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ABSTRACT

Convective activity is frequently organized into band-like structures with space and time scales appropri-
ate to internal gravity waves, When the convective activity involves cumulonimbus, then latent heat release
can form a significant energy source for the waves which in turn may organize the convection [as described,
for example, by wave-CISK (Lindzen, 1974; Raymond, 1975)7]. However, in other cases strong forcing is
absent and the existence of the waves requires the existence of a duct from which very little wave energy
leaks, We show that the energy cannot be contained by an inversion. Instead, we find that a stable duct
adjacent to the surface must be capped by an unstable layer wherein the mean flow at some level either
equals or comes close to the phase speed of the ducted waves. We also find that the wind amplitudes asso-
ciated with the observed pressure amplitudes in these waves are consistent with observed squall winds.
Finally, we find that the horizontal scales of mesoscale waves are closely related to the time scales of con-

vective elements.

1. Introduction

It has often been noted that cumulus activity is fre-
quently organized in banded structures which are
characterized by horizontal wavelenghs of from about
100400 km and travel relative to the mean flow with
a phase speed of about 10-30 m s~ (SESAME? 1974).
A recent study of this phenomenon in the central
United States was presented by Uccellini (1975).
Similar structures are noted in the tropics, while cases
for New England have recently been analyzed by Marks
(1975). In some of these situations virtually the entire
depth of the troposphere is conditionally unstable and
surface air is warm and moist. [Almost all tropical
cases fall into this category as do some of the midwest
results presented by Uccellini (1975).] In such cases,
latent heat released in cumulonimbus appears capable
of efficiently forcing the waves which in turn serve to

organize the cumulonimbus convection. We shall refer .

to such interactions generally as wave-CISK (Condi-
tional Instability of the Second Kind). Specific ex-
amples of how such interactions produce gravity waves
are given in Lindzen (1974) and Raymond (1975).
There are, however, other cases where convection is
restricted to upper levels, precipitation is small and
the lower troposphere is stable [e.g., the Salem, Iil.
case of Uccellini (1975), those of Marks (1975), and also
that of Eom (1975)]. Such situations do mnot lend
themselves to the wave-CISK mechanism; never-
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theless the waves are observed to last for three to ten
cycles. It is this latter class of waves that we will be
considering in this paper. The problem in such cases is
that waves of the observed wavelengths and phase
speeds can propagate vertically freely, and hence, in
the absence of the thermal forcing provided by CISK,
they would lose their energy through vertical propaga-
tion before traveling even a single wavelength hori-
zontally. This was noted, for example, in the SESAME
(1974) Project Development Plan.

Traditionally, such waves have been presumed to
be “waves on an inversion.” This identification is
based on the well-known existence of horizontally
propagating waves along an interface between fluids
of different densities in a two-layer fluid of finite depth
and was exploited for meteorological purposes by Tepper
(1950). Unfortunately, the two-layer fluid model differs
profoundly from the atmosphere in two crucial respects:
1) the individual layers are unstratified and hence do
pot allow vertical propagation, and 2) the free upper
surface is energy-containing and hence does not allow
energy loss from the system. Thus, the identification
of the atmospheric mesoscale waves as “waves on an
inversion” seems, on the whole, unjustified. It will be
the purpose of this paper to investigate under what
circumstances such waves can exist in the atmosphere.

Briefly, we find that such waves can exist if a stable
lower troposphere is bounded by a region above, which
effectively reflects the vertically propagating waves,
thus creating a duct wherein the waves may propagate
horizontally without great loss of energy and hence
without the need for energetic forcing. Our main con-
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cern will be to determine what could provide such a
reflecting surface. However, in Section 2 we will first
hypothesize that such a surface exists and show how
the phase speed of ducted waves is related to both the
thickness and stability of the duct. (Indeed, there will
in principle be an infinitude of ducted modes—each
with a different phase speed; our primary interest is
in the lowest mode whose horizontal phase speed is
the greatest.) The precise nature of the surface will
not significantly alter the results of Section 2. Although
the results of Section 2 are very elementary, they serve
to emphasize our contention that the phase speed of
such waves depends on the gross properties of the
duct rather than on the details of some interfacial dis-
continuity. In Section 2 we also investigate the mean-
ing of ducted modes when the upper level is not a
perfect reflector.

In Section 3 we investigate whether an inversion
might not play some role in such waves—by serving
as a reflecting surface. A brief consideration of the
data suggests that this is unlikely since most observed
inversions bound regions too thin to sustain the ob-
served phase speeds. Our calculations confirm this,
showing that any reasonable inversion is a poor re-
flector except for high order modes having very slow
horizontal phase speeds [O(1 m s71)]. Such modes, for
several " reasons, are of little practical interest. In
Section 4 we investigate the possibility that a condi-
tionally unstable saturated layer could serve as a re-
flecting lid on a stable duct. Following a suggestion by
Lalas and Einaudi (1974) we take the stability of such
a layer to be some mean of the dry and saturated
stabilities, which may be zero or even somewhat nega-
tive. Such layers will tend to trap vertically propagating
gravity waves, and we find that, for observationally
reasonable layer thicknesses, the reflectivity of such
layers is significantly greater than that of inversion
layers. However, for observed phase speeds, such layers
provide insufficient reflectivities to allow the lower duct
mode to be well defined and sufficiently long lived. This
matter is investigated using the technique developed
by Lindzen and Blake (1972). A qualitive consideration
of the wave equations when a basic shear is present
suggests that the reflectivity will be greatly enhanced
if the conditionally unstable layer contains a critical
(or steering) level where the flow speed equals the
phase speed of the wave. We show, in Section 5, that
this is in fact the case. In Section 6 we show that the
reflectivity of such a layer can be large even if the
mean flow does not quite reach the phase speed of the
wave or when it does so slightly above the conditionally
unstable layer. (A steering level below the unstable
layer should destroy the duct.)

