

II of this study compares the theoretical expressions with numerical solutions of the buoyant perturbation

pressure Poisson equation for a wide range of thermal buoyancy profiles representing shallow-to-deep moist

convection and also with fully dynamical 2D and 3D updraft simulations.

1. Introduction

The importance of perturbation pressure on cumulus

convection has been long established. Early observa-

tions at the surface from direct pressure measurements

indicated perturbations on the order of 1 hPa for airmass

thunderstorms (Byers and Braham 1949; Fujita 1955).

Later in-cloud measurements showed hydrostatic pres-

sure perturbations of 3 hPa at a height of 6 km and a

pressure deficit of 1 hPa near cloud base (Barnes 1970).

Several modeling studies (e.g., Árnason et al. 1968;

Soong and Ogura 1973; Schlesinger 1973; Wilhelmson

1974; Yau 1979; Kuo and Raymond 1980; Schlesinger

1984; Parker 2010) have shown that mid- and upper-level

thermal buoyancy1 is partly opposed by a downward-

directed vertical perturbation pressure gradient force in

convective updrafts [e.g., see the review of Doswell and

Markowski (2004)]. In environments with strong vertical

shear of the horizontal wind, dynamic perturbation pres-

sure can also lead to an upward-directed perturbation

pressure gradient force and enhanced vertical motion, as

well as cell splitting (i.e., supercells) (Rotunno and Klemp

1982; Klemp 1987).

For upright and nonrotating updrafts, it is well known

that the degree to which the buoyancy is offset by the
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1 Thermal buoyancy is the perturbation buoyancy relative to a

horizontally homogeneous, typically hydrostatic background state.

While thermal buoyancy depends on the particular background

state chosen, the combination of thermal buoyancy and buoyant

perturbation pressure, relevant for vertical acceleration, is in-

dependent of the mean state [for further discussion, see Davies-

Jones (2003) and Doswell and Markowski (2004)]. Herein,

‘‘buoyancy’’ will refer to thermal or Archimedean buoyancy.
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perturbation pressure gradient force depends in part on

the updraft width (i.e., the width of the buoyant region)

and, more specifically, on the ratio of updraft width and

height. Physically, this is explained by the need for

higher perturbation pressure in the upper part of the

updraft to push more air laterally away and lower

pressure in the lower part to drawmore air into its wake,

for wide compared to narrow updrafts (Markowski and

Richardson 2010; Trapp 2013; Bluestein 2013). Using a

time-dependent axisymmetric plume model, Holton

(1973) showed that perturbation pressure gradient

forces can significantly reduce the cloud growth rate as

the updraft width increases. Kuo and Raymond (1980)

showed a strong dependence of perturbation pressure

effects and, hence, vertical velocity on updraft width for

both shallow and deep convection, using a steady-state

axisymmetric plume model.

Weisman et al. (1997) used normal mode solutions to

the linearized, two-dimensional (2D) Boussinesq equa-

tions of motion, continuity, and thermodynamics to

derive a simple scaling of w with updraft width and

height [(4) in Weisman et al. 1997]:

W
0
’

kffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 1 l2

p B
0

N
, (1)

where W0 and B0 are the amplitudes of the normal

modes corresponding to the vertical velocity and buoy-

ancy, respectively; N is the Brunt–Väisälä frequency;

and k and l are the horizontal and vertical wavenumbers,

respectively (all symbols used in the paper are defined in

Table 1). Using k5 2p/K and l5 2p/L (where K and L

are the horizontal and vertical scales of the buoyancy

perturbation), (1) can be expressed as

W
0
’

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11K2/L2

p B
0

N
. (2)

Thus, there is a dependence of vertical velocity on a

thermodynamic parameter B0/N and a dimensionless

length parameter 1/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11K2/L2

p
, which reduces to a de-

pendence on L/K for the hydrostatic regime

(K2/L2 � 1). Weisman et al. (1997) used the vorticity

form of the 2D governing equations to derive this scaling

and hence did not explicitly relate (1) to perturbation

pressure. Nonetheless, this forms the basis for a quali-

tative understanding of the effects ofK andL on updraft

strength, especially in the limits asK/L/ 0 orK/L/‘.
Several studies have also shown that, for a given buoy-

ant forcing, 2D updrafts are weaker than their three-

dimensional (3D) counterparts (e.g., Wilhelmson 1974;

Schlesinger 1984; Lipps and Hemler 1986; Tao et al. 1987;

Redelsperger et al. 2000; Phillips and Donner 2006; Zeng

et al. 2008). Zeng et al. (2008) used forced mode solutions

to the linearized 2D and 3D equations of motion and

showed weaker vertical velocity in 2D than 3D for a given

mode. Murray (1970) attributed the weakness of 2D up-

drafts to inherent differences in convergence, with hori-

zontally averaged convergence a factor of 2 larger in 3D

than 2D. Perturbation pressure has also been invoked to

explain these differences, with a greater compensation of

the thermal buoyancy by the downward-directed pertur-

baion pressure force in 2D compared to 3D (Soong and

Ogura 1973; Yau 1979; Schlesinger 1984). Schlesinger

(1984) stated that the perturbation pressure explana-

tion provides a more ‘‘physically compelling argu-

ment’’ for differences in updraft strength in 2D and 3D

than convergence. Herein, it is shown that differences

in the downward-directed perturbation pressure gradi-

ent force are intrinsically linked to differences in conver-

gence between 2D and 3D, providing a bridge between

these explanations.

The overall goal of this study is to gain insight and

quantitative understanding of the physical mechanisms

governing perturbation pressure effects on cumulus

convection, especially with regard to updraft size and

dimensionality (2D vs 3D). While the importance of

updraft size and dimensionality on cumulus dynamics

via perturbation pressure effects has been long known, a

deeper, more quantitative understanding remains lim-

ited. To address this issue, theoretical expressions re-

lating perturbation pressure, vertical velocity, updraft

width and height, and convective available potential

energy (CAPE) are derived based on approximate an-

alytic solutions to the governing momentum and mass

continuity equations. These expressions are simple and

have a clear physical meaning and interpretation.

