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ABSTRACT

A theory for the dynamics of strong surface winds on the lee side of a large mountain range is derived and
compared with observations. The strong winds observed near Boulder, Colo., are found to be surface mani-
festations of standing gravity waves whose wavelength is long compared to typical resonant lee wavelengths.
The theory indicates that such waves can become very intense if an inversion is present near mountain-top
level in the upstream environment and if the stability and wind profiles are such that the waves approxi-
mately reverse phase between the surface and the tropopause. The theory is extended to the development
of a numerical mode] for estimation of maximum surface winds from upstream sounding data. Comparisons
of the model predictions with observations are sufficiently encouraging to suggest the future utilization of
such a model for operational forecasting. The differences between the predictions of this theory and those

of hydraulic jump models are explored.

1. Introduction

Strong downslope winds, often gusting to well above
nominal hurricane force (34 m s™) are observed in
many mountainous regions of the world. The generation
of such winds has in the past been primarily attributed
to one of two rather different types of disturbances
possible in stably stratified flow. Scorer and Klieforth
(1959), Aanenson (1965) and others have attributed
them to rather short (generally <20 km wavelength)
quasi-periodic lee waves. These waves form down-
stream of a mountain range under conditions which
allow trapping of wave energy, in particular when the
wind speed increases rapidly with height. Other in-
vestigators (Kuettner, 1959; Houghton and Isaacson,
1968 ; Arakawa, 1969) have described the wind storm
phenomenon on the basis of hydraulic jump theory,
assuming the atmosphere can be modelled as two or
more neutrally stratified layers with sharp inversions at
each layer interface.

Observations of downslope windstorms in the vicinity
of Boulder, Colo., indicate that the storms are associ-
ated with waves of horizontal wavelength of order
50-100 km, essentially forced by the contours of the
mountain, and propagating freely in the vertical.
Trapped resonant waves do not appear to play an
important role in the phenomenon. In this article we
describe a mechanism for the generation of downslope
winds which is different from both the trapped lee
wave and hydraulic jump theories. Qur analysis is, how-

! The National Center for Atmospheric Research is sponsored
by the National Science Foundation.

ever, developed from familiar concepts of wave dy-
namics in a continuously stratified medium. It is
described most simply within the context of a linear,
two-dimensional, steady-state hydrostatic model of
forced wave motion in a multi-layered atmosphere,
and is most closely related to the analysis of Eliassen
and Palm (1960).

To explain some of the motivation behind this analy-
sis, we begin in Section 2 by summarizing the relevant
observational data relating to downslope windstorms.
In Section 3 we obtain analytic solutions for simple
linear multi-layer models, which are then used to
identify the upstream atmospheric conditions responsi-
ble for the generation of intense surface winds. These
optimal conditions are interpreted in terms of partial
reflection of vertically-propagating wave energy. In
Section 4 observed windstorm data are compared with
the results of a linear numerical wave model run with
the corresponding real atmospheric sounding data.
Finally, in Section 5, we compare our results with those
of hydraulic jump models. Although the jump concept
cannot be completely dismissed from consideration, we
conclude that our model appears to be more realistic
in its assumptions and predictions.

2. Downslope windstorm observations

Brinkmann (1973) has observed that mountain winds
have historically been classified in terms of thermal
effects rather than wind intensity. As a result, authors
would describe the characteristics of foehn winds or
chinooks (warm winds) and boras (cold winds) with
little or no mention of the associated surface wind
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Fi16. 2. Anemometer trace from Southern Hills Junior High
School on 11 January 1972 from 2000-2330 MST. The school is
in a populated area of Boulder, about 1 mi east of the base of the
foothills. Time runs from right to left. The wind speed is given in
miles per hour (1 mph=0.45 m s77).

speeds. Detailed observations of the surface wind and
the overlying atmosphere have only more recently
begun to appear in the literature.

The principal observational data which have stimu-
lated this theoretical investigation come from the
eastern slope of the Rocky Mountains near Boulder
and Denver. This is a region of unusually severe and
frequent downslope windstorms which have been previ-
ously discussed by Julian and Julian (1969), Lilly and
Zipser (1972), and most recently and extensively by
Brinkmann (1973). Because of the high population
density (and high density of meteorologists), there is a
relatively complete documentation of windstorms in
this area.

Downslope windstorms with similar characteristics
are also found in various other parts of the world.
Brinkmann notes that this phenomenon has been re-
ported in Altdorf, Switzerland, in Mendoza, Argentina
(Georgii, 1954), in Trieste, Yugoslavia (Yoshino, 1971),
and in several locations in Hokkaido, the northern
island of Japan (Arakawa, 1969). In addition, it has
been reported that the Pennine hills of northeast
England produce strong lee slope amplification of
westerly gales (Aanensen, 1965).

Along the eastern slope of the Rocky Mountains, the
region of the most frequently reported intense down-
slope windstorms is in the immediate vicinity of
Boulder. Fig. 1 shows that Boulder is located at the
immediate eastern foot of a ridge of mountains having
an average maximum height of 2 km above the flat
plain to the east. This ridge extends quite uniformly
along a north-south line about 50 km in length. It then
continues less uniformly, but as a- barrier essentially
unbroken for about 100 km to the north and 400 km
to the south. The Boulder area is almost unique in the
Colorado Rockies in its proximity (30 km) to such a
high and well defined ridge to the west with level plains
to the east. Air impinging on this barrier from the west
and northwest has not previously passed over any
range of similar altitude for several hundred kilometers,
but winds coming from the southwest or north-north-
west must cross other large mountain ranges immedi-
ately upwind and then pass more obliquely over the
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north-south ridge. Most downslope windstorms in the
Boulder area are associated with strong westerly or
northwesterly flow at mountain-top levels. Such con-
ditions occur during the winter months when the
static stability in the lower troposphere is also some-
what greater than normal. We believe that all of the
above factors—the well-defined north-south ridge with
flat terrain immediately downwind, the frequent ex-
posure to strong westerly winds, and the increased
static stability—combine to produce the observed high
frequency of intense downsiope winds.

Because of the high population density in the Boulder
area, severe windstorms cause considerable property
damage. Although the wind intensity depends to some
extent on small-scale terrain effects and exposure, rela-
tively exposed sites typically experience gusts above
nominal hurricane force several times each winter,
while storms with gusts above 50 m s™' occur every
year or two. During such windstorms there can be
substantial damage to roofs and windows of buildings,
mobile homes, partially-completed construction, and
generally to any thing that is not very sturdy or not
tied down. For example, in a particularly severe wind-
storm on 11 January 1972, damage in the Boulder area
was estimated at about $2 million. Fig. 2 shows an
anemograph trace recorded during this storm from the
roof of a low building by a three-cup anemometer of
standard rugged design and rather slow response.
Brinkmann has shown that the extreme gustiness ob-
served in this trace is typical of such storms in Boulder
and also of those in other parts of the world.

During these windstorms the region of strong wind
intensity appears to be highly localized along the base
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Frc. 3. Composite upwind sounding for the 20 windstorm cases
analyzed by Brinkmann (1973). The individual soundings were
taken from the National Weather Service rawinsonde station in
the most appropriate upwind direction at the time nearest the
beginning of the windstorm. To avoid smoothing out the inversion
usually found near mountain-top level the soundings were ad-
justed vertically before averaging so that the inversion bases all
lay at the level of their modal average, about 580 mb. Mountain-
top level here is about 650 mb.



FEBRUARY 1975 J.

mb

200

250

300

350

400 -

500

600

800

900

1000 |-

B, KLEMP AND D. K. LILLY 323
(k)ft
20 30 40 50 60

-0 -100 -%0 =-80 -70 -60 -50 -40 -30

-20 -10 ] 10

F16. 4. Cross section of the potential temperature field (K) along an east-west line through Boulder, as obtained from analysis of the
Queen Air and Sabreliner data on 11 January 1972. For steady adiabatic flow, these isentropes are good indicators of the streamlines
of the air motion. Data above the heavy dashed line are from the Sabreliner, taken between 1700 and 2000 MST, while those below this
line are primarily from the Queen Air taken from 1330 to 1500. Flight tracks are indicated by the dashed lines, except for crosses in tur-

bulent portions. For further details, see Lilly and Zipser (1972).

of the lee slope. Plotting the wind speed recorded at
various anemometer stations in an east-west line during
periods of strong windstorms in Boulder, Brinkmann
observed a sharp maximum in wind speed at Boulder
with winds decreasing rapidly and monotonically to the
east. Arakawa (1969) also emphasizes this point, noting
that at several locations in Hokkaido, Japan, heavy
windstorm damage is localized to regions within about
4 km of the base of the mountains.