The work of Sections 2-6 leaves us with clear con-
ditions for the existence of mesoscale waves when CISK
is not relevant. A comparison with data for such cases
(in Section 7) shows that our conditions do appear to
be met. Several questions remain. First, is it reasonable
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to consider trapping by unstable layers? We believe
it is, since the most rapidly growing instabilities are
usually tightly confined to the unstable region and
typically have a horizontal scale of the same order as
the vertical scale of the unstable layer, while the waves
we are concerned with have much longer horizontal
scales. Second, why do the mesoscales exist at all?
In Section 8, we present a suggestion which we believe
is of considerable generality, namely, that when an
unstable layer is adjacent to a stable duct, the in-
stabilities in the unstable layer will stochastically per-
turb the stable duct with a spectrum of periods. If
there is to be any collective interaction between waves
in the stable duct and the instabilities, the shortest
period at which such interactions can take place must
be O(2xr;), where 7 is the time scale of the instabilities.
In the case of wave-CISK, Lindzen (1974) showed
that this would be the preferred period. We suggest
that similar considerations may lead to the selection
of the same period in the present case. It is this pre-
ferred period, together with the characteristic phase
speed of the stable duct, that determines the primary
horizontal scale of the waves in the duct, which will
in turn perturb the unstable region and tend to pattern
the convection. Comparison with available tropospheric
data appears completely consistent with these rela-
tions, and the applications of the same simple concept
to the solar chromosphere seems to adequately predict
the observed scale of supergranules.

2. Wave equations and properties of a duct

In this section, we investigate the properties of waves
in a duct (which must be stable). For the convenience
of presentation, an incompressible Boussinesq atmo-
sphere will be used here, though we shall extend the
results to the case of a compressible atmosphere later
in this section.

The governing equations are

~

<] a d 19
(“"l‘ Uo-“)u"f‘w'*Uo =———p
ot ox. dz po 0%
a a 19 g’
(—+ Un——) (= p ——
ol ox po 02 Po
™ (1
—u'+—w' =0
dx 9z
a a dpa
(ot
at dx ds

J

where %/, w’ are the perturbation velocities in the hori-
zontal (x) direction and vertical (z) directions, respec-
tively; p’ and p’ are the perturbation density and
pressure; po(z) is the mean density; and Ug(z) the
mean horizontal velocity. Assuming that the solu-
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F1c. 1. Schematic diagram of the model atmosphefe. Region 1

is the wave duct, region 2 the “black box” reflector, and region 3
is a serni-infinite propagating region.

tions are of the form %’ = w(2)e™*(=—¢t), etc., one obtains

&
_*UO
@ N? dz?
—w+ - —kjw=0, (2)
a» (U()—C)2 (Uo—C)
where N2 = (g/po) (dpo/dz) is the Brunt-Viisili fre-

quency squared. Eq. (2) is the so-called Taylor-Gold-
stein equation.

Consider a wave duct (Fig. 1, region 1) bounded
below by a lower boundary and above by an as yet
unspecified “black box” reflector (Fig. 1, region 2). Let
Cp = ¢ — U, be the phase speed of the wave relative
to the mean flow U, = U, in the duct. Both Cp and N?
are assumed to be constant in region 1. The solution to
Eqg. (2) can be written as

w1(3) = Ay exp[i\1(z— 3)+ By exp[— M (z—30)], (3)

where A\?= (N2/Cp?) —k? (A1 assumed positive). If Cp
is taken to be positive (without loss of generality), then
B, exp[— i\ (z — 3C)] represents an upgoing (incident)
wave, and A, exp[#\1(z — 3C)] represents the reflected
wave. We now define the reflection coefficient ® to be

4,
R=|— 4)
B,
so that we can write
Al=(ReioBl) lel <7r) (5)

where 8, real, is the phase shift. Note that, as far as the
waves in the -duct are concerned, ® and 8 contain all
the information of the “outside world” (i.e., regions 2
and 3). Solution (3) can now be written as '

w1(z) =wo{® exp[i\1z2—i(2D—6)]
+exp[—iz]}/ {1+ ® exp[—i(2D—6)]}, (6)
where D=\3C=2x3C/£, £ being the vertical wave-
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length of the wave in the duct and w, the vertical ve-
locity at the lower boundary z = 0. we may be viewed
as a forcing, and we see that forced waves may exist
for any £. By “free” oscillation we mean those solutions
which exist when wy=0.

Nontrivial free solutions exist only if the denoml-
nator in (6), vanishes. However, for an imperfect duct
(i.e.,, & = 1), it can be shown that the denominator
never vanishes. As a consequence we have the obvious
result that free waves do not exist in an imperfect duct.
Thus, in the following we will be concerned only with
waves that are “almost free.” By that we mean wave
modes that have a pronounced response for a given
forcing [compare them with “free” waves, which exist
in the absence of forcing or, in other words, give
infinite responses in the presence of finite forcings (see
Lindzen and Blake, 1972)7].

We use, as a measure of “response,” the amplitude
of the surface pressure perturbation.?

2(0) Cp d
= ———'—‘WI z=0
po ik dz
CDX]‘ o -
= ‘-_k—%{m g—1@2D—0) —-1}/{01 6"(2D—°)+1}.
If we let
O
PoWo ’

then

anlre2+2(1 —e&)[1—cos{(2D— 0)]] o

k Le2—|-2(1 —&)[1+cos(2D—6)]
where e=1—@® '
It can be seen from (7) that if the reflector is not too

far from being perfect (i.e., €<1) the response will
have pronounced peaks with amplitude

2Cpa 1
— ®
kel
whenever
[14cos(2D—6)]=0. )

Eq. (9) gives the following quantization for the modes:
50/ 840/ (4m)=3+3n, #=0,1,2, ..., (10)

where £, is the vertical wavelength of the nth mode.
In the explicit cases we will consider, it usually turns
out that 0 is a small quantity, i.e., |0/1r|<<1 Thus Eq.
(10) can be written approxxmately as

o/ Ln=3+3n, »=0,1,2,.... (11)

2 Tt should be noted that with few exceptions, the exact choice
of forcing or response measure is arbitrary and of no significance
in the determination of “almost free modes.”
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The wave with the longest vertical wavelength is the
n=0 mode. A quarter of its wavelength fits the thick-
ness of the duct, i.e., 18o=3C. For other modes, 3C is
always an odd multiple of quarter wavelengths. In
theory, all of the infinitude of such waves can exist
in a stable duct. However, the higher order modes,
having shorter space scales and relatedly slower phase
speeds, ought to be more significantly attenuated by
any dissipative processes; thus we expect the n=0
mode, whose vertical wavelength is longest, should
dominate.