Morrison (2015, hereafter Part II) compares the ana-

lytic theoretical expressions with numerical solutions of

the buoyant perturbation pressure Poisson equation for

various buoyancy profiles representing shallow-to-deep

moist convection over a range of updraft radii and for

2D and 3D. The theoretical expressions are also com-

pared to fully dynamical 2D and 3D updraft simulations

initiated with warm bubbles of various sizes. Part II

discusses these results in the context of biases in

‘‘gray zone’’ models with a horizontal grid spacing Dx of
O(1–10) km, given that updraft width at these resolu-

tions approximately scales with Dx, and proposes simple

expressions for improving the treatment of perturbation

pressure in convection parameterizations.

The remainder of this paper is organized as follows.

Section 2 presents an overview of single normal mode

solutions to the buoyant perturbation pressure Poisson

equation in 2D and 3D. Section 3 presents a derivation

of the generalized theoretical expressions. Discussion is
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provided in section 4, and a summary and conclusions

are given in section 5.

2. Single normal mode solutions

A diagnostic equation for perturbation pressure can

be obtained by multiplying the inviscid, anelastic momen-

tum equation (Ogura and Phillips 1962) by background air

density r, taking its divergence, and rearranging terms to

yield (e.g., Klemp 1987; Markowski and Richardson 2010)

=2p5=2p
D
1=2p

B
52= � (rv � =v)1 ›(rB)

›z
, (3)

where v is the wind vector (u and w are the horizontal

and vertical components in 2D, respectively), p is the air

pressure, and B52[r/r(z)]g is the buoyancy (g is the

TABLE 1. List of symbols.

B0 Amplitude of the single normal mode thermal buoyancy

c0 Constant associated with the single normal mode Fourier–Bessel expansion, c0 ’p2/(23 2:412)’ 0:849

CAPE Vertical integral of thermal buoyancy from the LFC to LNB

CAPE1 Vertical integral of thermal buoyancy from the LFC to LMB

CAPE2 Vertical integral of thermal buoyancy from the LMB to LNB

D Updraft diameter

g Acceleration of gravity

H Updraft height, defined as the difference in height from the LNB to LFC

H1 Distance from the LMB to LFC

H2 Distance from the LNB to LMB

J0 Bessel function of the first kind

K Horizontal wavelength

k Horizontal wavenumber

kB First root of the Bessel function of the first kind

L Vertical wavelength

l Vertical wavenumber

Lc Nondimensional length parameter related to updraft aspect ratio

N Brunt–Väisälä frequency

p Perturbation pressure

pB Buoyant perturbation pressure

pD Dynamic perturbation pressure

pH Hydrostatic perturbation pressure

pF Perturbation pressure at the LFC

pM Perturbation pressure at the LMB

pN Perturbation pressure at the LNB

pNH Nonhydrostatic perturbation pressure

pR Perturbation pressure at updraft lateral edge

R Updraft radius

r Radial distance

t Time

u Horizontal air velocity

v Wind vector

uR Horizontal wind velocity at the updraft lateral edge

w Vertical air velocity

W0 Amplitude of the normal mode vertical velocity

w0 Vertical air velocity at the updraft center

wF Vertical air velocity at the LFC

wM Vertical air velocity at the LMB

wN Vertical air velocity at the LNB

x Horizontal distance

z Height

zF Height of the LFC

zM Height of the LMB

zN Height of the LNB

a Parameter equal to the ratio of w averaged horizontally across the updraft to that at the updraft center

Dp Perturbation pressure difference between the LNB and LFC

Dp1 Perturbation pressure difference between the LMB and LFC

Dp2 Perturbation pressure difference between the LNB and LMB

r Air density

r0 Boussinesq air density
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gravitational acceleration). Coriolis acceleration is ne-

glected. All quantities represent perturbations from a

hydrostatic, motionless, horizontally homogeneous

background state, except for the height-varying back-

ground density r(z). Hereinafter, the overbar repre-

senting the background density is omitted. In (3), the

terms associatedwith perturbation pressure are separated

into a dynamic component pD, associated with the first

term on the right-hand side of (3), and a buoyant com-

ponent pB, associated with the second term on the right-

hand side, as is often done. The perturbation pressure can

also be separated into hydrostatic and nonhydrostatic

components so that p5 pH 1 pNH. The hydrostatic part

pH is given by the hydrostatic equation ›pH /›z5 rB. The

nonhydrostatic part pNH is responsible for vertical accel-

eration such that ›pNH/›z52rDw/Dt.

Thewind field and various components of perturbation

pressure (pH, pNH, pB, and pD) are illustrated in Fig. 1 for

an idealized, growing convective updraft simulated using

the nonhydrostatic, compressible Cloud Model 1 (CM1;

Bryan and Fritsch 2002), similar to Fig. 2.7 in Markowski

and Richardson (2010). The simulation is 3D and uses

200-m horizontal and vertical grid spacings over a domain

of 603 603 20km3. The updraft is initiated using awarm

bubble with a maximum perturbation potential temper-

ature of 2K, a horizontal radius of 3km, a vertical radius

of 1.5km, centered at an altitude of 1.5km, and with

perturbation potential temperature decreasing as a co-

sine function from the thermal center to its edge. Initial

environmental thermodynamic conditions follow from

the analytic sounding ofWeisman andKlemp (1982), and

the domain is initially motionless. Various components of

perturbation pressure are calculated following the ap-

proach described in Markowski and Richardson (2010).