The upper air structure of downslope windstorms has
been much less well documented than their surface
manifestations. It appears to be generally true that
these storms coincide with strong, though not extreme,
flow velocities across the mountain ranges throughout
the troposphere. Brinkmann exhibited mean soundings
(Fig. 3) associated with Boulder windstorms, taken
from the nearest (in space and time) upwind rawin
station. Although these soundings are seldom close
enough for great confidence, this composite of some 20
windstorm cases clearly indicates the presence of an
inversion or stable layer in the lower troposphere in
which the wind speed is quite strong. For these cases
the mean height of the inversion base is 580 mb, which
is about 70 mb above mountaintop level. Aanensen
(1965) in England and Arakawa (1969) in Japan also
emphasize the existence of this low-level inversion

during windstorm periods. However, winds in the upper
troposphere are not unusually strong. Brinkmann
points out that the maximum surface gusts recorded
in Boulder are frequently stronger than the mean wind
speed at any level in the troposphere upstream of the
mountains.

In recent years, research aircraft from the National
Center for Atmospheric Research (NCAR) have ob-
served and recorded the structure of the atmosphere
above the eastern slope of the Rockies during wind-
storm and near-windstorm conditions on several oc-
casions. The most spectacular of these observations
occurred on 11 January 1972 [first described by Lilly
and Zipser (1972)] for which cross sections of potential
temperature and westerly wind speed are shown in
Figs. 4 and 5. These figures illustrate the strikingly
large-amplitude and long-wavelength oscillation associ-
ated with such storms and are typical of the other less
extreme cases. The heavy dashed line in Fig. 4 separates
the data collected by the two NCAR aircraft. An
interval of about 4 h separated these two flights, which
accounts for some shifting in the position of the large-
amplitude wave. The high-altitude flight from which
Fig. 5 was constructed occurred during a period when
the surface wind maximum was located upstream of
Boulder. A more detailed analysis of these aircraft
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F1c. 5. Contours of horizontal velocity (m s71) along the same

cross section as in Fig. 4, as derived from the Sabreliner data only.

The analysis below 500 mb was partially obtained from vertical integration of the continuity equation, assuming two-dimensional

steady-state flow.

measurements, to be presented elsewhere, indicates that
a large downward flux of horizontal momentum was
associated with this wave. Thus, although some evi-
dence of resonance wave motion is apparent in Fig. 4,
the dominant, large-amplitude wave is apparently an
untrapped mode forced directly by the mountain con-
tour. Because of the large characteristic width of the
mountain ridge, it appears that this wave motion may
be nearly hydrostatic. Other observations in Boulder
and elsewhere which show a single wind maximum
located at the base of the mountain, are also consistent
with the surface wind profile that would be generated
by an untrapped, forced mode.

During the 11 January 1972 windstorm, the atmo-
sphere immediately downstream of the streamline
trough at most levels of the troposphere contained
turbulence which ranged from moderate to nearly ex-
treme in intensity. These data suggest that strong
damping forces are acting, which prevent the wave
from attaining even greater amplitude.

3. Analysis of linear multi-layer models

The observations described above suggest that the
atmosphere upstream of a windstorm rather consis-
tently displays a region of increased stability and strong
flow slightly above mountain-top level, and wind
speeds in the upper troposphere which are not excep-

tionally large. With these characteristics in mind, we
consider the results of linear multi-layer models de-
signed to determine the structure of the incident flow
which produces maximum amplification of the down-
slope surface winds. For simplicity, we restrict our
analysis to incompressible Boussinesq flow, but the
results are essentially valid for a compressible atmo-
sphere if we replace density by potential density or the
inverse of potential temperature. In addition, the flow
is assumed to be two-dimensional, which appears to be
a good approximation to the situation along the eastern
slope of the Colorado Rocky Mountains and in various
other regions where this phenomenon occurs.

For all cases in which the linear model generates a
large-amplitude response, nonlinear effects can be ex-
pected to be significant. In addition, physical insta-
bility and subsequent breakdown of the wave motion
undoubtedly reduces the amplitude from what is pre-
dicted in the absence of these effects. The purpose of
this investigation is, however, to identify the atmo-
spheric conditions capable of producing large-amplitude
wave motion and the associated downslope windstorms.
In this regard we feel that linear theory is of great
value in locating and understanding the situations
which generate strong response, although the actual
amplitude predicted is likely to be overestimated.
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a. Basic three-layer model

To begin, we shall analyze the linear, steady-state,
two-dimensional wave motion generated in an incom-
pressible, three-layer atmosphere. Resonant modes are
not considered, and although some nonhydrostatic
effects will be discussed, solutions will be primarily
derived for the hydrostatic case, since this approxima-
tion appears to be valid in many windstorm situations.
To investigate the atmospheric conditions capable of
producing a strong response, we shall obtain solutions
for flow over a single Fourier component of a mountain
contour; if the solution for a particular mountain shape
is desired, it can be readily constructed using Fourier
transforms. We assume that the mean stability NV is
constant within each layer, and thus with three layers
it is possible to represent the essential features of an
atmosphere (illustrated in Fig. 6) in which there is a
low-level stable layer, a less stable troposphere, and a
stable stratosphere above the tropopause located at
z=2,. A four-layer model, in which a thin region of
relatively low stability is included beneath the inversion
layer, is considered in Section 3g. Solutions will be
derived which allow linear wind shear in the lowest
two layers, as shown in Fig. 6, although the case of
small shear will be emphasized in interpreting the
results. One could also allow for variations in the mean
wind speed by specifying a constant but different mean
wind in each of the three layers. However, following
this procedure produces some artificial effects in the
resulting solution, caused by the discontinuities in the
mean wind across the interfaces between layers. Such
discontinuities are subject to shearing instabilities and
cannot, therefore, persist. For these reasons only con-
tinuous wind profiles will be considered in this analysis.

Utilizing the Boussinesq approximation, the linear,
hydrostatic, steady-state equation for the vertical ve-
locity w becomes

0w
—+FPw=0,
0z2

where for an atmosphere with linear vertical shear, the
Scorer parameter / is defined by

- g dlng _Nz

Ur 8z UY

with N equal to the Brunt-Viisild frequency. To ob-
tain the solution for a single Fourier component, let

[u(x5), w(x2) 1= [ (2),0 (2) Je**.

Consequently, the equation for #%(3) in each layer is
simply

d*w; N?

+ @
dz2 U 14a(z—21)]

i=0; (1)
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Fic. 6. Density and velocity profiles in a three-layer incompres-
sible atmosphere with constant stability and linear shear in each
layer. The three layers represent an idealized atmosphere having
a low-level stable region (layer 1), a less stable troposphere
(layer 2), and a stable stratosphere (layer 3). In an incompres-
sible atmosphere the stability is defined as N?=—g(dlnp/d2),
while in the compressible analogue it is given by N?=g(dIn8/dz).

where 7= 1, 2, 3 denotes the respective layer, U; is the
mean wind velocity at the bottom of each layer, and
U.a; the shear of the layer. Solutions to this equation
are of the form

@,(8;) = e 12(a; cosu;d;+b; sinudy), 1=1,2,3, (2)

where

1
Si=—In[14a;(z—2:_1) ]

[£%

17Vi2 Oli2 1 )
uit= ——=li2<1——)
Uus 4 4R;

Here, R;= N2/ (a2U2) represents the mean Richardson
number in each layer and I,=N,/U;. Note that if the
wind shear vanishes in any given layer, the independent
variable 8; reduces to §;=z—32,_1.