The phase speeds associated with the modes given
by (11) can also be calculated. For waves with long
horizontal wavelengths (viz., mesoscale waves),

J:,.z 21I'CD,1,,/N1. (12)
Thus
N3C
R 3 ﬂ=0, 1, 2, PN (13)
w(3+n)

Note that Cp, as given by Eq. (13), is independent of
k. We see that the duct selects the phase speed of the
wave, but not its horizontal scale. The horizontal wave-
length is to be selected by other means, which shall be
discussed in Section 8.

The following summarizes the properties necessary
for a duct:

1) The duct has to be statically stable, i.e., N has
to be positive, so that wave propagation is possible in
the duct.

2) The duct has to be sufficiently thick so that it
can accomodate a quarter of the vertical wavelength
corresponding to the observed phase speed. For ex-

_ample, suppose the observed phase speed of a mesoscale
wave is Cp=~25 m s7%, then the vertical wavelength can
be deduced [from Eq. (12)] to be £¢~12 km. There-
fore the duct has to have a thickness of at least 3 km.
If the atmospheric condition is such that the stable
region is appreciably less than 3 km thick, we can expect
that this atmosphere does not have a duct that can
support a 25 m s~! mesoscale wave.

3) The duct has to be topped above by a good re-
flector. If the reflector is poor, wave energy will be
rapidly lost through leakage by vertical radiation. We
call a reflector a good one if it can reflect enough wave
energy to sustain the wave for at least two cycles
against leakage. For the longest wave (z = 0 mode),
this requires that the reflector has a reflection coefficient
® of at least 859, (see Appendix).

4) Finally, we must also note that the wind speed in
the duct cannot be equal to the phase speed of the
wave. If this occurs, a critical level would be situated
in a stable region with Richardson number > ;. Waves
will then be totally absorbed (Booker and Bretherton,
1967).

Before concluding this section, we will briefly re-
develop our results for a compressible atmosphere. The

S. LINDZEN AND K.-K. TUNG

1605

governing equations for a compressible hydrostatic
atmosphere? in log-pressure coordinates are

a 98 d 9
(—+ Uo——>u’+w*’———Uo =——3

at ox dz* ox
3 3 L
—~u’-|—<———~—1)w*’=0 , (14)
dx oz*

é d
(-+ Uo—>d>z*'+w*'5 =0
ot ox

where z*=In[$(0)/p] is the log-pressure coordinate.
w* =Dz*/Dt is the vertical velocity in z* coordinate;
it is related to the real vertical velocity w’ through

2

e
Huw* = —-(——-l— Uso )(<I>'/g)+w’, (15)
)/ Ox

where H=RTo/g is the scale height of the atmosphere,
To(z) being the temperature of the basic state. We have
defined in (14) the stability parameter

d . R
S= R(——T0+—To) = RHI y
dz* Cp

where I'= (1/H)(dTo/dz*)+ (g/cp) is the lapsé rate of
the atmosphere. The equations in (14) can be com-
bined to give

a2 d
—Uot—Us
a2 S dz*? dz* 1
— —|®@=0, (16)
dz*? (Uo—c)? (Uo—c) 4

where we have written

w¥ =ge—" 2g*(=—et) | etc.

In the duct where U, and S are assumed constant,
the solution to (16) is

‘1'271(2*) .___..A leﬁq(z"—-h)+ Ble—iu(z*—h)’

where »1=[(S1/Cp?)—%1}, and % is the “‘height” of the
duct in the log-pressure coordinate. As before, we write
A1=B®e*. Complication arises when one tries to
apply the lower boundary condition, w=w, at 2*=0,
through Eq. (15). As a result, the solutions are not as
simple as in the Boussinesq case. The response, for

¢ Note that hydrostaticity was not assumed for the Boussinesq
case,
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example, becomes [cf. Eq. (7)].

I=1% (0)/a =(;é—)[(%+vﬁ)(1+@~2)
D

+2R (% —11?) cos(2D—0) —2mn® sin(2D—6) ]t

[

gH 1\
+2(B|:(————> - vﬁ] cos(2D—6)
Cp? 2
| +4 (gH 1) 2D 0)% 17
Rl ——— } sl — .
" e 2 sin } an

D

Eq. (17) can, however, be simplified if one realizes
that for the waves we are interested in, the quantity
gH/Cp? is large (of the order of 100). Dropping terms
of order (Cp?®/gH), the denominator of (17) becomes

gH
—{e+2(1—¢)[1+cos(2D—8) T},
Cp? '

which is the same as the denominator of (7). Thus we
can draw the same conclusion as for the Boussinesq
case, namely, the response will have maximum peaks
of amplitude proportional to 1/]¢| if the waves satisfy
the quantization given by Eq. (10). The only modifica-
tion due to compressibility is to replace NJC by Si*k
in Egs. (12) and (13). Recognition must also be given
to the factor ¢*/2 in (16).

3. Ducting by an inversion

In this section we will calculate the reflectivity due
to an inversion, modeled by a jump in the mean state

%

K
Region 2
. I [3T L
Region 1
o —
Tol2® .

F16. 2. The temperature structure of the basic sta;kte. There
is a jump in temperature of 8T at z* = z;.
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temperature as depicted in Fig. 2. The appropriate
equation for a non-isothermal atmosphere is Eq. (16),
which in the absence of shear is

@ S 1
—o+(=- Yoo

18
dg*? Cp® 4 3

The matching condition at the interface z¥*=z* is @
continuous and diy/dz*+ RTwib/Cp? continuous; the
latter is obtainable by integrating Eq. (18) across the
interface. Assume that the stability is piecewise con-
stant In region 1 and 2, i.e., S=5; in region 1 and
§=.S, in region 2.

The solutions in region 1 can be written as

W= A1 explin (5*—2)) 1+ By exp[—in (z*—2))],  (19)
where v1=[(S1/Cp?)—11#>0. The solution in region 2
that satisfies the radiation condition is

Wa= Bs exp[—iva(z*—27) ], (20)

where va=[(S2/Cp?)—%]#>0.
Matching the solutions (19) and (20) across the
interface z; gives
A [RST —iCp2(ve—~wv1)]

By [RT—iCo(vstu)]

where 67 is the temperature jump across 2;. Thus the
reflection coefficient ®=|A41/B1| can be expressed as

(R2_[(R5T)2+CD4(V2—V1) ] @1

 L(RSTY+Copt(vat-n1)2]

We first consider an inversion with a temperature jump
but no change in stability. Then

® = (RoT)/[(ROT)+4Co* T,

where »2=S/Cp*—%.