In weakly sheared environments such as in the simu-

lation shown in Fig. 1, dynamic pressure perturbations

lead to negative p along the updraft lateral edge asso-

ciated with a vortex ring near the level of maximum

buoyancy (LMB) (see Figs. 1d,h). However, the mag-

nitude of ›pD/›z tends to be much smaller than that of

›pB/›z in most of the updraft core (Figs. 1g,h). This is

explained by the fact that, in a horizontally symmetric

updraft with u5 0 at the updraft center, the rotational

contribution to =2pD, given by the term (›w/›x)(›u/›z),

is zero, although there is still a contribution to=2pD from

(›u/›x)2 and (›w/›z)2 at the updraft center (this is for

2D; a similar argument can be made for 3D). Additional

simulations (not shown) with updrafts of varying R/H,

where R is the updraft radius and H is height, indicate

that ›pD/›z in the updraft center becomes relatively

more important for narrow updrafts, because j›pB/›zj
becomes smaller with decreasing R/H, while j›pD/›zj
does not depend strongly on R/H. The latter is explained

approximately by the fact that (›w/›z)2 increases while

(›u/›x)2 decreases as R/H is reduced. The general struc-

ture of pD in the core of narrow updrafts has maxima near

the level of neutral buoyancy (LNB) and level of free

convection (LFC), associated with maximum (›w/›z)2

and (›u/›x)2, and a minimum at midlevels near the LMB.

(Note that here and throughout the paper, LNB refers to

the maximum height of positive buoyancy realized within

the updraft, which may not necessarily be equal to the

level of neutral buoyancy calculated from a sounding,

assuming adiabatic parcel ascent.) This has the effect of

reducing ›p/›z in the lower part of the updraft but in-

creasing it in the upper part. However, the magnitude of

›pD/›z averaged between the LFC and LNB is small for

narrow updrafts, and hence it has a limited impact on the

average ›w/›z from the LFC to the LNB in the updraft

core. The average ›pD/›z is larger in the core of wider

updrafts, associated with convergence near and below the

LFC, but, as explained above, these vertical gradients of

pD tend to be much smaller than those of pB.

Based on these results, it is reasonable to assume that

=2pD ’ 0 in updraft cores in weakly sheared environ-

ments, and (3) reduces to

=2p’=2p
B
5

›(rB)

›z
. (4)

Numerical calculations in Part II directly solve (4)

provided a field of rB and appropriate boundary con-

ditions, while the normal mode approach discussed be-

low provides approximate solutions to (4).

If rB is a simple periodic wavelike function, then an-

alytic solutions to (4) can be readily derived. For 2D, the

simplest such representation with the condition that rB

is zero along the lower, upper, and lateral updraft

boundaries, thereby defining the updraft as a contiguous

region of radius R and heightH with B. 0, is the single

normal mode (Bluestein 2013):

rB5 r
0
B

0
cos
�px
2R

�
sin
�pz
H

�
, (5)

where B0 is the value of B at the updraft center (ampli-

tude of the normalmode), and x and z are distances along

the horizontal and vertical axes. For simplicity, a constant

air density r0 is assumed following the Boussinesq ap-

proximation. Here, the values of buoyancy are defined

such that the average over a period is zero. This choice is

arbitrary, however, and does not affect gradients of per-

turbation pressure relevant to the dynamics. Taking the

vertical derivative of (5) and combining with (4), the re-

sulting equation has a solution with p5 0 at the updraft

center along the vertical axis (z5H/2) and along the

lateral boundaries (x56R), similar to Bluestein (2013):
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FIG. 1. Vertical cross section at the updraft center from a fully dynamical 3D simulation of an isolated

convective updraft at 460 s, similar to Fig. 2.7 in Markowski and Richardson (2010): (a) horizontal wind u,

(b) vertical wind w, (c) total perturbation pressure p, (d) 2D wind vector v, (e) hydrostatic perturbation

pressure pH, (f) nonhydrostatic perturbation pressure pNH, (g) buoyant perturbation pressure pB, and

(h) dynamic perturbation pressure pD. Color contours show the perturbation potential temperature (relative

to the initial environment) in all plots. The contour interval is 2 m s21 for u andw; 25 hPa for p, pB, and pD; and

100 hPa for pH and pNH. Note that only part of the domain is shown.
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p
B
52

r
0
B

0

pH

�
1

4R2
1

1

H2

�21

cos
�px
2R

�
cos
�pz
H

�
. (6)

The difference in pB from the LNB to LFC at the updraft

center Dp is found by evaluating (6) at x5 0 and z5H

and subtracting (6) evaluated at x5 0 and z5 0. This can

be expressed in terms of CAPE5
Ð LNB

LFCBdz by in-

tegrating (5) from z5 0 to H, combining with the Dp
evaluated from (6), and rearranging terms to yield

Dp5 r
0
CAPE

�
11

H2

4R2

�21

(7)

Note that, for consistency, CAPE is that relative to the

horizontally averaged buoyancy of zero (over a period).

A similar expression for Dp can be derived for axisym-

metric cylindrical quasi-3Dupdrafts using a Fourier–Bessel

expansion. In this case, the single normal mode hori-

zontal r component of the Laplacian in cylindrical co-

ordinates is approximated as2k2
Bp, where kB is the first

root of the Bessel function of the first kind, J0(kBR)5 0

(Holton 1973). This gives kB ; 2:41/R. Given that

J0(0)5 1, we can repeat the steps above to derive an

expression for Dp in 3D analogous to (7):

Dp5 r
0
CAPE

�
11

H2

2c
0
R2

�21

, (8)

where c0 ’p2/(23 2:412)’ 0:849.

Equation (8) can be combined with the vertical mo-

mentum equation integrated from the LFC to the LNB

at the updraft center, assuming a steady state, to yield an

expression for w at the LNB, which is the maximum in

the absence of entrainment. With the condition that

w5 0 at the LFC, and assuming Boussinesq flow so that

r 5 r0, this yields

w
max

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2CAPE

�
11

2c
0
R2

H2

�21
s

(9)

for axisymmetric quasi-3D updrafts. A similar equation

can be derived for 2D.

For less idealized forcing, equivalent solutions to (7)–

(9) can be derived using a Fourier or Fourier–Bessel

transform of rB and retaining only the first term.

