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1. Formulation of the governing equations

Consider the horizontal equation of motion in vector form as follows:

∂vh/∂t + v•∇h v = -f k X vh - Cp θ  ∇hπ + 1/ρ ∂τ/∂z,                   (1)

where vh is the horizontal component of the the three-dimensional wind v,

π = (p/po)R/Cp, p is the pressure, ρ is the density, f is the Coriolis parameter, and τ is the

turbulent stress. The vertical equation of motion is the hydrostatic equation:

-Cp θ ∂π/∂z –g=0.                    (2)

We will now evaluate (1) for the special condition of a well-mixed boundary layer and for a

layer above the well-mixed layer, which we will call the "upper layer." Let the basic state,

which is hydrostatic, be designated by variables having a zero subscript; the subscript "ml"
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refers to the mixed layer and the subscript "ul" refers to the upper layer. Perturbation

quantities, which are assumed to be relatively small in  comparison to the basic-state

variables, are denoted by tilde superscripts. The crucial assumptions about the mixed layer

are that both potential temperature and momentum are independent of height. Then,

     θml (x,y,t) = θo + θml (x,y,t)        (3)

     θul (x,y,z,t) = θο + θul (x,y,z,t)           (4)

     π(x,y,z,t) = πο(z) + π(x,y,z,t)         (5)

     ρ(x,y,z,t) = ρο(z) + ρ(x,y,z,t) ,        (6)

where θo is constant and the basic state is hydrostatic, so that

     Cp θο ∂π/∂z = -g.         (7)

It follows from (7) and (2) that

     Cp ∂π/∂z = g/θο θml/θο         (8) 

in the mixed layer and

     Cp ∂π/∂z = g/θο θul/θο         (9) 

in the upper layer. To find π in the mixed layer, we integrate the vertical perturbation-

pressure gradient term from a reference level Z above the mixed layer down to a height z

within the mixed layer, which has a depth h. We note that θml is independent of height in the

mixed layer.
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It follows that

                Cp θο π(z) = Cp θο π(Z) + Z∫h Bul dz + Bml (z – h),               (10)

where Bml  = = g θml/θο  and Bul = g θul/θο.  From (3) and (5), we can see that the pressure-

gradient term in (1)

                      - Cp θ  ∇hπ =     - Cp θο  ∇hπ                          (11)

in the mixed layer. So from (11), (10), and (1), we can express the horizontal equation of

motion in the mixed layer as follows:

          ∂vh/∂t + v•∇h v + f k X vh =  -Cp θο π(Z) + ∇[ h∫Z Bul dz] + ∇(hBml) – z ∇Bml

                                                            + 1/ροο ∂τ/∂z,                      (12)

where ρ in the stress term in (1) has been replaced by its value in the basic state at the

surface (ροο = ρο(z=0)). All the terms in (12) are independent of height in the mixed layer

except for the z ∇Bml term. We can therefore express the stress term as follows:

                             1/ροο ∂τ/∂z = z ∇Bml + c(x,y,t),                          (13)

where c is independent of height. If we integrate (13) from the height of the underlying

topography (zs) to the top of the mixed layer (h), it follows that

       c(x,y,t) = - (∇ Bml)[1/2 (h + zs)] + 1/ροο [τ(h) - τ(zs)]/(h – zs),           (14)

where τ(h) represents the entrainment of momentum through the top of the mixed layer and

τ(zs) represents the effects of surface drag. So,

     1/ροο ∂τ/∂z = [z – 1/2 (h + zs)] ∇ Bml + 1/ροο [τ(h) - τ(zs)]/(h – zs).        (15)

Substituting (15) into (12), we find that we can express the horizontal equation of motion in

the mixed layer as follows:

          ∂vh/∂t + v•∇h v + f k X vh = { -Cp θο π(Z) + ∇[ h∫Z Bul dz] + ∇(hBml) – z ∇Bml }

                                  + {z ∇ Bml
 – 1/2 (h + zs) ∇ Bml + 1/ροο [τ(h) - τ(zs)]/(h – zs)}      (16)

The first expression (all the terms between the first set of braces) on the right-hand side of

(16) is the pressure-gradient term in the mixed layer and the second expression (all the

terms between the second set of braces) is the vertical stress divergence term in the mixed
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layer. Note how the – z ∇Bml pressure-gradient term cancels the z ∇ Bml  vertical-stress

divergence term. Since there can be no horizontal component of vorticity in the mixed layer

(momentum must be constant with height), there can be no net generation of horizontal

vorticity; the terms that are a function of height therefore cancel each other out.

The equation for the vertical component of vorticity in the mixed layer is computed

by operating on the horizontal equation of motion (16) with k • ∇ X to get the following:

                     ∂ζ/∂t = - v • ∇ηζ −(ζ + f)δ + k • ∇Bml X ∇[1/2 (h + zs)] +

                                    k • ∇ X {1/ροο [τ(h) - τ(zs)]/(h – zs)},                 (17)

where ζ is the vertical component of relative vorticity and δ is the horizontal divergence.

2. An analysis of how vorticity is generated

The first term on the right-hand side of (17) represents horizontal advection of

vorticity, which can only transport already existing vorticity around; it cannot generate new

vorticity. The second term, the divergence term, can amplify pre-existing relative vorticity,

but cannot generate vorticity from scratch; divergence/convergence acting on Earth’s

vorticity is too slow to account for the formation of mesoscale vortices. The most significant

term is the third term on the right-hand side of (17), the baroclinic term involving the

gradient of mixing depth and terrain slope. If the mixed layer depth is constant, then the

magnitude of the baroclinic-slope term is proportional to the magnitude of ∇Bml X ∇ zs.

A physical explanation of the baroclinic-slope term is as follows:  Consider that part

of the vertical stress divergence term in the expression between the second set of braces in

(16) which is proportional to the horizontal gradient in mixed-layer buoyancy,

                                        [z – 1/2 (h + zs)] ∇ Bml.

Above (below) z = 1/2 (h + zs), the mid-point of the mixed layer, air is accelerated along (in

the opposite direction to) the buoyancy gradient in the mixed layer. If the surface elevation

is sloped, then vertical vorticity is generated as a result of unequal accelerations at a given

height along the surface-elevation gradient as depicted below.
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(from Dempsey and Rotunno 1988)

3. Mesoscale vortices in nature

The “Denver convergence-vorticity zone” is either a mesoscale cyclone or an

elongated convergence zone having cyclonic vorticity at the surface. It is postulated that

when the synoptic flow is from the southeast over the Palmer Divide, a region of relatively

high terrain that juts out from the Rocky Mountains eastward, between Denver and

Colorado Springs, acts as an elevated heat source; potential temperature is advected

northward out over terrain that slopes downward to the north. In the figures below, it can be

seen that cyclonic vorticity is generated.
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(from Dempsey and Rotunno 1988)

(from Wilczak and Glendening 1988; S ≡ zs))
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Similar mesoscale vortices may occur to the north by the Cheyenne Ridge  and to the south

by the Raton Ridge. The mesoscale vortices and regions of enhanced cyclonic vorticity are

important for air pollution considerations and in providing a source of pre-existing

boundary-layer vorticity that may be stretched to tornadic strength underneath rapidly

growing cumulus congestus clouds, especially during the late spring and summer.

4. A word of caution

Despite how neat the theory looks, we must remember that while we often find deep

mixed layers that are well mixed with respect to potential temperature, we do not usually see

mixed layers in which the momentum is well mixed; there is usually vertical shear. Since

our derivation of the vorticity equation (17) depended on the assumption that momentum is

well mixed, we must be cautious in applying the theory to the real world.