For a tropospheric lapse rate of 3 K km™, our
stability parameter is about S=(78 m s™)% For an
inversion strength §T=5 K, ® is plotted versus Cp in
Fig. 3. Note that the reflectivity is quite small for the
phase speeds of interest: ® is about 35% for a 25 ms™
wave. As Cp gets smaller, & approaches 1. However,
since small Cp implies short vertical wavelength [see
Eq. (12)] these waves are likely to be dissipated.

Incidentally, Eq. (21) can also be used to show that

the tropopause is not a good reflector. The reflectivity

of a tropopause modeled by a jump in stability (but
not in temperature) is

Vo—1V1
vet1

For S:*~155 m s, corresponding to a stratospheric
potential temperature gradient of 12 X km™, and
Sii=~78 m s we get ®~33%, indicating that the

=~

(22)

Sp—Sit
- !

So Syt
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tropopause is a rather poor reflector. Spurious results
are often obtained in numerical models that use the
tropopause as a lid.

Eq. (22) provides a motivation for our next section.
It seems plausible that if a stable layer is topped by
a layer with vanishingly small stability, i.e., |Sz/S1]
K1, the reflectivity may approach 1, thus forming a
good duct in the stable layer. Unfortunately, such a
situation does not occur in reality, because the atmo-
sphere does not have an infinitely thick layer of air
with a small stability. However, there still exist syn-
optic situations where the stability in a finite layer can
be very small, and sometimes may even become nega-
tive if that layer is also saturated with water vapor,
These situations will be considered in the next section.

4. Ducting by a conditionally unstable layer

In this section we consider reflections due to an
evanescent layer of finite thickness. The calculations
are simple and the analysis is essentially the same for
both the Boussinesq and compressible atmospheres.
For the purpose of presentation, the compressible
atmosphere is used. The governing equation is

2

— =0, (23)

where v(2*)2=[S(z*)/Cp¥]—1%, and y="7.
We take the reflector (viz. Fig. 1, region 2) to be a
region where »? is negative, i.e.,

250 2
V== "&;;/ . (249)
This occurs when the stability in that region is small or
negative. For the New England cases discussed by
Marks (1975), region 2 corresponds to a layer of con-
vectively mixed air 2.5 km thick. The stability S, of
that layer of air is vanishingly small due to the elimina-
tion of density stratification by the mixing processes.
One of the cases discussed by Uccelini—the case of
Salem, Ill. (where a duct is expected to exist)—exhibits
above the duct a layer ~2.5 km thick with reduced
potential temperature gradient and very high relative
humidity. The effects of moisture saturation on the
stability of air have been investigated in a series of
papers by Lalas and Einaudi (1973, 1974) and Einaudi
and Lalas (1973, 1975). For our purpose here, the main
result of their work is that the air is destabilized by the
release of latent heat of condensation, and that the
value of the actual stability parameter is lower than
that of a corresponding layer of dry air (but higher
than the value calculated using the wet adiabatic lapse
rate). Applying this result, we find that the stability
parameter S, for this case is slightly, negative, and the
condition (24) is thus satisfied.
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Fi1c. 3. Reflection coefficient ® versus Cp for an inversion of §T
= 5 K. Note that for ® > 859, Cp has to be less than 6 m s,

The essential features of the observed atmospheric
condition can be simulated by a three-layer model with
a lower ducting region, a middle evanescent layer and
an upper radiating semi-infinite region. We take »(z*)?
to be piecewise constant, i.e.,

v  for 0La*<a*:  regionl
v(z*)2=< —u? for z*<z*<x*™: region 2 (25)
v  for z,<z*: region 3

The solutions in regions 1, 2 and 3 can be written,

respectively, as
1(z¥)= A exp[in (*—7) ]
+ Bj exp[—ivi(z7*—32%)]
y2(z*)= A ; exp (u2z*)+ By exp (—psz*)
y3(z*)= B exp[ —ivs(z*—25) ]

The matching conditions across the interfaces are

d
y and —y continuous across z*=z* and z*=2*. (27)
dx

. (26)

Applying (27) to (26), we find

(06 —a*d*e2m2d)
—_—, (28)

B; (o*86 —ad*e—2md)

where d=g5— 2%, 8= potiv; and o= ps—ivy.
If the simplifying assumption »;=wv, is made, one
obtains

e (u2?/v1®) , 29
[ e/ 122+ (2Aps/vi?)* T
2Ap201
tanf= , (30)
(r2—p2?)

where A= (14¢~229) /(1 —¢~22d),
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TasLE 1. Phase speeds (Cp), phase shifts (6) and reflectivities (®)
of the first five modes for the no-shear case.

Cp
n (ms™) 0 ®
0 19.0 0.93 60%,
1 79 0.50 88%
2 49 0.33 959,
3 3.5 0.24 97%
4 2.8 0.19 98,
For the casés in which we are interested
pd<Kl and (u?/v)<K1.
Consequently, we have approximately
2\ 7t
SO
Vld
: (32)
tanf = .
(md)

Note that the dependence on pu, is cancelled out and
hence u, does not appear in these equations.

Eq. (31) implies that the quantity 2/(»id) has to be
small for a good reflector. Hence, from (32) one finds
that 8 is a small quantity for a good duct, verifying the
assertion made in Section 2.

For a Boussinesq atmosphere, the quantity S;¥d has
to be replaed by N;D, where D is the thickness of the
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middle layer. Egs. (31) and (32) become
2Cp \*1?
o~ ]
N:D .
tanf= 2Cp/ (N, D)

The values for ® and 6 for the first five modes are cal-
culated and listed in Table 1, where the values N?=1.3
X107 572, 3=3 km and D=2.5 km have been used.
It is seen that the reflection coefficient for the longest
wave (n=0 mode) is not large enough to qualify this
model atmosphere as a good duct, but it is a significant
improvement over that of an inversion. Incidentally,
in Table 1 the value of Cp for the =0 mode is not
calculated with (13); Eq. (10) has to be used because
the assumption of small 8 is rather poor due to the low
reflectivity.

A spectrograph of the response function 7 defined in
Section 2 is plotted in Fig. 4. Only the first three modes
are displayed. It is seen that the n=0mode, represented
by a peak at €p=19.0 m s™%, does not give a pronounced
maximum. This is due to the low reflectivity of that
mode, as explained,in Section 2. In Fig. 4, the value of
Ng£=0 is used, but the result is very representative of
the other cases as long as p.d is small.