However, some issues arise. First, the CAPE in (7)–(9) is

that derived from vertical integration of the single nor-

mal mode representation of buoyancy from 0 to H. In

general, this will be different from the actual CAPE

unless the vertical integral of the single mode repre-

sentation is exact. This can lead to large errors in the

calculation of integrated quantities, such as Dp and w,

and inconsistent behavior in the limits R/H/ 0 and

R/H/‘. This problem can be circumvented by using

the actual CAPE in (7)–(9), with the assumption that

these scalings still apply, but the validity of such an ap-

proach is unclear. Second, expansion using Fourier or

Fourier–Bessel series is valid only for periodic forcing

functions. For isolated (nonperiodic) updrafts, the

transform depends on the size of the domain over which

it is calculated, which is inherently ambiguous. Third, it

is unclear how well the functional forms of the single

normal mode expansion capture horizontal gradients of

buoyancy in real updrafts, and the consequences of er-

rors in this representation are not well understood.

These issues highlight challenges in applying single

normal mode solutions to the problem and motivate the

more general approach derived in section 3 for a better

quantitative understanding.

Analytic solutions to (3) and (5) can also be obtained

for more complicated forcings and boundary conditions

using, for example, themethod ofGreen’s functions (Yau

1979). However, this approach still requires the use of

analytically integrable forcing functions, and by con-

struction it leads to rather complicated solutions com-

pared to the single normalmode approach.Holton (1973)

andKuo andRaymond (1980) used a combined analytic–

numerical approach, avoiding some of the aforemen-

tioned issues. They estimated the horizontal component

of the Laplacian using the first term of a Fourier–Bessel

expansion to reduce the equations to one dimension and

then numerically integrated the vertical component.

More recently, Pauluis and Garner (2006) described re-

lationships between perturbation pressure, vertical ve-

locity, and updraft diameter D and height H for a rising

bubble using the Green’s function of a second-order or-

dinary differential equation derived from a simplified,

discretized version of the anelastic 3D equations of mo-

tion. Approximating the Green’s function, they derived a

simple pressure scaling of w as (11D/H)21/2, different

from the scalings in Weisman et al. (1997) or those de-

rived using single normal mode solutions of the pB
equation above having the form (11D2/H2)21/2 as well

as the more general derivation in section 3. Specific rea-

sons for these differences in the scalings are difficult to

pinpoint, but the approaches are rather different. For

example, unlike the single normal mode approach or the

derivation in section 3, Pauluis andGarner (2006) did not

assume a steady state: that is, they did not explicitly as-

sume ›/›t5 0 in the momentum equations. They also

neglected all nonlinear advection terms analogous to

linearizing the momentum equations in deriving the

nonhydrostatic perturbation pressure, while some of

these terms are retained in the derivation here.

An alternative analytic approach for approximating

Dp and w is derived in the next section. Instead of using
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single normal mode expansion or other techniques to

solve (3)–(5), the momentum and mass continuity

equations are first integrated separately with appropri-

ate boundary conditions and then combined to estimate

Dp (andw). This approach yields simplified solutions for

Dp and w with a functional form similar to the single

normal mode solutions (7)–(9) and fromWeisman et al.

(1997), although they differ quantitatively. Moreover,

without having to approximate rB using simple periodic

wavelike functions, this approach leads to greater gen-

erality and avoids some of the conceptual problems

mentioned above.

3. General theoretical derivation

In this section, general theoretical expressions for Dp
and w are derived for 2D and axisymmetric quasi-3D

convective updrafts. The basic idea is to specify a steady-

state field of B, and then calculate the steady-state Dp
and w in the updraft center associated with this. For

simplicity, updrafts are treated as isolated regions of

positive thermal buoyancy embedded in an environment

with B5 0. Since relative differences in B between the

updraft and environment are relevant for the dynamics,

any value of B could be chosen for the environment so

long as the updraft buoyancy is calculated relative to

this. For 2D, updrafts are assumed to consist of a slab of

positively buoyant air (relative to the environment). For

3D, updrafts are represented analogously by an axi-

symmetric cylinder of positively buoyant air. Entrain-

ment is not explicitly included, which allows us to focus

on the effects of perturbation pressure. However, the

effects of entrainment on buoyancy are implicit in the

specified distribution of buoyancy within the updraft.

a. Axisymmetric quasi-3D updraft model

For 3D flow, the derivation starts with the inviscid,

anelastic momentum equation (Ogura and Phillips

1962), neglecting Coriolis acceleration, assuming a

steady state, and separated into horizontal and vertical

components and mass continuity in axisymmetric cy-

lindrical coordinates:

›u

›t
52u

›u

›r
2w

›u

›z
2

1

r

›p

›r
5 0, (10)

›w

›t
52u

›w

›r
2w

›w

›z
2

1

r

›p

›z
1B5 0, and (11)

r

r

›(ru)

›r
1

›(rw)

›z
5 0, (12)

where r is distance along the radial direction, B is the

perturbation buoyancy as defined in section 2, and all

quantities except r are perturbations from a hydrostatic,

motionless, horizontally homogeneous background state.

By design, this framework neglects turbulence-scale fluc-

tuations; that is, w and p are functions only of B (and r).

If the distribution of rB is horizontally and vertically

symmetric around the updraft center and the boundary

conditions are symmetric, this implies horizontal sym-

metry and vertical antisymmetry of p, with the approx-

imation that p; pB. In this instance, p , 0 below the

(LMB)where ›(rB)/›z. 0; p. 0 above the LMBwhere

›(rB)/›z, 0; and p 5 0 at the LMB. This can be dem-

onstrated using Fourier series expansion, indicating that

p;2=2p for symmetric forcing functions. This general

structure of p is reasonable even for cases in which rB is

not symmetric. It well approximates numerical solutions

of the pB field in Part II, except near the hydrostatic

limit. It also reasonably approximates the total pertur-

bation pressure in fully dynamical updraft simulations,

such as that shown in Fig. 1. Thus, a structure of p ,
0 below the LMB, p. 0 above the LMB, and p5 0 at the

LMB is assumed for the derivation below. Since p ,
0 below the LMB, this indicates a horizontal pressure

gradient and net convergence across the updraft be-

tween the LFC and LMB, since perturbation pressure

approaches 0 sufficiently far from the updraft and u 5
0 at the updraft center.

