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timescales. By examining the limit of decadal predictability 
of several major climate modes, we found that the limit of 
decadal predictability of the Pacific decadal oscillation (PDO) 
is about 9 years, slightly lower than that of the Atlantic multi-
decadal oscillation (AMO) (about 11 years). In contrast, the 
northern and southern annular modes have limits of decadal 
predictability of about 4 and 9 years, respectively. However, 
the above limits estimated using time-filtered data may over-
estimate the predictability of decadal variability due to the 
use of time filtering. Filtered noise with the same spectral 
characteristics as the PDO and AMO, has a predictability of 
about 3 years. Future work is required with a longer period of 
observations or using a more realistic model of decadal vari-
ability to assess the real-time decadal predictability.

Keywords  Decadal-scale climate predictability · 
Nonlinear local Lyapunov exponent (NLLE) ·  
Initial-value decadal predictability limit

1  Introduction

The use of dynamical and statistical models for seasonal 
forecasting has becoming widespread over the past two 
decades, and now many operational and research centers 
routinely make seasonal forecasts. The success of seasonal 
forecasting is, to a large extent, due to the increased under-
standing of the sources and limits of seasonal predictability. 
It has long been recognized that most of the current sea-
sonal predictive skill over many regions of the world comes 
from the strong influence of the El Niño–Southern oscil-
lation (ENSO) phenomenon (e.g., Shukla 1984; Goswami 
and Shukla 1991; Lau and Nath 1996; Chang et al. 2003; 
Wang et  al. 2009; Kumar et  al. 2013), which can be pre-
dicted with a lead time of up to 1 year (Latif et al. 1998; 
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Collins et  al. 2002; Zheng et  al. 2006; Jin et  al. 2008; Li 
and Ding 2013).

In recent years, climate predictions over interannual to 
decadal timescales have received increased attention (e.g., 
Latif et al. 2004; Keenlyside et al. 2008; Meehl et al. 2009; 
Pohlmann et al. 2009; Mehta et al. 2011; Lienert and Dob-
las-Reyes 2013). These predictions fill the gap between 
seasonal and climate change predictions, and can provide 
useful information on the climate conditions and risks 
that we might experience over coming decades, which is 
extremely valuable for decision-making in various sectors 
such as agriculture, energy, and infrastructure development. 
However, in contrast to seasonal forecasting, interannual to 
decadal climate prediction is at an early stage of develop-
ment (Murphy et al. 2010). To date, little is known of the 
sources and limits of decadal predictability at regional and 
global scales. In the context of current efforts to improve 
decadal climate predictions, there is a need to examine 
these sources and limits of decadal-scale predictability. In 
the present study, we focus our efforts on the limits of dec-
adal-scale climate predictability within the global atmos-
phere–ocean system.

Many previous studies have examined decadal-scale 
predictability (e.g., Griffies and Bryan 1997; Boer 2000, 
2004, 2011; Collins 2002; Collins and Sinha 2003; Pohl-
mann et al. 2004), and they used two common approaches: 
the diagnostic approach and the prognostic approach. In the 
diagnostic approach, the variance of a climate variable is 
decomposed into a potentially predictable signal compo-
nent and an unpredictable noise component. Potential dec-
adal predictability is analyzed using the ratio of the signal 
variance to the noise variance. In the prognostic approach, 
the decadal predictability is estimated from perfect model 
experiments, which use a coupled atmosphere–ocean gen-
eral circulation model (CGCM). The perfect model ensem-
ble experiments use identical oceanic and perturbed atmos-
pheric initial conditions and are performed to quantify the 
spread within the ensemble relative to the variability of the 
control run, which may then be used to make an estimate 
of predictability. This approach gives an upper limit of 
predictability as it assumes a perfect model and identical 
oceanic initial conditions. Both the diagnostic and prog-
nostic approaches have indicated that some useful decadal 
predictability may exist in four regions: the North Atlantic, 
Southern Ocean, North Pacific, and tropical Pacific (Latif 
et al. 2006). The North Atlantic and Southern Ocean have 
been found to be the two most predictable regions. These 
two regions are predictable over periods of up to 10 years 
or longer (Boer 2000; Collins and Sinha 2003; Pohlmann 
et al. 2004).