For larger values of p, (i.e., a more unstable layer),
the reflectivity of region 2 can be improved (see Fig. 5),
and this might increase the reflectivity by 10-20%, for
the Salem, Ill. case of Uccellini. However, the values
of us that give more acceptable ®’s are seldom observed
in the real atmosphere. It seems reasonable to conclude
that in the absence of shear, the long lifetimes of the

33)
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Frc. 4. Spectrogram (response I versus Cp) for the case of ducting by an unstable layer of
thickness ® = 2.5 km with no shear.
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observed mesoscale waves cannot be explained. For the

New England case, one definitely cannot attribute the
long (10-cycle) lifetime to ducting due to stability
alone. As we shall see in the next section, the story
would be completely different if there existed a critical
level in the evanescent layer.

5. Ducting by an unstable layer with a steering
level

In this section, we consider the ducting due to a
sheared layer. Specifically, we shall calculate the re-
flectivity of an unstable sheared layer (with Richardson
number <} including negative values) with a critical
level imbedded in it. The terms “critical level” and
“steering level” will be used interchangeably; both
refer to a level where the phase speed of the wave and
the unperturbed flow speed are equal. We assume a
three-layer model (see Fig. 6) in which the mean wind
takes on constant values of — U and U in regions 1 and
3, respectively, and varies linearly in region 2 from
—U to U. The Brunt-Viisila frequency is assumed to
be piecewise constant in each layer. We define the
Richardson number of the shear layer to be

Ri=Nz / (%U0)2=N22.‘,D2/(2U)2. (34)

The Taylor-Goldstein equation [(2)] in region 2
becomes

z [ K 1 0 (35)
—y2+ - ]y2= 3
da® (wx—a,)? ’
in region 1
dz N2
—y+M1=0, M=———"——1, (36)
da? ’ B(U+c)?
1.0
os}-
P
o8t
o7l
06
05 Cp =19.0 M/S Lx=100 km
04k N2=1.3x10"%/sec?
o3k D =25 km
o2}
O.]r
o) L L [ { L i i
6 1 2 3 4 5 6 17 8 9 10

B2

F1c. 5. Reflection coefficient ® versus us.
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N3
Region 3
Region 2
le Region 1
Ug(2) N2(z)

F1G6. 6. Schematic diagram of the model atmosphere. Shown
are the vertical profiles Ug(z) of the mean wind and the Brunt-
Viisild frequency squared.

and in region 3

st Ny
—YatAys=0, Af=————
a0 P R(U—cp

where x=Fkz, x,=¢/(dU,/dz)=%cD/U and y=w. The
matching conditions across the interfaces x=2x; and
X=1x, are

L, @D

d d 1

n=y: and —y=—yy— vs, at x=x;, (38)
dx e X1—%,
d d 1

y2=ys and —y;=—y2— vy, atx=xp. (39)
dx x Lo—%,

The solutions in different regions are
y;(x)=A 1 M@=z B g—iAilz—21)
yo(x)= s eate—s» , (40)

y2 (%)= AF (x—x,)+ BG (x—x.)

where F(x)=x,(x), v=(3—Ri)}20, G(x)=xK,(x),
I, and K, being the modified Bessel functions (we have
used I, and K, as independent solutions instead of I4,,
which cease to be independent for integer values of »
(cf. Miles and Howard (1964).

There is a branch point in the solutions at x—x.=0.
We pick the branch -

(x—x)= (xc—x)e™*" (41)

from causality (Booker and Bretherton (1967).

It can be shown that, by matching the Wronskians
of the solutions across the interfaces and analytically
continuing across the critical level using (41), we obtain
the simple relation

M{l— R} =XT2, (42)

where 7=|43/B;| is the “transmission coefficient,”
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and

x=m cos(vm)[ P(3)2+N*F (3)*H-sin (vm) [P (3)Q(3)

+PF (3)G(3) H-cos(2vm)hs,  (43)

where

d 1
d=xy—~xy P(3)=—F(3)—-F(3),
d% Fj

d 1
2(3)=—G(3)—G).
d3 ]

Since from (42), one can see that the sign of {1—®?}
depends critically on the sign of X, the regions of over-
reflection and partial reflection can be determined from
a consideration of the sign of X alone. At overreflection,
the waves are extracting energy from the mean flow
through the critical level, and the lifetime of the waves
is affected drastically. Therefore it is important that
we first locate the regions of overreflection in the
v—c—k space. '

We note readily that since

‘ Rllm;_ X = {As+7[ P (3)*+A2F (3)2]o=0} >0,
we have partial reflection (i.e., ®<1) as the Richardson

number approaches i from below. We also note that
since °

lim X= —)\3<0
Ri—+0
"
v=0
Partial
»=04
v= 0.5 —_——— — ——
) E;é/;Ouré;é%E/ korc
v=0.81 /
Portial
v31.25
Over
A
v=215 /
‘ Partial

F16. 7. Regions of partial and over reflectionsina y—cor o
" »— k plane. The overreflection regions are shaded.

/
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we have overreflection (i.e., ®>1) at zero Richardson
number. There is a region of transition from overreflec-
tion to partial reflection as the Richardson number
increases. Jones (1968) has numerically determined
that the maximum Richardson number for overreflec-
tion is 0.115 for waves which propagate vertically in
both regions 1 and 3, while Eltayeb and McKenzie
(1975) give a value of 0.1129. However, as can be seen
later, this number varies depending on the Brunt-
Viisili frequency in the upper layer.

X can be numerically evaluated and the results dis-
played in a three-dimensional parameter space. { For
positive Richardson numbers, the results can be found
in Jones (1968).] We shall, however, restrict ourselves
to mesoscale waves. It can be shown that since for
these long waves where 31, X reduces asymptoti-
cally to

1
=—$(V; aM)! (44) .
23
where
sin (2vm)
8(v, 5m)= (—v*+i+3a")
’ 28y cos(2vm) b (45)
ND
du=
2U

Eq. (44) shows that the sign of X is determined by the
sign of 8, which is a much simpler function: it is a func-
tion of the Richardson number only (if 3 is given)
and is independent of both ¢ and k, as long a & is small
and ¢ is such that a critical level exists. The sign of § is
easily determined and regions of overreflection are
plotted in Fig. 7. (We have used N#=1.3X10"* s7%,
D=2.5 km and U=15 m s™') Note that a slightly
statically unstable shear layer overreflects. It is also worth
noting that for negative Richardson numbers, the
regions of overreflection and partial reflection alternate.
It can be shown that the reflection coefficient ® vas-
cillates about 1 and asymptotically approaches 1 as
Ri— — «. This point, though interesting, is of aca-
demic interest only, and we shall not dwell on it further.