The conceptual model also applies some assumptions

about the horizontal distribution of perturbation pres-

sure within the updraft. At the LFC, it is assumed that

›p/›r; 0 across the updraft, consistent with the time-

evolving, fully dynamical updraft simulation in Fig. 1

and the other simulations shown in Fig. 13 of Part II.

This behavior in these simulations is approximately ex-

plained by the fact that ›pB/›r;2›pD/›r there, since pB
has a local minimumat the updraft center, while pD has a

local maximum (Figs. 1g,h). This overall flow pattern

and approximate balance between horizontal gradients

of pB and pD near the LFC is established rapidly in the

simulations (within a few min) and is maintained as the

updrafts grow in time. How does one reconcile ›p/›r; 0

across the updraft near the LFC with the fact that there

is horizontal inflow combined with u5 0 at the updraft

center that would seem to imply ›p/›r, 0 at this level?

This is explained by the term 2w›u/›z in (10): given a

sharp decrease in the magnitude of u below the LFC

(Fig. 1a) and w . 0 implies a turning of this horizontal

inflow upward within the updraft so that large horizontal

gradients of p are not needed to decelerate the inflow at

the LFC. The conceptual model makes no explicit as-

sumptions about the structure of downdrafts and com-

pensating subsidence surrounding the updraft, but it

does assume that this downward motion has no direct

impact on the perturbation pressure field of the updraft

itself, as discussed below.
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Multiplying the steady-state horizontal momentum

equation [(10)] by r and integrating from r 5 R to ‘
gives the following Bernoulli-like equation:

p
R
52

r

2
u2
R 1

ð‘
r5R

rw
›u

›z
dr’2

r

2
u2
R , (13)

similar to (6) in List and Lozowski (1970), where the

boundary conditions are p5 0 and u 5 0 in the far field

at r5‘. Here it assumed that the second term on the

right-hand side is small compared to the first term. This

is reasonable, given that the largest (magnitude) w tend

to occur in conjunction with the smallest ›u/›z, and vice

versa, by mass continuity and the condition u 5 0 in the

far field. Moreover, this term vanishes at the LFC if w;
0 there. This is equivalent to neglecting the non-

hydrostatic pressure outside of the updraft; that is, the

environment is assumed to be in hydrostatic balance and

act as an infinite mass reservoir (Pauluis and Garner

2006). Physically, this assumption means that the effects

of downdrafts and compensating subsidence are not

explicitly considered in calculating the perturbation

pressure field of the updraft.

The perturbation pressure difference between the

LMB and LFC Dp1, which is needed for deriving w from

the vertical momentum equation, is calculated following

(13) by relating uR between the LFC and LMB to w via

mass continuity. An expression for the average uR be-

tween any two levels can be found by noting that the

difference in upward mass flux between the levels must

be balanced by the vertical integral of the horizontal

mass inflow between these levels, keeping in mind the

variation of r with height. Thus,

ð
A

rw52

ð
S

ru
R
, (14)

where the integral on the left-hand side is over the

horizontal area of the updraft at z, and the integral on

the right-hand side is over the lateral edge of the updraft

between heights z1 and z2. Given the cylindrical geom-

etry, (14) can be expressed in finite difference form as

pR2(r
1
w

1
2 r

2
w

2
)522pRru

R
(z

1
2 z

2
) , (15)

where w is the average vertical velocity between r5 0

and r5R at a given vertical level:

w5

ð
A

w

pR2
, (16)

and r and uR are the air density and radial velocity at

r5R, respectively, averaged between z1 and z2.

The negative sign in (14) and (15) accounts for the fact

that an upward increase in mass flux must be compen-

sated by mass inflow (i.e., negative ruR). The integral in

(16) depends upon how w varies horizontally across the

updraft. Here, it is assumed that w5aw0, where a is a

parameter relating w at the updraft center w0 to its

horizontally averaged value across the updraft. The

parameter awas employed in previous one-dimensional

convective cloud models, as by Kuo and Raymond

(1980), who assumed a5 0.5. Hereinafter, the subscript

‘‘0’’ is neglected, and a is assumed to be constant with

height. With this assumption, uR averaged from the LFC

to the LMB is given by

u
R
52

aR

2r

(r
M
w

M
2 r

F
w

F
)

H
1

52
aR

2r

r
M
w

M

H
1

, (17)

where H1 5 zM 2 zF , using the condition that wF 5 0

(subscripts F and M refer to values at the LFC and

LMB, respectively). For simplicity, the Boussinesq

approximation is applied hereafter so that variation of

r with height is neglected. This results in generally

small errors inw even for the deepest case tested in Part

II, although there are larger relative errors in Dp.
Specifically, numerical solutions in Part II show that

differences in vertical velocity at the updraft center

between anelastic and Boussinesq flows are small at the

LNB and LMB (less than a few percent and less than

15%, respectively) and somewhat larger near the LFC

(up to ;30%).

One cannot simply use uR to calculate pF following

(13), because this is inconsistent with the boundary

condition pM 5 0, which requires u2
R 5 uR 5 0 at the

LMB. Thus, uR must vary with height whenever w . 0:

that is, in all conditions except at the hydrostatic limit.

For simplicity, a linear profile of uR with height is as-

sumed between the LFC and LMB, which is reasonable

based on fully dynamical updraft simulations (see

Fig. 1a). Combining this assumption with (13), the con-

dition that uR 5 0 at the LMB and the Boussinesq ap-

proximation gives

p
F
52

ra2R2

2

w2
M

H2
1

, (18)

where r is the average (Boussinesq) air density. The

perturbation pressure difference between the LMB and

LFC is then given by

Dp
1
5

ra2R2

2

w2
M

H2
1

(19)

using the boundary condition pM 5 0.
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Next, w at the updraft center (r5 0) is derived by

vertical integration of the steady-state vertical momen-

tum equation [(11)]. Integration at r5 0 avoids com-

plications associated with the term 2w›u/›z, since

›u/›z5 0 at r5 0. Results can then be expressed in

terms of w via the parameter a. We therefore need to

relate the Dp1 given by (19), valid at r5R, to the per-

turbation pressure difference from the LMB to the LFC

at r5 0, which is done by assuming p at the updraft

center is equal to that at the lateral edge at the LFC, as

discussed previously in this section (p 5 0 at the center

and edge of the updraft at the LMB).