To complete the solution to Egs. (1), we must deter-
mine the complex constants, a; and &;, by applying the
appropriate boundary conditions and matching condi-
tions at interfaces between layers. At the lower bound-
ary, the Fourier representation of the surface contour
is {o(x)=He**, where H is the mountain amplitude,
and thus

b, (0)=ik U, H. 3)

The boundary condition at the top of the model,
though conventional, is worth some discussion. Observa-
tions (Lilly and Kennedy, 1973) indicate that waves
having small horizontal wavenumber k& tend to propa-
gate up through the troposphere and then break down
somewhere in the lower stratosphere with little ap-
parent reflection of wave energy. With this in mind,
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we impose a restriction in our uppermost layer which
allows wave energy to propagate upward without re-
flection. Assuming a3=0, this radiation-type boundary
condition requires that the solution in the top layer
satisfy the relationship (Eliassen and Paim, 1960)

dws

=1 sgn(k)lz.. 4)
2z

This condition leads to solutions in the lowest two
layers which allow upward transport of wave energy
and downward transport of momentum. At the inter-
faces between layers, the displacement height and the
pressure along this surface must match, and these re-

a1=ikU1H
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quirements yield the matching conditions

wi(zi) = ‘Z@i+1(zi) ‘\
a‘Z?)i(Zi) (9‘12)1'.(»1(2{) U; g (5>
= -~ (aH,r— ai)wi+l(zi)J
9z 0z i+l

which are applied for i= 1, 2. The complete solution is
then obtained from Eqgs. (2) subject to the constraints
(3), (4) and (5).

In order to determine the maximum velocity gen-
erated at the surface, we seek the solution for wave
motion in the lowest layer of the model. This is derived
in the manner described above and yields the following
expressions for a; and by:

B Uy sings+ (3N 1R — 3N Ry~ UspsB) coss p, : - ©

by=1kUH

U cosdpr1— (3N 1R —3N R, 4-UsusB) singy

where
Uzius singe+ (3 NoRy5+1N3) cosps
" Uz coso— (3NaRiI+iN;) sings
$i=pidi,
A= —l—ln[l Yai(zi—zi1) )= w Zi—%i.1).
o Uip—Us

Here ¢;, i=1, 2, represents the phase shift of the wave
motion across layer 7. Using the continuity equation and
(2), we find that the maximum perturbation wind
speed at the surface has the form

1
|2(0) | = ;U“‘l Usmbi+3N 1R ay | (N

1

Thus, after specifying the atmospheric structure within
the framework of the three-layer system, we may de-
termine the maximum surface winds by evaluating
(6) and (7).

b. Weak-shear assumption

Because of the complexity of the expressions for b,
and B, it is instructive to consider solutions for the case
of small shear. With this simplification the essential
physics of the problem are retained and it is possible
to examine the conditions capable of generating a
strong response in some detail. Thus, for the present
we shall assume that R; and R, are much greater than
unity, so that terms involving R; and R; are neglected
in the expressions for x, 8 and % (0). Note that although

the shear is assumed small within a given layer, the
velocity change across the layer need not be small if
the layer is relatively thick. For this reason we shall
retain the effect of increasing wind speed across a layer
in the expression for A;. By following this procedure we
include the effect of shear on the optimal thicknesses of
the layers but neglect its effect on the resulting maxi-
mum surface wind speed. Later in this section we
justify and extend these assumptions by considering
the exact solutions for cases of stronger shear.

After making the large Richardson number assump-
tion, the expression for the maximum amplitude of the
surface wind [Eq. (7)] becomes

|2(0) | = N1HA, A=<§—g>;, | (8)

where

X={N2+N2)(N2+N2)
+ (]\722 —‘]\712) (N32 —1\722) COSZ(ﬁz
V= (N2—N2)(NE+N2) cos2gyt (N2—Ng) - (9
X[ (N24+N:2) cos2ey cos2eps
—2N N sin2¢, sin2¢, |

For a one-layer atmosphere having constant properties
Nyiand U,, the maximum perturbation of the horizontal
surface velocity is N1H. Thus, 4 may be thought of as
an amplification factor multiplying the velocity which
would be attained in a single layer system having
N=N..

Maximizing this amplification factor 4 as a function
of ¢1 and ¢, shows that the strongest response (con-
sistent with lowest stability in the middle layer) is
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generated when the atmosphere satisfies the conditions

A1

d1=(n—%=r or ni=m—%— n=1,2,3, ...

>

A2
po=(m—3%)w or z,—z1= (m—%)—z—, m=1,23,...

(10)

where \;= (2w/¢;)(z:—2:i—1), 1=1, 2, represents the
average vertical wavelengths of the wave motion in
the lowest and middle layers. From observations, and
numerical simulations using real data (see Table 1 in
Section 4), these predictions are best verified by the
cases for which n=m=1. In other words, maximum
amplification of the surface velocity in a three-layer
system occurs when the lower two layers each have a
thickness equaling one-fourth of the vertical wave-
length in the respective layer. Since the vertical wave-
length is shorter in the more stable layer, this optimal
structure is consistent with the presence of a relatively
thin, low-level inversion with a thicker, less stable
troposphere above.

We believe the observed dominance of the gravest
mode (r=m=1) solutions to be principally an effect
of nonlinearity and wave breakdown. Some aspects of
nonlinearity are discussed in Section 5, while others
must be reserved for subsequent papers. It is clear,
however, that nonlinear effects must be strong if the
perturbation velocity amplitude equals the mean flow
at some level, and in fact that is the limiting criterion
for overturning instability in the wave. The higher
mode solutions inevitably must be associated with
weaker mean flows, with the optimal value of U, only
one-third as strong for m=2 as for m=1. Thus even
though Eq. (8) predicts velocity amplitudes dependent
only on stabilities and mountain height, the nonlinear
effects and breakdown limits are much more restrictive
for the higher modes than for m=n=1.

Subject to the conditions described by Eq. (10), the
maximum value of the amplification factor becomes

NN,

N,?

max = (11)
Notice that high stability in the low-level inversion
(layer 1) and in the stratosphere (layer 3) together with
decreased stability in the upper troposphere (layer 2)
all serve to enhance the magnitude of Amax. For small
rates of shear, the mean velocities in each layer do not
explicitly affect Amax. The mean wind speed does play
an important role, however, in producing the optimal
phase shift across each layer. For example, if AU;
=U;1,—U; is not too large, the expressions for \;, ¢;,
and A; can be combined to yield
2r Ui+Uin

27 AU;
ANi=-— ~—
I; UIn[14(AU;/U)] N; 2

b
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indicating that the vertical wavelength is roughly pro-
portional to the average mean in a given layer.

A typical strong response solution can be obtained
for wind speeds and stabilities in the respective layers
given by

Ni=1.6X102s71, U;=15m s
N,=09X10"?s7l, U,=25ms, (12)
N3=2.0X102s7Y, Uz=45m s

In a compressible atmosphere, these stabilities would
correspond to temperature lapse rates of 3 K km™ in
the stable layer and 7.8 K km™ in the upper tropo-
sphere and an isothermal stratosphere. The computed
layer depths of optimal response are 1920 m for the
stable layer and 5940 m for the upper troposphere,
giving a tropospause height of 7860 m above the lowest
layer of air which actually passes over the mountain
(since some upstream blocking may occur). The com-
puted amplification factor 4=4.0, and the predicted
maximum perturbation surface velocity for a 500 m
sinusoidal mountain (1000 m ridge to trough) is 32 m
s The Richardson numbers in both layers are of
order 10. Characteristics of this optimal structure are
consistent with Brinkmann’s observations and with the
numerical results presented in Section 4.

It is also of interest to locate the position at which
the maximum surface velocity occurs. Deriving the
expression for 4(0) from (2) subject to (6), it can be
readily shown that for the optimal three-layer system,
the surface velocity has its maximum haliway down
the lee side of the sinusoidal surface contour. Of course,
downslope windstorms tend to produce the most dam-
age and concern when the region of intense winds
occurs near the base of the mountain where the popula-
tion density may be high. However, during such periods
of large-amplitude wave motion, nonlinear effects be-
come significant and act to displace the surface velocity
maximum further downstream (to be presented by the
authors in a subsequent paper). The effect of non-
sinusoidal mountain shape will be illustrated in the
next section.

¢. Two-layer solution

For comparison, let us briefly consider how the re-
sults described above are altered by the absence of the
low-level stable region. In this case our model reduces
to a two-layer system in which we have only a stable
stratosphere (region 3) and a less stable troposphere
(region 2). The two-layer expression for |#(0)| is again
represented by (8) and (9) if we set V1=V, and A;=0.
This yields

14(0) | = NoH A
[(Naz+sz) +(Ns?—Ny?) 0052052]’* . (13)
(N32+1V22) - (1\732 *J\Tzz) C052¢2
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F1c. 7. Variation of maximum perturbation surface velocity
with changes in the thickness or height of the low-level stable
layer. Solid line represents the three-layer atmosphere with con-
stant stability inversion layer; the dashed line the three-layer
atmosphere with a sharp inversion above a neutrally stable layer,
described at the end of Section 3.