These studies have significantly improved our under-
standing of decadal predictability. However, as pointed 
out by Latif et al. (2006), there has been a heavy reliance 

on models in decadal predictability estimates. While mod-
els have been helpful in identifying possible mechanisms, 
almost all CGCMs in use today, such as the Intergovern-
mental Panel on Climate Change (IPCC) Fifth Assess-
ment Report (AR5) coupled models (Flato et al. 2013), are 
imperfect, and uncertainties remain with respect to the sim-
ulation of decadal variability. Any such model errors will 
have a significant influence on estimates of decadal predict-
ability; consequently, these estimates may not reflect the 
true predictability of decadal variability. Given the lack of 
realistic CGCMs currently available for simulating decadal 
variability, it is appropriate to investigate decadal predict-
ability based on observational data.

Recently, a new method based on the nonlinear local 
Lyapunov exponent (NLLE) was introduced to investigate 
atmospheric and oceanic predictability using observational 
data (Chen et  al. 2006; Ding and Li 2007; Li and Wang 
2008; Li and Ding 2011). The NLLE method, which is a 
nonlinear extension of the traditional Lyapunov exponent 
concept, can quantitatively determine the limit of atmos-
pheric and oceanic predictability over various timescales 
by exploring the evolution of the distance between initially 
local dynamical analogs (LDAs) from the observational 
time series. Accordingly, the predictability of decadal cli-
mate variability can be assessed by applying the NLLE 
method to observational data. In this study, on the basis 
that the limit of decadal predictability of the global atmos-
phere–ocean system varies widely with region, we investi-
gate the spatial distributions of the limit of decadal predict-
ability of the sea surface temperature (SST) and sea level 
pressure (SLP) fields using the NLLE method to identify 
the regions of relatively high decadal predictability.

Furthermore, the Pacific decadal oscillation (PDO; Man-
tua et al. 1997; Zhang et al. 1997) and Atlantic multidec-
adal oscillation (AMO; Schlesinger and Ramankutty 1994), 
which are known as the dominant decadal SST modes in 
the North Pacific and North Atlantic, respectively, have 
widespread effects on temperatures and precipitation across 
North American and Eurasia (Mantua and Hare 2002; Sut-
ton and Hodson 2005; Knight et  al. 2006; Zhang et  al. 
2007). The northern annular mode (NAM, also known as 
the Arctic oscillation (AO); Thompson and Wallace 1998; 
Li and Wang 2003) and southern annular mode (SAM, 
also known as the Antarctic oscillation (AAO); Gong and 
Wang 1999; Nan and Li 2003) are major climate modes 
in the SLP field and link mid-latitudes to the polar regions 
of the Northern and Southern Hemispheres, respectively, 
exerting a marked impact on climate throughout much of 
their respective hemispheres (e.g., Deser and Timlin 1997; 
Hurrell et al. 2001; Marshall et al. 2001; Prieto et al. 2002; 
Buermann et al. 2005; Codron 2005; Verdy et al. 2005; Liu 
and Ding 2007; Stammerjohn et al. 2008). The NAM and 
SAM have also been shown to exhibit decadal variability 
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and trends (Molinari and Mestas-Nuñez 2003; Ostermeier 
and Wallace 2003; Yuan and Yonekura 2011). Based on the 
indices of these climate modes, the NLLE method can also 
be used to investigate the limit of decadal predictability of 
these major modes of oceanic and atmospheric variability. 
We note that the limit of decadal predictability obtained in 
the present study would be lower than the theoretical upper 
limit of decadal predictability, which may be achieved only 
if the prediction model is perfect except for sufficiently 
small errors in the initial conditions.

The remainder of this paper is organized as follows. 
Section  2 describes the data used in this study. Section  3 
introduces the NLLE method. Section 4 examines the spa-
tial distributions of the limit of decadal predictability of 
the SST and SLP fields. Section  5 presents the results of 
the predictability analysis of several major climate modes 
using the NLLE method. The influences of dataset length 
and temporal filtering on predictability estimates are dis-
cussed in Sect. 6. Finally, Sect. 7 summarizes and discusses 
the major results.