Using (19) for the perturbation pressure difference

from the LMB to the LFC at the updraft center, in-

tegrating (11) from the LFC to the LMB, and re-

arranging terms to solve for wM gives

w
M
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2CAPE

1

 
11

a2R2

H2
1

!21
vuut , (20)

where CAPE1 5
Ð zM
zF
B dz.

Combining (19) and (20) gives

Dp
1
5 rCAPE

1

�
11

H2
1

a2R2

�21

. (21)

If rB is symmetric around the LMB, the solution of

=2pB 5 ›(rB)/›z is antisymmetric around the LMB.

This implies that the perturbation pressure differ-

ence from the LNB to the LMB Dp2 can be approxi-

mated as

Dp
2
5 rCAPE

2

�
11

H2
2

a2R2

�21

, (22)

where CAPE2 5
Ð zN
zM
Bdz and H2 5 zN 2 zM, and it is

assumed that p ; pB and the flow is Boussinesq (sub-

script N refers to values at the LNB). Equation (22)

can be combined with the steady-state vertical mo-

mentum equation integrated from the LMB to the

LNB to give

w
N
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2CAPE

2

 
11

a2R2

H2
2

!21

1w2
M

vuut . (23)

If the buoyancy profile is vertically symmetric from

the LFC to LNB (meaning H 5 2H1 5 2H2), then the

perturbation pressure difference from the LNB to the

LFC Dp is found by summing (21) and (22) to give

Dp5 rCAPE

�
11

H2

4a2R2

�21

, (24)

since CAPE5CAPE1 1CAPE2. Combining (24) with

the vertical momentum equation integrated from the

LFC to the LNB gives

w
N
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2CAPE

�
11

4a2R2

H2

�21
s

. (25)

This indicates the same pressure scaling of w at the

LMB and LNB when the buoyancy profile forcing is

symmetric from the LFC to LNB, sinceH5 2H1, which

is expected. However, numerical solutions of the pB field

in Part II show that there is a vertical asymmetry even

when the buoyancy profile from the LFC to the LNB is

symmetric. This occurs for two reasons. The first is

simply because a height-varying base state r is used for

the numerical calculations. However, there is still a

fundamental asymmetry in the numerical solutions even

when r is constant: that is, when rB from the LMB to

LNB is a mirror image of that from the LFC to LMB.

This is explained by the fact that updrafts are located

nearer to the surface than the top of the atmosphere,

meaning that the buoyancy forcing is not symmetric

around the LMB even when the buoyancy profile is

symmetric between the LFC and LNB. As a result, (23)

tends to underestimate wN because it does not take into

account this vertical asymmetry.

This asymmetry suggests an additional length scale is

needed even when rB from the LFC to LNB is sym-

metric. Since updrafts are closer to the surface, this

implies shorter wavelength Fourier modes of the buoy-

ancy forcing are more dominant below the LMB with

longer wavelength modes more dominant above. This

leads to a relative decrease of ›p/›z in the upper part of

the updraft and hence a ‘‘flattening’’ of the w profile;

that is, ›w/›z becomes approximately constant with

height when pressure effects are important [R/H ofO(1)

and larger]. This flattening of thew profile is clearly seen

from the numerical solutions detailed in Part II (see

Fig. 12 therein).

To improve accuracy and account for this behavior

in a simple way, analytic solutions are constructed based

on the physical reasoning above and results of the nu-

merical solutions in Part II. A simple approximation of

the behavior of the numerical solutions is to estimate

Dp ; 2Dp1 with ›w/›z taken as constant with height,

meaning that wM/H1 ;wN /H in (19), to give

Dp5 ra2R2w
2
N

H2
. (26)

Combining (26) with the vertical momentum equation

integrated from the LFC to the LNB and using the

Boussinesq approximation yields
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w
N
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2CAPE

�
11

2a2R2

H2

�21
s

. (27)

Combining (26) and (27) and rearranging terms gives

Dp5 rCAPE

�
11

H2

2a2R2

�21

. (28)

With this approximation, the pressure reduction of

wM relative to the thermodynamic maximum is up to a

factor of
ffiffiffi
2

p
larger than the relative reduction of wN

for a vertically symmetric buoyancy profile with

H1 5H/2. This approach well captures vertical asym-

metries in the numerically calculated pB field, which is

detailed in Part II (section 3d).

b. Derivation in 2D Cartesian coordinates

If the anelastic mass continuity equation in axisym-

metric cylindrical coordinates given by (12) is replaced

with that for 2D Cartesian coordinates,

›(ru)

›x
1

›(rw)

›z
5 0, (29)

then (15) is expressed as

2R(r
1
w

1
2 r

2
w

2
)522ru

R
(z

1
2 z

2
) . (30)

Solving for uR as described above for 3D, using this

expression for uR in the perturbation pressure equation,

and applying the same procedure as described above,

expressions for wM and wN for 2D updrafts analogous to

(20) and (27) are derived:

w
M
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2CAPE

1

 
11

4a2R2

H2
1

!21
vuut and (31)

w
N
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2CAPE

�
11

8a2R2

H2

�21
s

. (32)

We can similarly calculate the perturbation pressure

difference between the LNB and LFC:

Dp5 rCAPE

�
11

H2

8a2R2

�21

. (33)

Comparing (28) and (33) shows that, in 2D flow, there

is an increase in the pressure difference relative to 3D

that is a direct consequence of differences in the conti-

nuity equation between 2D and 3D. The 2D and 3D

expressions for Dp both approach the hydrostatic per-

turbation pressure difference at the hydrostatic limit as

R/H/‘, consistent with the idea that hydrostatic bal-

ance should not depend on dimensionality.