Here, the maximum value of A is N3/N,, and occurs
when ¢.=nm, n=1, 2, 3 .... For the most physically
meaningful case of #=1, this corresponds to the tropo-
sphere having a thickness of one-half of its vertical
wavelength. This result is consistent with those ob-
tained by Blumen (1965), who found that the momen-
tum flux in a two-layer atmosphere with random
topography is greatest when the lower layer is one-half
wavelength in thickness. Under these conditions, the
optimal |#4(0)| is N3H, which corresponds to the re-
sponse generated by a one-layer model having the
stability of the stratosphere. By comparison with Eq.
(11) we see-that the maximum surface velocity for the
optimal three-layer model is greater than that for the

" optimal two-layer system by a factor of N*/N.

Clearly, in these simple systems, the presence of a
low-level stable layer enhances the potential for pro-
ducing strong surface winds.

d. Sensitivity to parameler variations

To illustrate the sensitivity of the amplitude and
position of the maximum surface velocities generated
by the three-layer model, we have calculated the re-
sulting maximum surface velocity for a set of atmo-
spheric conditions similar to, though slightly less realistic
than, those of the previous example. For this computa-
tion we haveset U=20 m s~ throughout the inversion
layer, and

N1=N3=0.02 s, N,=0.01s, (14)

and again we assume that R:>1. The stabilities listed
above essentially represent an isothermal stable layer
and stratosphere, and a middle troposphere having a
lapse rate of ~7 K km™. The surface wind speed, from
Eq. (8), is evaluated for a sinusoidal mountain profile
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having a ridge-to-trough amplitude of 1 km. The posi-
tion of the tropopause, 2, is fixed at the height it would
have in the optimal case in which the lower two layers
have quarter wavelength thicknesses, and 2, is allowed
to vary. The resulting maximum perturbation surface
velocity is plotted in Fig. 7 (solid line) as a function of
the thickness of the low-level stable layer. Notice that
|4(0)] has its maximum amplitude of 40 m s at
21=N\/4=1.57 km, but then drops off quite rapidly as
the thickness of the stable layer deviates from this
optimal value. Varying the height of the tropopause
would cause similar fluctuations in the maximum sur-
face velocity. However, because layer 2 has greater
thickness, |4(0)| is less sensitive to changes in z; than
to comparable variations in z;.

The location of the surface velocity maximum for
this case is represented by the solid line in Fig.'8. As
expected, for z;=1.57 km, the maximum surface ve-
locity occurs halfway down the downslope. On the
other hand, Fig. 8 also indicates that the velocity
maximum will move further downstream if z; is some-
what less than optimal. Thus, even linear theory can
account for some downstream displacement of the
surface wind maximum although, as mentioned previ-
ously, nonlinear interactions are thought to be pri-
marily responsible for this effect.

e. Geometrical and physical inter pretations

The strong surface wind amplification produced in
the optimal three-layer atmosphere can be explained
with the aid of a graphical representation of the three-
layer solution in the absence of mean shear. Vertical
profiles of the perturbation streamfunction ¢/ are plot-
ted in Fig. 9. We have depicted these profiles (repre-
sented by solid lines) as a function of height for uniform,
hydrostatic flow over a sinusoidal surface. The lower

HEIGHT OF INVERSION LAYER (km)
o

L1 L | L\
040

0o I 1
¢} 0.20

Contour
X/L (L =Half Wave Length)

F1a. 8. Location of the surface velocity maximum
for the cases plotted in Fig. 7.
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F16. 9. Vertical profiles of perturbation streamfunction at various positions
along a sinusoidal mountain contour for a three-layer atmosphere in which each
of the lower two layers is one-quarter of a vertical wavelength in thickness. Solid
lines represent perturbation streamfunction ¢’; dashed lines the components of ¥’
propagating wave energy upward and downward, with the arrows indicating the

direction of transport.

two layers are each one-quarter of a vertical wavelength
in thickness and the stabilities in layers 1 and 3 are
relatively large compared to that in the middle layer.
The streamfunction ¢/ is negatively proportional to the
displacement height, i.e., ¥'=—Ug¢, and at the surface,
¢ is the height of the mountain. The interfacial bound-
ary conditions [Eq. (5)] require that ¢/ and 8y'/9z be
continuous for oy, a;=0.

To begin, let us consider the vertical variation of ¢/
above the point A, where the surface contour has its
maximum height, and correspondingly where ¢’ has
its maximum negative surface value. Moving upward,
we see that the profile for ¢’ oscillates sinusoidally
through a quarter wavelength in each of the lower two
layers. Because the middle layer is thicker (less stable),
the displacement amplitude at the tropopause (point B)
will be greater than that at A by a factor of \y/\
=N1/N.. The application of a radiation boundary
condition in the top layer yields a solution character-
ized by wave motion of constant amplitude having
lines of constant phase that tilt upstream with height.
As a result, if we now view the ¢’ profile one-quarter
horizontal wavelength further downstream, it is evident
that the magnitude of the perturbation at points B and
C are the same. Coming down from point C to D, the
profile again shifts through one-half wavelength, pro-
ducing an amplitude for ¢/ at D greater than that at C
by a factor of \oy/As=N3/N.. Consequently, the pertur-
bation of ' at D is greater than its maximum amplitude
at the surface (point A) by a factor of N.N3/N .2, which
is identical to the value of Am. in Eq. (11). For a

single layer atmosphere with the same properties as
those in layer 1, the wave amplitude throughout the
atmosphere would correspond to that at point A.
Since u'=dy//dz, it is clear that the surface magnitude
of %' halfway down the downslope will also be greater
in the optimal three-layer system by the factor Amax.

This amplification mechanism can also be interpreted
in terms of the partial wave reflections which occur in
a multi-layer medium having differing propagation
characteristics. In each layer the solution is actually
comprised of two linearly independent solutions—one
propagating wave energy upward and the other propa-
gating wave energy downward. In Fig. 9, the dashed
lines depict these two components of the full solution
for the perturbation streamfunction. In the uppermost
layer there is no downward transport of wave energy
because of the radiation condition imposed in this
region. In the lower two layers, however, both upward
and downward propagating modes are present, due to
partial reflection of the wave motion at the interfaces
between layers. This situation is analogous to other
types of wave propagation in which partial internal
reflections result from changes in the refractive index
of the medium. In fact, defining the index of refraction
to be inversely proportional to the velocity at which
energy is transported, we note that the vertical group
velocity for the case of uniform mean shear is given by
(Bretherton, 1966)

k-0

kNI kU?
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Fic. 10. Contours of the maximum perturbation surface ve-
locity (m s71), as a function of the mean Richardson numbers, R,
and Ry, in the lower two layers. (No=N,=0.02 s}, N, =0.01 s71).

This shows that in the hydrostatic limit the index of
refraction is proportional to the stability of the layer.
(For a non-uniform mean shear it is not apparent that
this analogy remains meaningful.)

In the lowest layer, we can define a reflection coeffi-
cient as the squared ratio of the downward propagating
wave amplitude a; to that of the upward component
b1. This ratio was derived by Eliassen and Palm (1960)
and for hydrostatic flow with small mean shear becomes

b12 N22(1V1—N3) 2+ (ZV12 —sz) (AT,?,? i N22) Sinﬂ(ﬁz

0 NVt Vo (Ve— N (Vo — N5?) sin'e.

As Eliassen and Palm noted, this expression represents
the reflection coefficient in optics if the stability is
replaced by index of refraction. For given stabilities in
each layer,  depends only on the phase shift across the
middle layer, and has its maximum value for ¢.=n/2.