Next we proceed to calculate the reflection coefficient
itself. It can be shown, by matching the solutions (40)
across the interfaces with (38) and (39), that we have

é=1:)\1a+ﬂ (46)
By ia—B
if we let '
o= —[0(3)—iNG(3)]
b=[P(3)—i\sF(3)] 47

a=aF(3)+0G () ’
B=aP(3)+5Q(?%)

where 3’ =x,—x,. Thus the reflection coefficient is
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TasLE 2. Phase speeds (Cp) and reflectivities (®) of the first 11 modes for various »’s [¥= (4—Ri)}]. Listed are the values of Cp as
calculated frorh the approximate formula (13), and also obtained numerically from the spectrographs.

Cp v=0.4 v=0.5 v=0.6
Cp[from Eq. (13)] Cplactual] ® Cplactual] ® Cplactual] ®
n (ms™) (ms™) (%) (ms™) (%) (ms™) (%)
0 248 27.5 99.6 26.0 113 24.5 130
1 8.3 9.0 99.3 9.5 129 95 173
2 50 53 994 54 117 55 129
3 3.5 .38 99.5 3.8 112 3.8 116
4 2.8 29 99.6 29 109 29 111
5 23 24 99.7 2.4 108 24 109
6 19 20 99.7 20 106 20 107
7 1.7 1.7 99.7 1.7 105 1.7 105
8 1.5 1.5 99.8 1.5 107 1.5 105
9 13 13 99.8 13 104 1.3 104
10 1.2 1.2 99.8 1.2 104 1.2 104
given by are tabulated in Table 2 for a wave whose horizontal
wavelength is 100 km. We have chosen three repre-
o 4x 2_ 4 Im(a%) 48 sentative values of ». The first value, »=0.4, is slightly
®'= ;3_1 T liha—B| . (48) above the overreflection region (see Fig. 7) and the

It can be proved with some tedious manipulations of
Bessel functions that

Im(ep*) =X, (49)

where X was given previously by (43). Substituting
(49) into (48), one immediately verifies the result
that the sign of {1—®?} is determined by the sign of X.

The expression (48) is evaluated numerically for
different &, ¢ and Ri. The results are somewhat difficult
to display. However, for our present purpose only the
values of ® at the peaks in response are needed. These

S

reflection coefficients are almost 1. As a result, the
spectrograph for this case displays sharp pronounced
peaks with well-defined modal wave speeds (see Fig. 8).
The critical level acts as an almost perfect reflector if
v is near 0.4.

For the values of v inside the overreflections regime,
the wave in the duct is extracting energy from the
mean flow. ‘“Lifetime,” as defined previously, is no
longer a meaningful quantity. In theory, these waves
should last indefinitely even in the presence of dissipa-
tion. In reality, however, the environmental conditions
may not be homogeneous along the wave’s path and

10 —
4
10 %= =
t E 3
— : ]
(1} - ._
(2 -
g ]
& i
x 10%E
-
10% 1 1 L1 h 1 1 1 1 1 1 [ |
4 6 8 10 12 14 116 18 20 22 24 26 28 30
CD m/sec

Fi1c. 8. Spectrogram for the case of ducting by a critical level:
»=040, D=25km, U =15ms™,
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the wave would be dissipated when it moves to a region
where it is no longer able to extract energy from the
mean flow.

- As a direct consequence of our previous result that
the location of regimes of overreflection is independent
of the phase speed, once the Richardson number is
within a region of over reflection, all wave modes are
overreflected. Thus it is possible to observe more than

one wave mode in a wave duct. In Fig. 9, the spec- -

trograph for »=0.50 (Ri=0, overreflecting) is dis-
played and in Fig. 10 one for »=0.60 (Ri negative,

5

overreflecting) is also plotted. The fact that the peaks
are not as pronounced as in Fig. 8 is merely an indica-
tion that these modes are not as close to free neutral
solutions as the »=0.4 case; they would grow in ampli-
tude, due to overreflection, if no dissipative mecha-
nism is present. Thus, the width of the =0 peaks in
Figs. 9 and 10 does not suggest short lifetimes; how-
ever, the lack of sharp selectivity is probably mean-
ingful. It is also found, by numerically evaluating &
for various values of k, that maximum overreflection
typically occurs for smaller horizontal wavelengths

107 -
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Fic. 10. As in Fig. 8 except for » = 0.60.
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than allowed by our “mesoscale” approximation.
Large overreflections are in such instances likely to be
associated with the instabilities of the unstable layer
rather than the mesoscale organization of such in-
stabilities. The overreflections we obtain in the meso-
scale region are generally only slightly greater than 1.

6. Ducting by an unstable layer with shear but
without a steering level

Section 5 seems to have given the impression that
the existence of a steering level in an unstable layer is
a prerequisite for a wave duct. It turns out, with ap-
propriate shears, that a good duct can still be formed
without a steering level. From the WKB point of view,
the e-folding distance of an evanescent wave in a
region of negative N? is ~[(c—Up)?/(—N?%]} [see
Eq. (2)]. Thus the wave would be severely trapped
(i.e., almost totally reflected) if the quantity (¢—Uy)
is small somewhere in the unstable layer. Intuitively,
it seems that the reflection would approach total if
(c—U,) becomes vanishingly small. However, as we
have seen in Section 5, when critical level exists such
an intuition is not strictly correct: the behavior of the
reflection coefficient for negative Richardson numbers
is more complicated. This is due to the fact that the
WKB notion is not applicable near the singularity
when the Richardson number is small. The situation is
different for the case where (¢c— U,) is small somewhere
in the unstable layer but never vanishes there. Here
the WKB concept is valid because the equation is not
singular. This situation is what we shall consider in
this section, and we expect to get a good reflectivity for
this case.