4. Discussion

The theoretical expressions derived in the previous

section indicate a dependence of Dp and w on the

square of a nondimensional length LC [aR/H. Thus,

perturbation pressure effects depend on the ratio

R/H, consistent with the physical arguments and

scaling from Weisman et al. (1997) discussed in the

introduction and the single normal mode solutions

in section 2. There is also a dependence on a, which

reflects the impact of the shape of the vertical ve-

locity distribution across the updraft on the per-

turbation pressure. The case of a 5 0 is analogous

to R 5 0.

Limiting cases are discussed next. For R/H/‘
in (20), (27), (31), and (32), corresponding to the

hydrostatic limit, then w/ 0 as expected for a buoy-

ancy perturbation of infinite width. On the other hand,

for LC � 1, perturbation pressure effects are negli-

gible, and (27) and (32) reduce to the parcel equa-

tion w5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2CAPE

p
, representing the maximum w

in the absence of perturbation pressure effects.

For the hydrostatic regime when LC � 1, (27) is re-

duced to

w
N
’

H

aR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CAPE

p
(34)

for 3D updrafts. Analogously, the hydrostatic regime for

2D gives

w
N
’

H

2aR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CAPE

p
. (35)

These expressions suggest that 2D updrafts are a

factor of 2 weaker than 3D for hydrostatic flow, all

else being equal, with smaller relative differences

as LC decreases in the nonhydrostatic regime. They

also show that nonhydrostatic effects become im-

portant (.10% difference between the hydrostatic

and nonhydrostatic wN) when the nondimensional

length LC [aR/H is less than 1.54 for 3D and 0.77

for 2D.

It is clear from (34) and (35) that the hydrostatic

system will overestimate w for LC of O(1) or less; as

R/H/ 0, then w/‘. Overprediction of w for rela-

tively small R in the hydrostatic system is well known

and has been discussed in previous papers (e.g., Orlanski

1981; Weisman et al. 1997). Physically, this is a conse-

quence of the direct coupling of the inertial terms in

the u momentum equation with horizontal gradients

of (hydrostatic) perturbation pressure in the hydro-

static system; as R/H/ 0, then ›p/›r/‘, implying

2›u/›r/‘ and hence ›w/›z/‘ by continuity. For the

1450 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 73



nonhydrostatic system, the nonhydrostatic pressure

gradient force increasingly balances the hydrostatic

perturbation pressure gradient force as R/H/ 0; at

R/H5 0, ›pNH/›z52›pH /›z. In other words, at

R/H5 0 the nonhydrostatic and hydrostatic perturba-

tion pressure gradients are in exact balance, the total

perturbation pressure gradient is zero, and maximum

conversion of potential to kinetic energy occurs. Thus,

the ‘‘1’’ in the denominator of (20), (27), (31), and (32)

represents the influence of the nonhydrostatic pressure

and is a direct consequence of the inertial term

(1/2)[›(w2)/›z] in the vertical momentum equation that

is neglected in the hydrostatic system. Similar differ-

ences between hydrostatic and nonhydrostatic vertical

motion for 2D were discussed by Weisman et al. (1997)

based on the scalings given by (1) in the introduction,

although they did not describe these effects in terms of

hydrostatic and nonhydrostatic perturbation pressures.

It is useful to point out that the expressions for Dp
given by (28) and (33) include both the nonhydrostatic

and hydrostatic perturbation pressures. This may not be

obvious since Dp is derived from the u momentum

equation, which includes the inertial and advective

terms for u but does not include B. However, linkage of

the u momentum equation to pH occurs implicitly via

mass continuity and the vertical momentum equation,

providing a bridge between (1/r)[›(ru)/›r] and ›w/›z

and, hence, the buoyancy and hydrostatic perturbation

pressure. In contrast, linkage of the u momentum

equation with pH is explicit in the hydrostatic system,

since this system directly relates horizontal gradients of

pH to the inertial and advective terms in the u momen-

tum equation, while neglecting the vertical momentum

equation and nonhydrostatic pressure. The fact that the

expressions for Dp derived here include the hydrostatic

perturbation pressure can be easily demonstrated by

taking R/H/‘ in (28) and (33), which recovers the

Boussinesq vertically integrated hydrostatic perturba-

tion pressure difference from the LNB to the LFC equal

to rCAPE. The nonhydrostatic perturbation pressure

difference between the LNB and LFC is simply given by

Dp2 rCAPE and approaches 0 at the hydrostatic limit.

These expressions for Dp and w are similar to those

fromWeisman et al. (1997) and derived using the single

Fourier/Fourier–Bessel normalmode approach given by

(7)–(9), with a pressure scaling of w having the form

(11R2/H2)21/2. However, there are conceptual and

quantitative differences. The general approach herein

(section 3) first integrates the momentum and mass

continuity equations separately, providing important

integral constraints on the solutions. Thus, Dp and w are

expressed in terms of the vertically integrated buoy-

ancy (CAPE), and this provides physically consistent

solutions at the limits R/H/ 0 and R/H/‘ that are

bounded by these constraints. Single normal mode so-

lutions do not follow these constraints unless the vertical

integral of the singlemode representation of rB over the

updraft is exact. Moreover, the single normal mode

approach by its construct cannot capture vertical

asymmetries in the pressure scaling of w between the

LFC and LMB and between the LMB and LNB, which

are evident in the numerical solutions and important in

explaining vertical profiles of w, as shown in Part II. The

approach in section 3 is also more general because re-

lationships between quantities averaged across the up-

draft and at its center are encapsulated by the parameter

a but are implicit in the normal mode approach based on

the functional forms of the series expansions. For iso-

lated (nonperiodic) updrafts, a Fourier or Fourier–

Bessel transform of the buoyancy forcing is also de-

pendent upon the size of the domain over which the

transform is calculated, which is inherently ambiguous.

Finally, it is emphasized that the derivation is non-

Archimedean, in the sense that it does not depend on the

assumed background thermodynamic state (and hence

on the mass of the environment displaced by the up-

draft), even though the buoyancy itself is Archimedean.