When each of the lower two layers has a quater-
wavelength thickness, it can be demonstrated, by use
of familiar concepts in wave reflection, that the ampli-
tude of both the upward and downward propagating
modes in the lowest layer, a; and by, is maximized.
The largest displacement perturbation then cccurs
halfway down the slope (see Fig. 9), where the two
modes are in phase. Since the energy and momentum
fluxes are proportional to a,2—b:*> U:’H?, these trans-
ports are also enhanced in an optimally layered system.
This amplified energy flux can be further interpreted
as an increase in the effective impedance of the system,
where impedance is interpreted as the ratio of energy
production to surface displacement.

f. Strong-shear case

In order to investigate how the response might be
affected by the presence of substantial mean shear, we
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shall briefly consider solutions to expressions (6) and
(7) without neglecting any shear-dependent terms. For
simplicity, a representative set of atmospheric condi-
tions will be specified and then (6) and (7) will be
evaluated for varying mean Richardson numbers in the
lower two layers. Thus, we begin by setting the sta-
bilities in the three layers to the values assumed in the
previous example, which are listed in (14). For a given
stability in each layer, [#(0)| depends only on R; and
éi, =1, 2. As a result, the maximum response can be
determined as a function of mean Richardson nimber
by locating the optimal phase shifts ¢; and ¢., corre-
sponding to each pair of values for R; and R,. These
computations lead to the results summarized in Figs. 10
and 11. In Fig. 10, contours are plotted for the maximum
value of |#(0)| as a function of R; and R, for a 1 km
sinusoidal mountain contour. Recalling Fig. 7, we note
that this same example produced a maximum |#(0)| of
40 m s~! in the limit of large R; and R,. Thus it is
apparent in Fig. 10 that the maximum surface winds
obtained by including shear effects are similar to the
value computed in the absence of shear, except for
cases in which R, becomes O(1) in magnitude. Within
the framework of our linear shear assumption, however,
the mean Richardson number in the relatively thick
middle layer cannot be very small for physically
realistic situations. In fact, our estimates indicate that
the portion of the plot for which R.<3 is outside
physically meaningful limits. As a result, for reasonable
atmospheric profiles the maximum surface wind ampli-
tude is well represented by the value obtained in the
large Richardson number limit.

The optimal thicknesses of the lower two layers are
more substantially affected by shear. The values of ¢
and ¢, which generated the maximum response in Fig. 10

100

—

Fic. 11. Optimal phase shifts across each of the lower two
layers for the cases plotted in Fig. 10: solid lines, ¢1/2x ; dashed
lines, ¢s/27.
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are shown in Fig. 11. Here we see most notably that as
R: decreases, the optimal phase shift ¢; across the inver-
sion layer is reduced from the quarter-wavelength
thickness which results when shear is neglected. On
the other hand, ¢, increases correspondingly, so that
for all cases shown in the figure the total phase shift
across the lower two layers is within 109, of one-half
wavelength.

g. Four-layer solutions

Since the three-layer model described above admit-
tedly represents a considerable idealization of the real
atmospheric environment, it is of interest to investigate
certain relevant modifications to this system which can
be studied analytically. In particular, it is apparent
that the response amplitude can depend rather critically
on the detailed structure of the atmosphere in the
vicinity of mountain-top level. Referring back to Fig. 3,
notice that the base of the low-level stable layer in the
composite soundings is located about 70 mb (or about
830 m) above the mountain-top level of 650 mb. In
the thin region beneath this stable layer, the stability
appears to be relatively low. Within the framework of
our multi-layer analysis we have considered this situa-
tion by adding one additional layer of small stability
beneath the stable layer of the three-layer system. The
solution describing the wave motion in this four-layer
system with small shear is obtained in just the same
manner as for three layers except that one additional
set of matching conditions is required to incorporate
the fourth layer. Thus, by following the procedures
outlined previously, we have derived an expression
(not shown) exactly analogous to Eq. (8) for the
maximum surface velocity generated by wave motion
in the four-layer system.

For this model, we found that the maximum surface
winds actually occur when the lowest layer has zero
thickness, and the remaining three layers have the
optimal structure described previously. Thus the poten-
tial for the greatest response occurs when the base of
the inversion is at the surface and when this stable
layer is one-quarter of a vertical wavelength in thick-
ness. A rather strong or deep inversion layer is required
to satisfy this criterion, however, and atmospheric
soundings associated with windstorm situations indi-
cate that the observed stable layers are often some-
what less intense. The existence of a shallow layer of
low stability under the inversion has the effect of
substantially reducing the optimal thickness of the
inversion layer with only a moderate reduction in the
predicted wind speed response. Thus, while Fig. 7
(solid curve) indicates that a reduction of the inversion
depth by one-half would reduce the wind maximum by
a factor of 3, we find that the presence of a less stable
layer of 500 m in thickness beneath the inversion
allows the inversion layer depth to be halved with only
about a 259, reduction in predicted wind speed. In all
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cases, however, the maximum response occurs when the
total phase shift across the troposphere is very nearly
one-half wavelength.

h. Neutral layer beneath a sharp inversion

To this point we have analyzed characteristics of the
wave motion developing in continuously stratified
atmospheric environments. Although all real stability
profiles are in fact continuous, very sharp inversion
layers are occasionally observed in association with
strong wave response. These inversions commonly
occur above a layer of low or neutral stability formed
by turbulent mixing, frontogenesis, or radiative cooling
processes. Thus it is important to consider the response
which can be generated when a strong, almost discon-
tinuous inversion layer exists slightly above mountain-
top levels. This type of atmospheric structure is of
special theoretical interest also, since it bears some
similarity to the idealized atmosphere assumed when
the mountain wave phenomenon is modeled using hy-
draulic jump theory. Our results will therefore be com-
pared in Section 5 with hydraulic jump solutions for a
simplified atmosphere.

To determine the effects of a sharp inversion, we
first considered a four-layer model similar to that above
in which a neutrally stable layer was added beneath
the three-layer atmosphere depicted in Fig. 6. For this
system it was found that if the density decrease across
the lower stable layer was held constant, the optimal
response amplitude kept increasing as the inversion
became thinner, reaching a maximum in the limiting
condition of a density discontinuity. Since the inter-
dependence of the solution amplitude on the various
layers is rather complicated in the four-layer model, we
will discuss only the limiting condition of a three-layer
atmosphere containing an infinitely sharp inversion.
This system apparently has the greatest potential for
generating a strong response if the lowest layer has
nearly neutral stability and it illustrates the type of
results obtained in the more general case.

The density profile considered here is presented in
Fig. 12 for an incompressible atmosphere. For sim-
plicity we have again assumed small mean shear in
each layer (constant velocity in the neutral layer) and
again seek solutions of Egs. (1) subject to boundary
and matching conditions (3), (4) and (5), with the
following modifications. In the lowest layer, because of
the neutral stability, the linear equation becomes
V=0, where V? is the Laplacian operator in the
x,% plane. Also to account for the density discon-
tinuity at z=2; the second matching condition in (5)
must be altered for =1. Assuming that Ap/py<K1, this
condition now becomes

(9‘1?)1 (Z 1) g/ . 61?12 (Zl)
___—-Au)l(zl 3 s
0z U? 9z
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where Ap is the amplitude of the density discontinuity
and g'=(Ap/po)g represents the reduced gravity. The
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®1(2) in the lower layer:

solution for this system is obtained in a straight- 1(z) =iU1H (k cosh kz+cy sinh kz), (15)
forward manner and yields the following expression for .o
g/ N, (ﬁ-{-vtantﬁg) +iN (1 -3 tanq§2) (16)

U NofB(1—F)—F tangy]—iNs[F+8(1—F) tang,]

and .

I'4 gz

g= ’ F= ]
N,U:. Uy

b2=15(z—21).

Since application of the continuity equation yields

#(0)=—U:Hey, (17)

the strongest surface velocity occurs when [¢| is
maximized. This maximum is achieved by first mini-
mizing the magnitude of the denominator of (16) with
respect to the parameter F, and then finding the value
of ¢, that maximizes the entire expression. Following
this procedure we find that the maximum surface
velocity occurs when

2

+6?

where ¢, is taken in the quadrant 7/2< ¢, <. Subject
to these conditions the optimal surface wind becomes

#(0) = —iNsH (1+82). (19)

This expression is precisely the same as the optimal
two-layer solution derived in the discussion following
expression (13), multiplied by the factor (14-82%). Since
typical values of B are near unity, the presence of a
sharp inversion can substantially enhance the response
amplitude.

Since #(0) is negative imaginary in Eq. (19), the
maximum wind speed again occurs halfway down the

F=1 and ¢o= —tan—15, (18)

N3 Stable Stratosphere

Less Stable
2 Troposphere

~Sharp Inversion
N; =0 Neutral Layer

mﬁﬁz’?

F1c. 12. Density profile for a three-layer incompressible atmo-
sphere in which a sharp inversion is present above a low-level
layer of neutral stability. The upper two layers represent the
remainder of the troposphere and the stratosphere.

downslope. In the optimal configuration, F, the inverse
Froude number squared, is always less than 1 and the
phase shift across layer two is between one-quarter and
one-half wavelength. As the strength of the inversion
increases, 8 increases, with the result that the optimal
F moves toward unity and ¢. approaches 7/2. In addi-
tion, by computing the solution at the tropopause, it
can readily be shown that when the conditions in Eqgs.
(18) are satisfied, the phase shift of the wave motion
between the ground and tropopause is just one-half
wavelength—the same as for the optimal three-layer
system discussed previously.