We consider the same three-layer model as depicted

in Fig. 6, except now we assume ¢— U,(2) to be positive
throughout the three regions.? The solutions in regions
1, 2 and 3 are, respectively,

y1(x)=A1 e-‘h(:—z:)+ B, e~ M (z—z1)
y2(x)=AF (x.— %)+ BG(x.— 1)
y3(x) = B g~3(a—x2)

, (50)

where
N2
2

N
{P=—— 2
B+U)

" ke-Uy

b

and F (x)=x%I,(x), G(x)= x*K , (x) as before. The match-
ing conditions are the same as (38) and (39).

5 The case where a steering level exists above the unstable layer
is similar to this case we are considering, because absorption of
waves by a critical level in an upper stable layer is qualitatively
equivalent to the radiation condition as far as the waye in the
duct is concerned.

R. S. LINDZEN AND K.-K. TUNG

1613

If we define 1=2x,—x1, 3;= xc—le,
= —[Q(#s) —iNsG(33)],
b=[P(3s)—1iAsF (35)],
o= GF(31)+ 66(31)
B= —[aP(3)+bQ(31)],

we obtain an expression similar to (46), i.e.,

A (i)\1a+ﬂ)
B \ina—B/
Therefore the reflection coefficient ® is given by

A i)\1a+ﬁ‘

— (51)
Bl i)\la—-ﬁ

(R:

and (51) can be evaluated numerically. However, for
our purpose this is not necessary ; a simple approximate
expression for ® exists for long waves.

For long waves, we have K1, 3;<1. After doing
some asymptotic expansions of Bessel functions for
small 3; and 3;, we obtain, for the case of N*= NZ=N?,
the following simple formula for ®:

2 t
NP
(L—n)?
where
[c— U:I” 8% 1
n= E= .
c+U (Ri+322) 4403
Eq. (52) is well-behaved except at Ri— i~, where

caution must be exercised in taking the limit. The
correct limit is

. (52)

432 -t
— .

arnofo(Z5)]

From (52), one can see that the reflection coefficient
approaches 1~ as ¢—U — 0. In Fig. 11, & [as given
by (52)] is plotted for various ¢ and Ri. It is seen that
for a wide range of small ¢c—U values, acceptable
values of ® can be found. This relaxes the conditions
for ducting suggested by Section 5.

lim ®=<1+
Ri-i-

7. Summary and comparisons with data

The results of Sections 3-6 permit us to state with
some plausibility those conditions under which an
effective duct will exist for mesoscale gravity waves.
In addition to the stable layer adjacent to the ground
(called for by the considerations discussed in Section
2), we require that this layer be capped by another
layer wherein the Richardson number is effectively less
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d=25km
U=10m/ss

Fic. 11, Reflection coefficient ® versus Cp for the case with shear but no critical
level in the unstable region: U = 10 m s, D =-2.5 km. Shown are various curves

for Richardson number Ri ranging from —

than 1 because of either of the following possibilities:

1) The layer is sufficiently mixed so that its Brunt-
Viisild frequency is almost zero.

2) The layer is approximately saturated and con-
ditionally unstable so that hydrodynamic perturbations
will see a stability due to some mean of the dry and
saturated stabilities and hence small or even negative.

In addition, the mean flow within the unstable layer
must be such that either of the following hold:

1) There exists some level at which the flow speed
equals the phase speed of the ducted mode. This is
referred to as a steering or critical level. (Recall that
the phase speed of the ducted mode is almost entirely
determined by the properties of the stable duct regions.)

2) The flow speed comes very close to the phase
speed of the ducted mode. In this case there may be
either no steering level at all or the steering level may
be above the unstable layer.

- Under the above conditions, a ducted mode can
exist with little need for forcing. It is of interest to

0.5t0%.

compare these conditions with those existing in ob-
served cases. Fig. 12, from Uccellini (1975), shows the
vertical distribution of temperature and relative
humidity at two stations through which a mesoscale
wave passed. The phase speed of the wave was about
35-45 m s7! relative to the ground (periods were about
3 h corresponding to 400 km wavelengths); unfor-
tunately, no information was given for mean winds
though a value of 20 m s~ for near-surface winds is
probably reasonable in this case. It is clear from the
sounding from Green Bay that the stable region near
the ground is much too thin to sustain the observed
phase speeds; in addition there is no evidence of a
suitably unstable region capping a duct. Indeed, due
to the high surface humidity, the bulk of the tropo-
sphere was convectively unstable; the wave at Green
Bay was, in fact, associated with deep convection and
intense precipitation; such situations are ideal for
wave-CISK (Lindzen, 1974; Raymond, 1975) wherein
there is ample wave forcing and no need for a duct to
prevent the loss of wave energy. However, at Salem
there was virtually no convective precipitation, and

GREEN BAY NAY 19,1971
) 0000 GNT

RELATIVE HUNIOITY |

SALEM ILLINOIS MAY 18,1971

1200 GNT
RELATIVE_HUNIDITY

: 400 \ \

R \ \

— A\

£ 100 \ S \

850 ) {

1000 , . , < ey . . , . ,,\.
=0 -0 0 10 0 50 w00 0 -1 0 W 2 x5 B

TENPERATURE (°C) %

TEMPERATURE (°C} %

Fic. 12. Vertical distribution of temperature and relative humidity at Green Bay
' and Salem from Uccellini (1975).
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hence no local forcing. Here we find that there is a
deep stable layer below 700 mb whose properties are
consistent with a 25 m s™! ducted mode, and above we
have a nearly saturated conditionally unstable layer.
Unfortunately, we have no information as to whether
an approximate steering level existed in the unstable
region, though the SESAME (1974) report remarks
that it is generally observed that waves move in a
direction roughly along the mean flow, and that their
phase speeds are of the same magnitude as the mean
wind. Also in the Midwest, the case studied by Eom
(1975) shows a gravity wave occurrence with no closely
associated convective activity. The soundings and cross
section provided by Eom suggest that a critical level
probably exists at around the 500 mb level where the
air has a diminished stability due to moisture satura-
tion. The situation for mesoscale disturbances® in New
England is somewhat clearer. Fig. 13 is a schematic
representation of typical conditions associated with
mesoscale waves (Marks, 1975). The observed waves
have typical phase speeds of 25 m s% (periods were
about 1 h corresponding to wavelengths of about 100
km). The properties of the stable region below 3.6 km
are compatible with the observed phase speeds. In
addition, the duct is capped by a convectively mixed
region containing a steering level. (A detailed examina-
tion of the specific cases considered by Marks shows
that on occasion the steering level was found just
above the convectively mixed layer.)