If the background thermodynamic state has nonzero B

(and hence, by definition, nonzero pH), then the back-

ground state and hydrostatic pressure can simply be

redefined soB5 0 and pH 5 0. This is consistent with the

expressions for Dp and w above when R/H/‘; that is,
when the region of perturbed buoyancy is infinitely

wide, the total pressure perturbation is equal to pH and

w5 0.

5. Summary and conclusions

This study investigated the role of perturbation pres-

sure on the vertical velocity w of buoyant updraft cores.

In the current paper, Part I, simple theoretical expres-

sions relatingw and the perturbation pressure difference

from the level of neutral buoyancy (LNB) to the level of

free convection (LFC) Dp to updraft radius R, heightH,

and CAPE for 2D and axisymmetric quasi-3D flows

were derived based on approximate analytic solutions to

the governing momentum and mass continuity equa-

tions. A key assumption in the derivation was that the

flow is steady state, linking this work to the steady-state

plume conceptual model. However, the perturbation

pressure is diagnostic from the buoyancy and wind fields

at any instance in time (or nearly diagnostic in the case

of compressible flow), as described in Part II, implying

that the steady-state assumption is by itself unimpor-

tant in the theoretical derivation of perturbation pres-

sure as long as the buoyancy field is known. Thus, the
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theoretical expressions for perturbation pressure match

well with fully dynamical, time-evolving updraft simu-

lations, as detailed in Part II, especially early in the

simulations before entrainment begins to dominate. The

steady-state assumption is more important for w, since

›w/›t appears directly in the vertical momentum

equation.

The other main assumptions in deriving the theoreti-

cal expressions were as follows: 1) neglect of the impact

of downdrafts on updraft dynamics; 2) p5 0 at the level

of maximum buoyancy (LMB); 3) the u wind profile is

linear with height from the LFC to the LMB; 4) w at the

updraft center is proportional to the w averaged across

the updraft by the parameter a, which is constant with

height; 5) the environment is unsheared; and 6) variation

of air density r is neglected except where coupled to the

buoyancy following the Boussinesq approximation.

Despite these idealizations, the theoretical expressions

show a close correspondence with numerical calcula-

tions of the anelastic buoyant perturbation pressure

Poisson equation over a wide range of conditions, as well

as fully dynamical updraft simulations, as detailed in

Part II.

The theoretical expressions show a scaling of w by

factors of (11 8L2
C)

21/2 and (11 2L2
C)

21/2 at the LNB for

2D and 3D, respectively, compared to the theoretical

maximum
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2CAPE

p
, where LC [aR/H is a non-

dimensional length. The nondimensional aspect of this

scaling suggests that pressure effects onw are potentially

important not only in deep updrafts but also shallow

convection, depending upon the ratio of updraft width

to height. The scaling of w from perturbation pressure is

somewhat different lower in the updraft than at the

LNB, even when the buoyancy forcing is symmetric

from the LFC to the LNB. This reflects a vertical

asymmetry caused by updrafts that are located nearer to

the surface than the top of the atmosphere (see section

3d in Part II). While functional forms for the scalings of

Dp andwwithR andH are similar, this approach is more

general and avoids some of the challenges in applying

single normal mode solutions using Fourier or Fourier–

Bessel expansion.

Fundamental differences in mass continuity led to

differences in the theoretical scalings of Dp and w be-

tween 2D and 3D updrafts. This provides a concise

physical explanation for weaker updrafts in 2D than 3D

reported in many previous modeling studies. Relative

differences in w between 2D and 3D are up to a factor

of 2 for LC � 1, with differences vanishing for LC / 0.

The theoretical solutions also indicate that non-

hydrostatic effects become significant (greater than

10% difference between hydrostatic and non-

hydrostatic wN) for Lc less than 1.54 for 3D and less

than 0.77 for 2D. Differences in the theoretical hy-

drostatic and nonhydrostatic scalings arise directly

from the w›w/›z term in the vertical momentum

equation, which is neglected in hydrostatic flow. This

provides a quantitative description of the hydrostatic–

nonhydrostatic transition based on the nondimensional

length Lc and suggests interesting differences in this

transition for 2D versus 3D flow.

The role of environmental wind shear was neglected.

These results are therefore most applicable to cumulus

convection in weakly sheared environments. Nonethe-

less, it is expected that the proposed expressions can

approximately describe the scaling of w with R andH in

sheared environments, since buoyant perturbation

pressure still plays a key role in these conditions.

Here, a was assumed to be an externally specified

parameter constant with height. Future work should

clarify values of a and their vertical variation, including

the linkage with entrainment, by extending the idealized

model as well as analysis of fully dynamical simulations.

Additional work is needed to understand the role of

other key idealizations in the derivation, especially ne-

glecting the role of downdrafts on updraft dynamics.

Solutions with compensating subsidence occurring by

solitary gravity waves propagating away from isolated

updrafts (treated as regions of diabatic heating) are

readily obtained for hydrostatic flow (Bretherton and

Smolarkiewicz 1989). However, in addition to non-

hydrostatic effects, a challenge is that downdraft dynamics

are strongly coupled to complicated microphysical pro-

cesses, leading to generation of negatively buoyant

moist downdrafts (relative to the environment), for

which a general theory is lacking. Different geometries

in 2D and 3D suggest differences in compensating sub-

sidence and downdrafts between 2D and 3D flow, as also

indicated by fully dynamical simulations (e.g., Phillips

and Donner 2006). Future work will investigate these

aspects.

Here, updrafts were represented as buoyant plumes

(as is typically assumed in convection parameteriza-

tions). However, real atmospheric moist convection,

especially shallow convection, often has characteris-

tics more resembling rising thermals than entraining/

detraining plumes [see discussion in Sherwood et al.

(2013)]. This is especially evident from modeling

studies at high resolution [Dx of O(100)m] , whereas

at lower resolution moist convection seems to have a

more plumelike appearance [cf., Fig. 3 in Bryan and

Morrison (2012)]. Comparing and contrasting per-

turbation pressure effects for thermal- versus plume-

based representations of moist convection is beyond

the scope of this study but is currently being

investigated.
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