To illustrate the magnitude of the response predicted
by this multi-layer system, we again utilize the atmo-
spheric conditions described in (14), with the exception
that ;=0 and g’=0.316, corresponding to a 10 K in-
crease in potential temperature across the inversion.
The tropopause height 2, is set at the value for which
both of the optimal conditions in (18) are satisfied.
The dashed line in Fig. 7 then shows the maximum
surface velocity as a function of the thickness of the
neutral layer. In this case §=1.58 and the maximum
value of [4(0)| is 35 m s7, occurring at 2;=0.9 km.
Notice that again the maximum surface wind is very
sensitive to small changes in the height of the inversion.
Comparing the maximum amplitudes of the two curves
in this figure is not particularly meaningful, however,
owing to differences in the characteristics of the inver-
sion layers. The position at which the surface velocity
maximum occurs is plotted in Fig. 8 (dashed line).
Here also, if 2z, is somewhat less than optimal, the
location of the maximum surface wind will move further
downstream.

4, Linear numerical model and real data tests

These analytic solutions provide an understanding
of types of atmospheric conditions capable of producing
strong wave response. These models deal, however,
with idealized environments characterized by layers
of constant stability and linear shear which are always
an oversimplification of actual conditions. Furthermore,
these analyses indicate that the wave amplitude can
be quite sensitive to rather small variations in the up-
stream atmospheric structure. For this reason a linear
numerical model has been developed in order to provide
the capability of simulating real atmospheric situations
and to facilitate further model testing.
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In constructing this numerical model, it is advan-
tageous to use potential temperature as the vertical
coordinate since this framework tends to concentrate
grid points in regions of increased stability where the
phase of the wave is changing most rapidly. For two-
dimensional adiabatic flow the lower boundary condi-
tion can then be treated exactly, if the mountain con-
tour is assumed to represent a constant 6 surface. In
addition, the governing equations are somewhat simpli-
fied by the disappearance of vertical advection terms.
This coordinate system was proposed for the mountain
wave problem by Krishnamurti (1964).

In the present analysis, we are concerned with
steady-state, two-dimensional, isentropic flow in which
rotational effects are negligible. Since we are primarily
interested in the hydrostatic response, this approxima-
tion will be utilized in the derivations which follow. To
test the validity of the hydrostatic assumption, how-
ever, a nonhydrostatic numerical model was also de-
veloped for comparison purposes, and some results
from that model will be mentioned later in this section.
Thus, subject to the above conditions, the equations
of motion in # coordinates (Lilly and Kennedy, 1973)
become simply

a7 dp
——<u—> =0, (20)
dx\ 40
i)
—@3u2+8)=0, (21)
ox
od Rlep
- = GP('ji) ’ (22)
a6 Po
where
Rlep
d=c,T+gz= c,,&(—) gz, (23)
Do

& being the Montgomery potential. Here, (20) is the
transformed continuity equation, (21) represents the
horizontal momentum equation, and (22) isobtained
by differentiating (23) with respect to 6 and utilizing
the hydrostatic approximation. Linearizing Eqs. (20)-
(23) in the usual manner we can obtain, after some
algebraic manipulation, a single equation in terms of
one of the unknown variables. We have found it con-
venient to derive this equation in terms of the perturba-
tion Montgomery potential ®. Since the radiation-type
boundary condition must be applied to each individual
Fourier component, we seek a representation in terms
of the Fourier transform ® of the perturbation variable.
Following this procedure then leads to the simple
equation

9?®
90?2

-

+72(I>1= 0:

(24)
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. A\, 6
ne(2 )3, 0mn’ w
Po fo
- _re (29
g 92 1 ¢, dlnp\? 1¢, &*Inp
e
U290 4 cp 00 2¢, 00?

Here an overbar refers to the mean state and a zero
subscript denotes the undisturbed value at ground level.

At the surface, ®=0, the mountain contour is a
prescribed function of x. Thus, combining (22) and
(23), we require that

. 0d
d——=1g8

at ©=0,
90

(26)

where 2 is the Fourier transform of the actual mountain
contour. In order to permit the upward propagation of
wave energy through the top of our domain of interest,
we assume that above a certain level, ® =0y, the atmo-
sphere has constant propagation characteristics. There-
fore, ¥ will have a constant value v* above &= 0y,
allowing downward energy flux to be eliminated in this
region by applying the radiation boundary condition

ad .
—=iy*sgn(k)® at @=0g, 27
90

with @7 being located at an appropriate level in the lower
stratosphere. Rewriting (26) and (27) in terms of &,
then yields the lower and upper boundary conditions

1 ¢y Anp\ . 0
—<1+— ><I>1———=géo at ©=0, (28)
2 ¢, 00 30
%, )
—é)——i‘y* Sgl’l(k)qH:O at ®= ®T- (29)
d

In deriving (29), it is assumed that dlnp/80 is connuti-
ous across @ =0r.

For any particular mountain shape, the solution is
derived by computing the Fourier transform of the
surface contour, solving the differential equation (24)
subject to the boundary conditions (28) and (29), and
finally taking the inverse transform of the resulting
solution. [Note that owing to the hydrostatic assump-
tion, Eq. (24) need only be solved twice—once for
positive £ and once for negative k.] This procedure
implicitly assumes periodic boundary conditions in the
horizontal direction. However, since the long-wave re-
sponse drops off rapidly both up- and downstream of
the mountain, the effects of periodicity are minimal
when the outer boundary is located far from the
mountain.

To illustrate a solution generated by the numerical
model, we have depicted in Fig. 13 the wave motion
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F16. 13. Linear streamline pattern for flow past a bell-shaped
mountain. The mean state of the atmosphere has a three-layer
structure described by the conditions of Eq. (12). The vertical
spacing of streamlines in the unperturbed flow is inversely pro-
portional to the square of the stability N.

generated by a bell-shaped mountain in an atmosphere
whose mean state corresponds to the optimal three-
layer structure described in the previous section by the
conditions in (12). For this case, the horizontal bound-
aries were set at x/L=d-6, where L represents the
mountain half-width. (For hydrostatic flow, the solu-
tion to the dimensionless equations is independent of
the horizontal length scale, and thus L only provides a
* scaling factor for the solution.) The streamlines plotted
in this figure are separated by equal increments in ©
(a total of 100 grid points were used in the vertical)
and thus more closely spaced streamlines reflect a
region of increased stability. Here the wave amplitude
at the top of the inversion layer is about 3% times the
maximum (500 m) height of the mountain, revealing
the strong amplification produced by a “tuned” three-
layer atmosphere.

In this example, the quarter-wavelength phase shift
across each of the lower two layers can be clearly ob-
served. Notice, however, that within each layer the
phase shift is not uniform with height. In the lowest
layer the phase shifts most rapidly just above the
ground, while in the middle layer most of the phase
shift occurs near the tropopause. The reasons for this
are clear if we return momentarily to the analysis of
the previous section for a single horizontal wavenumber
k. For the optimal three-layer system with small
vertical shear, it can readily be shown that

N,

N1N;
kx—i—tan"l[ ; tanllz]=constant in layer 11

N .
kx—{-ta,n““[—;3 cotlg(z-zl):|=constant in layer ZJ
2
(30)

ATMOSPHERIC SCIENCES

VoLuME 32

which is in contrast to the expression kx-/z=constant,
valid in an atmosphere having uniform properties. The
phase shifts given in (30) are consistent with those
observed in Fig. 13.

In Fig. 13 we note the very close packing of stream-
lines near the lee slope. As the wave amplitude in-
creases, adjacent streamlines will begin to cross over
each other. This is clearly unrealistic and is caused by
applying the linear solution to situations in which non-
linear effects are obviously significant. Nevertheless, as
mentioned previously, linear theory provides a valuable
tool for identifying the atmospheric conditions capable
of producing a strong response and for investigating the
basic dynamics of wave motion.