The above comparisons suggest that mesoscale

waves require either conditions propitious, to wave- .

CISK or the presence of a stable duct beneath an un-
stable region containing a steering level or at least
an “almost’ steering level.?

For a final consistency check, we have obtained
from Marks microbarogram data for typical mesoscale
waves. These suggest a surface pressure amplitude of
1 mb. Using the equations of Section 2, we find that
such a pressure amplitude will be associated with hori-
zontal wind amplitudes of about 4 m s™ suggesting
wind changes of 8§ m s~ over 30 min. Such changes are
indeed characteristic of such mesoscale systems in New
England.

8. On the horizontal scale of mesoscale waves

Thus far, nothing in Sections 2-6 serves to explain
why mesoscale waves have the scale they have. The
properties of the stable duct determine only the phase

¢ Here and in subsequent discussions of the mesoscale waves of
the New England cases of Marks (1975), we are referring to the
mesoscale precipitation bands, which we believe are the physical
manifestation of the mesoscale waves. We will not be concerned
with the coastal fronts, which were also observed by Marks,

71t is interesting to note that wave-CISK instabilities tend to
be characterized by vertical wavelengths four times the depth
of the moist surface layer. Reference to Fig. 12 then suggests that
the wave-CISK modes at Green Bay and ducted modes at Salem
could have similar phase speeds.
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Fre. 13. Schematic representation of typical environmental
conditions for mesoscale disturbances from Marks (1975). The
equivalent potential temperature (.;) profile is on the left and
the mean velocity profiles are on the right.

speed of the mesoscale waves. The instabilities of the
unstable layer above the duct are typically charac-
terized by a horizontal scale of the same order as the
thickness of the unstable layer—a scale much smaller
than that of the mesoscale waves. In Section 1 a hy-
pothesis was put forward to account for the mesoscale
based on a similar property of wave-CISK modes
(Lindzen, 1974). First, the minimum period over which
there can be any collective interaction between con-
vective waves in the stable layer must be O(2r7),

.where 7, is a characteristic time scale for the instability.

It is intuitively clear that any shorter period would
involve changes too rapid to organize convection.
Given the phase speed associated with the duct, this
minimum period will also determine a minimum wave-
length for the mesoscale wave. Our hypothesis is that
it is this minimum scale which is indeed realized. In
the case of wave-CISK such a scale has the greatest
growth rate. Quite possibly a similar argument could
be developed for the interaction of convection and
ducted waves here.

The application of the above argument to the New
England disturbances whose period was about 1 h-
(leading to scales of about 100 km associated with
duct phase speeds of about 25 m s™) suggests a time
scale 7; of about 10 min for the instabilities, which is
roughly appropriate to cumulus with a depth of about
2.5 km (see Fig. 13). The waves observed by Uccellini
present a slightly more complicated picture. The dis-
turbances observed at Salem probably originated else-
where where they were associated with cumulonimbus
convection. Hence the observed disturbances at Salem
should have periods related to the lifetime of cumulo-
nimbi rather than to the lifetime of local instabilities
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at Salem. The observed period implies 7;~% h which is
a reasonable time scale for cumulonimbi extending
about 7 km. That ducted modes can pattern convection
in the unstable layer seems reasonable given how deli-
cate a matter the determination of convective plan
form is (see Soberman, 1958; Segel, 1966).

The above suggests that when an atmosphere can
simultaneously sustain free waves with a phase speed
¢ and convective instabilities with a characteristic time
i, then the convection will be patterned with a hori-
zontal wavelength given by

L=cX2rr; (53)
The question now arises as to whether this principle
applies to Lamb waves which are the basic free waves
of the atmosphere—even when no duct is present [see
Lamb (1932), Bretherton (1969) and Lindzen and
Blake (1972) for discussion of Lamb waves]; Lamb
waves have ¢~ 319 m s~ (the speed of sound). Although
sufficient data are not available to check this point,
there are reasons why the answer is probably no. Most
significantly the wavelengths implied for 7,~10 to 30
min are 1000-3000 km; such lengths are typically
greater than the extent of convectively unstable layers.
However, the situation is different on the sun where a
convective layer exists over the entire star. The con-
vective elements are observed as so-called granules
having a time scale 7,3 to 5 min and a horizontal
scale of hundreds of kilometers. The free waves on the
sun analogous to Lamb waves have ¢~0O (10 km s7).
According to Eq. (53), solar convection should be
patterned with a wavelength =30 000-40 000 km—
which is, in fact, the scale of supergranules on the sun
[see Leighton (1963) for a review of observational
evidence of granules and supergranules].
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APPENDIX
An Estimate of Lifetimes

If the surface above a wave duct is not a perfect
reflector, the waves in the duct will gradually lose
energy through leakage and hence will not last forever,
even if no dissipative mechanisms are present. It seems
desirable to have a simple rule of relating the lifetime
71: 0f a ducted wave to the reflectivity & of the surface
abave the duct. Since wave energy is leaking out of

the duct at the rate of (p'w’);, the net energy flux out

of the duct, we have approximately 7= (E);(pw)1,
where (E), is the wave energy in a column of air in the
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duct. Since the energy density in the duct is given by

— — g %
E - %pb[ulz—’_w,z_’__—(—)]’
N 12 Po

where a bar denotes averaging over a horizontal wave-
length,

JC
(Eh= f Edz=%p05€lBllz{ (®2+1) (5R24-2)

0
sin (2D —6)
2D

sing
el

2D
using the solution in Eqs. (3) and (5), with 82=N2/
(RCp2)—1. :

If we are interested only in waves that satisfy the
quantization [i.e., Eq. (19)], we can drop the term
in brackets in the expression for (E)1. The energy flux
can be calculated as ’

| +2(2—3$\,2ja[

(p"w)1=piCp | B1[H{1— &2},

showing that the net flux is upward (leaving the duct)
if ®@<1.

Since we are interested in a lifetime that is in units
of wave cycles, we define #;,= kCp71/2x and obtain

(1+®2)
(1—&2)

For mesoscale waves A2=N/(RCp?)>>1, we have
finally the desired formula

5@+ ()
T d—a)

B
it =—;—(5)\12+ 2)
LN

where (13) has been used.

With this simple formula, one can show that, for a
wave to last two cycles (#1,= 2), the #=0 mode requires
a reflectivity ®=85%.
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