To this point we have not considered the influence
of the mountain shape on the resulting response ampli-
tude. Although the atmospheric structure appears to
control the response potential, the mountain’s shape,
as well as its height, will influence the actual wave
amplitude for a given atmospheric environment. To
demonstrate this effect, we have computed from the
optimal three-layer atmosphere specified by Eq. (12)
the perturbation surface velocity profiles for two rather
different mountain shapes. In the first case, shown by
solid lines in Fig. 14, the mountain profile is just one
cycle of a sine wave. The second mountain contour
(denoted by a dashed line) is similar to the first, except
that on the upstream side, the mountain height drops
off very gradually to - zero. Bretherton (1969) has
pointed out that the solution diverges for a nonperiodic
ramp-shaped mountain. This ramp- or plateau-shaped
mountain is roughly analogous to the situation west of
Boulder, where the Rocky Mountains extend far up-
stream of the Continental Divide and flow at lower
levels in this region often appears to be at least par-
tially blocked. From Fig. 14 we see that the maximum
surface wind produced by the ramp-shaped mountain
is about 509, greater than the corresponding maximum
for the isolated, symmetrical mountain. For comparison,
the solid horizontal bar indicates the value of |4(0)]
for a continuously sinusoidal mountain having the same
height. These results, though by no means conclusive,
suggest an additional factor, mountain shape, which
may contribute to the generation of intense downslope
winds on the eastern slope of the Rocky Mountains.

Using the linear numerical model, we can attempt to
simulate the real atmosphere by utilizing the appro-
priate upstream sounding data to define the mean state
in the model. As an initial test, this simulation was
performed for the 11 January 1972 windstorm in
Boulder. Using a 2 km ramp-like mountain contour in
the model, and an upwind sounding constructed from
the aircraft data and the 0000 GMT 12 January
Grand Junction rawinsonde, we obtained the wave
solution shown in Fig. 15. Here the very large amplitude
streamlines pass right through the surface of the moun-
tain, again indicating that linear theory has been
pushed far beyond its proper limits. However, in the
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Fic. 14. Perturbation surface velocity profiles for two different mountain shapes.
The solid line is a mountain contour represented by one cycle of a sine wave; the
dashed line a ramp-shaped mountain with height gradually dropping off to zero far
upstream. The solid horizontal bar indicates the maximum velocity produced by
a continuously sinusoidal mountain of the same height.

middle troposphere, this simulation appears to model
the essential features of the large-amplitude wave ob-
served on that day (see Fig. 4).

To test the possible importance of non-hydrostatic
effects, the 11 January 1972 case was also simulated
using a non-hydrostatic version of the model, specifying
the distance from the mountain crest to the base to be
30 km. Without describing the details of the non-
hydrostatic model, we will just mention that the solu-
tion was virtually the same as the hydrostatic one
except that its displacement amplitude was reduced by
about 6%,. This result is typical of several other cases
which were also tested.

If the linear numerical model can produce simula-
tions which exhibit wave amplitudes proportional to
those actually occurring in the atmosphere, it could
provide a valuable tool in forecasting periods of in-
tense wave activity and the associated downslope
winds. To investigate this possibility, a large number
of real data cases were simulated and predicted re-
sponses were compared to actual developments. For
this study, sounding data at 12 h intervals were collected
from upstream National Weather Service rawinsonde
stations for most of the 20 windstorm cases analyzed by
Brinkmann (1973) and also for the entire month of
January 1972, which was a particularly windy month in
Colorado, but with intermittent quiet periods.

Quite frequently, the available upstream sounding
stations are not in the desired upwind location. Often
the upwind direction falls somewhere between Grand
Junction and Lander, with Salt Lake City too far west
for the sounding to be used with much confidence. For

this reason, a computerized cross section analysis
(Shapiro and Hastings, 1973) was performed for these
cases along a north-south line about 300 km west of
Boulder. The sounding was then taken from the ap-
propriate position along the cross section and entered
as the mean state in the numerical model. Eighty ©
levels were used in the vertical, which was sufficient to
accurately represent the sounding profiles and produce
a solution invariant to further decreases in AQ,

For comparison purposes the only data consistently
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F16. 15. Linear streamline pattern for flow over a ramp-shaped

mountain using observed upstream data from 11 January 1972
to specify the mean state.
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T1c. 16. Comparison of the maximum predicted surface winds
with the maximum recorded by the Southern Hills anemometer
in the interval 2-5 h after the soundings were taken. A box
around a data point indicates that the recorder pegged at 100 mph.

available are measurements of the surface winds ex-
perienced in Boulder. Thus for each case considered
the maximum surface wind predicted by the model was
compared with the maximum gust intensities recorded
at an anemocmeter station in south Boulder in the
period 2-5 h after the upstream soundings were taken.
This maximum surface wind generated by the inviscid
numerical model presumably ccrresponds to a steady
wind just above the turbulent boundary layer near the
ground. However, there is some evidence to suggest
that this wind speed should be comparable to the
maximum gusts cccurring at the surface.

The choice of a 2-5 h lag time for verification pur-
poses was made somewhat arbitrarily because it seened
to produce the best correlation. Because of this choice,
however, we could not test the model against all wind-
storm events using sounding data obtained every 12 h.
However, it should be emphasized that the purpose was
to test the model’s reliability in simulating the response
associated with a determinable upstream environment
rather than to try to explain all the observed periods of
strong activity. To further facilitate this model testing,
cases were discarded if the estimated wind direction in
‘the mid-troposphere deviated by more than 330° from
westerly or if variations in wind direction between
different stations or levels caused a significant uncer-
tainty in fixing the appropriate wind direction. Thus,
of the 88 sets of sounding data in the initial sample, 37
were eliminated on the abovementioned basis of wind
direction. Of these, three correspond to winds exceeding
35 m s7! in Boulder. More complete details pertaining
to the model testing will be presented in a separate
report.

The results from these real data simulations are
summarized in Fig. 16. Each point corresponds to a
separate case and indicates both the maximum pre-
dicted surface wind (abcissa) and the actual maximum
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gusts recorded 2-5 h later by the South Boulder ane-
mometer (ordinate). Notice that the model tends to
overpredict the response by about a factor of 2. This is
not surprising since the instability and turbulent break-
down of large-amplitude waves are not accounted for
in the linear model. Furthermore, it is not too disturb-
ing since the real goal here is only to determine whether
a strong positive correlation exists between the pre-
dicted and observed response. Cases for which the
wind gusts in Boulder were less than 25 m s~ and the
model predicted less than 50 (corresponding to the
shaded area in Fig. 16) were not plotted, since the
indicated mountain wave activity is weak and often
not a primary factor in producing the observed winds.
Points with boxes around them indicate that the re-
corder needle pegged at 100 mph, and they were
arbitrarily plotted as 50 m s, _

From data plotted in Fig. 16, a strong positive cor-
relation between predicted and observed maximum
winds is apparent. For example, in all six cases for
which wind gusts in Boulder exceeded 40 m s7, a very
strong response was predicted by the model. In addi-
tion, there are no cases which grossly over- or under-
predict the response. The good correspondence between
predicted and observed winds is very encouraging, and
suggests that the model can provide a valuable con-
tribution toward forecasting this phenomenon from a
knowledge of the structure of the upstream environ-
ment. Because of the relatively few strong wind cases
analyzed thus far, however, further model testing must
be conducted before definite conclusions can be drawn.

As mentioned in Section 3, the phase shift across the
troposphere was very nearly one-half wavelength for
all of the optimally structured multi-layer systems that
were considered. This result is also emphasized in our
real data simulations and is summarized in Table 1.
Here we see the strong tendency for strong predictions
to have a half-wavelength phase shift, while weaker
cases are associated more with one-quarter or three-
quarter phase shifts,

5. Comparison with hydraulic jump models

It is clear that our approach to the downslope
windstorm problem bears little or no resemblance to
the hydraulic jump theory espoused by a number of
previous investigators. The attractiveness of the jump

TasLE 1. Correlation between predicted phase shift
across troposphere and maximum surface wind.

Phase shift across Maximum predicted surface wind (m s™1)

troposphere <50 50-75 >75
oY 15
EN 5 1
I 4 6
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model is evident enough, however, from a cursory in-
spection of the lower level structure of the 11 January
1972 windstorm, which shows a sudden uplifting of the
low-level flow together with the generation of strong
turbulence. In addition, the observational ubiquity of
strong low-level stability is attractive to jump modelers.
Because the upper tropospheric features of the 11
January case appear to be more consistent with wave
than jump dynamics, and in view of the apparent
success of our numerical model in “predicting” strong
windstorms, we are convinced of the basic validity of
our results. We have, however, performed some addi-
tional analyses in an attempt to clarify the point.

A basic element of hydraulic jump theory is the non-
existence of continuous finite-amplitude solutions for a
certain range of Froude number when the ambient
fluid consists of one or more constant density layers in
steady motion. Even the linear solution becomes singu-
lar at F=1. It is important to recognize, however, that
the linear singularity no longer exists if the fluid above
the density discontinuity is continuously stratified and
is subject to a radiation boundary condition. The last
of our results of Section 3 was obtained for the case of
a sharp inversion in the lower atmosphere, yet solutions
are available for all values of the Froude number.

To point out more sharply the discrepancy between
these two approaches, we consider a further simplified
representation of the atmosphere, one consisting of two
layers separated by a density discontinuity. In Fig. 12
this corresponds to the case No.=N3=N. For this two-
layer system Eq. (17) subject to (16) reduces to

'H 1+i(ls/F
a0)= 42 LD (31)
U (1—F)4ilz
where we recall that I=N/U. This result is identical
to the solution of the linear shallow water equations if
I is set equal to zero.

In the linear shallow water analysis, it is clear from
(31) with =0 that the solution becomes singular for a
Froude number of unity. Examining the nonlinear
shallow water equations for the situation, one must
postulate that a hydraulic jump (a discontinuity in the
height of the inversion surface) occurs in order to
obtain a solution (see, e.g., Houghton and Isaacson,
1968). If, however, there is a small but nonzero stability
in the atmosphere above the sharp inversion, there is
no singularity in the solution, and thus linear theory is
uniformly valid for all Froude numbers.

Since the development of a hydraulic jump involves
nonlinear processes, it is perhaps more meaningful to
compare nonlinear solutions for this simple two-layer
atmospheric structure. To this end a nonlinear, time-
dependent numerical model for mountain waves in a
compressible atmosphere developed by the authors (to
be presented in a subsequent paper) was slightly altered
to allow the presence of a sharp inversion and neutral
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Fi16. 17. Position of the inversion surface at the dimensionless
time $Uq/L=10 for differing stabilities above the inversion, as
obtained from nonlinear numerical solutions. In all cases, U
=20 m s7}, F=1 and there is a 10 K increase in potential tem-
perature across the inversion interface with neutral stability
below. The temperature lapse rate & (K km™) above the inver~
sion are as follows: solid (neutral stability), 9.8; light-dashed, 9;
heavy long-dashed, 8; heavy short-dashed, 6.

layer beneath the region of stable stratification. In
addition, the nonlinear, time-dependent shallow-water
equations were programmed to provide the correspond-
ing solution for the case of neutral stability above the
inversion. For these numerical experiments, the moun-
tain height is 0.5 km and the undisturbed atmosphere
is characterized by a constant mean wind of 20 m s
and a 10 K increase in potential temperature across the
inversion. The Froude number was set at unity, which
then required that z,=1.17 km. Under these conditions,
integration of the shallow-water equations produces
both upstream and downstream propagating jumps,
which are depicted by the solid line representing the
height of the inversion surface in Fig. 17 at a dimen-
sionless time of 10 (corresponding to about one-half
hour for a 20-km wide mountain). As time increases,
these jumps continue to travel away from the moun-
tain. A small amount of viscous damping was included
in the solution in order to assure computational sta-
bility and to allow dissipation of energy in the jump.
The oscillations which appear behind the jump then
represent small remnants of the damped numerical
instabilities. This numerical simulation then provides
a solution for the simple two-layer system described
above when there is neutral stability, or a lapse rate of
about 9.8 K km~! above the inversion. The results are
very similar to those of Houghton and Isaacson, as
they should be since the numerical models are also very
similar.

For comparison purposes we obtained nonlinear solu-
tions for the same two-level structure but with nonzero
stability above the inversion surface. These solutions
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were generated by the nonlinear wave model using
various sub-adiabatic lapse rates above the inversion.
In Fig. 17 the corresponding position of the inversion
surface is plotted for lapse rates of 9, 8 and 6 K km™.
Notice that as the stability above the inversion in-
creases, the solution begins to deviate significantly from
the jump solution. Also, for the simulations with N2> 0,
the inversion surface tends to a steady-state position;
for a 6 K km™! lapse rate, the steady-state solution
does not differ significantly from that shown in Fig. 17
at T=10. This result is in contrast to the solution for
N?=0 in which the jumps continue to propagate with
time.

The differences in the character of the solutions for
N%=0 and N2>0 can perhaps be explained in terms of
energy transport. Since a hydraulic jump marks the
transition from supercritical to subcritical flow, energy
must accumulate at this point and thus the jump is a
turbulent region in which this energy is dissipated. No
energy can be propagated vertically because the upper
boundary condition is reflective. If the region above the
inversion has nonzero stability, however, energy can
be propagated vertically .out of the potential jump
region by the pressure forces associated with wave
motion in the stably stratified environment. Thus for
N?>0, energy is no longer trapped at this inversion
surface and can radiate vertically. From our numerical
experiments it appears that this additional degree of
freedom can significantly alter the flow and may effec-
tively eliminate jumps in the solution.

For very large amplitude wave motion, the wave may
also propagate downstream with time, as will be dis-
cussed in more detail in a subsequent paper, if turbulent
dissipation is allowed for in the wave simulation model.
Thus vertical radiation of wave energy may not always
be sufficient to completely remove a jump. This is con-
sistent with the fact that energy dissipation is propor-
tional to the cube of the jump height while the vertical
energy flux is only proportional to the square. In the
11 January windstorm evidence from anemometer
records indicated that the front edge of the strong
winds was not only sharp but that it propagated for-
ward continuously during the early part of the storm.
Such sequences have also been observed in other storms.
Yet the propagation is not indefinite, as it is in both
the hydraulic jump and dissipating wave models, and
strong winds seldom extend more than 25 km east of
the foothills. Thus something important is lacking in
all of these models, and we suspect it to be surface
friction. The deceleration of the low-level winds by
turbulent drag will certainly tend to thicken the
boundary layer and may lead to turbulent boundary
layer separation—a phenomenon which could explain
the structure observed on 11 January better than can
hydraulic jump theory.

The above discussion is not meant to imply that
hydraulic junaps do not occur in the atmosphere, nor
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that strong wave and downslope windstorms do not
exhibit some aspects of jump behavior. Rather, it is
felt that hydraulic jump analyses require idealized
simplifications of the atmosphere which may produce
artificial or misleading results. The analysis presented
here emphasizes the sensitivity of the nature of the
wave motion to the detailed structure of the atmo-
sphere and indicates that care must be taken to include
its essential features in modeling the mountain wave
phenomenon. In particular, our theoretical and obser-
vational results emphasize the importance of the entire
troposphere and lower stratosphere and the vertical
propagation of wave energy in producing strong wave
response.

.

6. Summary and conclusions

We have analyzed simple multi-layer representations
of the atmosphere and demonstrated how a mountain
wave and its associated surface winds can be strongly
amplified if the upstream wind and stability profiles lie
within sharply limited but plausible ranges. These re-
sults emphasize the fundamental role of the inversion
layer frequently observed above mountain tops in gen-
erating a large-amplitude response. The mechanism
which leads to this strong amplification is shown to be
associated with the partial reflection of upward propa-
gating wave energy by variations in thermal stability. In
contrast to the complete reflection of short gravity
waves which occur when the Scorer parameter decreases
with height, the partial reflection of long waves does
not lead to a resonant mode; rather, the vertically
propagating wave can under certain conditions have
greatly enhanced energy transport for a given forcing
displacement. Thus it is appropriate to regard the
partial reflection mechanism as a method of increasing
impedance.

Application of a numerical version of our theoretical
model to the prediction of observed maximum surface
winds, using available upstream sounding data, shows
an encouraging degree of success. The numerical simu-
lations from real data also exemplify many of the
results of the analytic theory. In particular, there is a
strong correlation of large-amplitude response with
one-half wavelength phase shifts across the tropo-
sphere. Based on these results we believe that our
linear, hydrostatic, two-dimensional and steady-state
model captures the essence of the downslope windstorm
phenomenon, at least as observed near Boulder, and
we hope that it may lead to improved operational wind-
storm forecasts.

In considering the relationship of our solutions to
hydraulic jump theory, we find that small deviations
from the idealized upstream atmospheric structure as-
sociated with jump-type solutions can substantially
alter or remove the jump. Thus, we conclude that the
hydraulic jump approach is too restrictive in its assump-
tions to properly account for the observed phenomena.
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