2 � Data

The observations used in this study were a range of century-
long gridded climate analyses. The monthly gridded SST 
dataset used was version 3 of the Extended Reconstructed 
SST (ERSST.v3) generated by the National Oceanic and 
Atmospheric Administration (NOAA) on a 2° × 2° spatial 
grid (Smith et  al. 2008), covering the period 1854‒2011. 
The updated version of the monthly Extended Kaplan SST 
data obtained from the UK Met Office SST data (Reynolds 
and Smith 1994; Kaplan et al. 1998), with a spatial resolu-
tion of 5° and covering the period 1856‒2011, was used to 
verify results from ERSST. Atmospheric data (in particular, 
SLP data) were obtained from the Hadley Centre (HadSLP) 
on a 2° × 2° spatial grid (Allan and Ansell 2006) and cover 
the period 1850–2011. In addition, we used the recon-
structed monthly SLP field from 1659 to 1999 over the 
eastern North Atlantic and Europe (Luterbacher et al. 2002) 
to check the dependence of the estimated limit of decadal 
predictability on the length of the dataset.

The PDO index for the period 1854‒2011 is defined 
as the leading principal component (PC) of monthly SST 
anomalies in the North Pacific poleward of 20°N (Mantua 
et al. 1997; Zhang et al. 1997), and was derived from the 
ERSST dataset. The AMO index over the same period was 
calculated by averaging detrended monthly SST anomalies 
over the extratropical North Atlantic region (30°N–65°N, 
75°W–7.5°W; Trenberth et al. 2007), and was also derived 
from the ERSST dataset. The monthly SAM index over the 
period 1850–2011 is defined as the difference in the nor-
malized monthly zonal-mean SLP between 40°S and 70°S 

(Nan and Li 2003), while the monthly NAM index over the 
same period is defined as the difference in the normalized 
monthly zonal-mean SLP between 35°N and 65°N (Li and 
Wang 2003). Both the SAM and NAM indices were derived 
from the HadSLP dataset.

3 � Introduction to the NLLE method

3.1 � NLLE of an n‑dimensional dynamical system

Consider a general n-dimensional nonlinear dynamical sys-
tem whose evolution is governed by

where x = [x1(t), x2(t), . . . , xn(t)]
T is the state vec-

tor at the time t, the superscript T is the transpose, and F 
represents the dynamics. The evolution of a small error 
δ = [δ1(t), δ2(t), . . . , δn(t)]

T, superimposed on a state x, is 
governed by the nonlinear equation:

where J(x)δ are the tangent linear terms, and G(x, δ) are 
the high-order nonlinear terms of the error δ. Due to some 
difficulties in solving the nonlinear problem, most previ-
ous studies (e.g., Lorenz 1965; Eckmann and Ruelle 1985; 
Yoden and Nomura 1993; Kazantsev 1999; Ziehmann 
et  al. 2000) assumed that the initial perturbations were 
sufficiently small that their evolution could be approxi-
mately governed by the tangent linear model (TLM) of 
the nonlinear model. However, the tangent linear approxi-
mation to error growth equations has many limitations in 
predictability problems involving finite-amplitude initial 
errors (Lacarra and Talagrand 1988; Mu 2000; Ding and 
Li 2007; Li and Ding 2011). Therefore, we should take 
into account the nonlinear behaviors of error growth when 
determining the limit of predictability. Without a linear 
approximation, the solutions of Eq. (2) can be obtained by 
numerical integration along the reference solution x from 
t = t0 to t0 + τ:

where δ1 = δ(t0 + τ), x0 = x(t0), δ0 = δ(t0), and η(x0, δ0, τ) 
is the nonlinear propagator. The NLLE is then defined as

where �(x0, δ0, τ) depends in general on the initial state x0 
in phase space, the initial error δ0, and time τ. The NLLE 
differs from existing local or finite-time Lyapunov expo-
nents defined based on linear error dynamics (Yoden and 

(1)
dx

dt
= F(x),

(2)
d

dt
δ = J(x)δ +G(x, δ),

(3)δ1 = η(x0, δ0, τ)δ0,

(4)�(x0, δ0, τ) =
1

τ
ln

�δ1�

�δ0�
,
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Nomura 1993; Kazantsev 1999; Ziehmann et  al. 2000), 
which depend solely on the initial state x0 and time τ, and 
not on the initial error δ0. The ensemble mean NLLE over 
the global attractor of the dynamical system is given by

where Ω represents the domain of the global attractor of the 
system and 〈〉N denotes the ensemble average of samples of 
sufficiently large size N (N → ∞). The ensemble mean 
NLLE reflects the global evolution of mean error growth 
over an attractor and can measure global mean predictabil-
ity. The mean relative growth of the initial error (RGIE) can 
be obtained by:

For chaotic systems, using the theorem from Ding and 
Li (2007), we obtain

where 
P

−→ denotes the convergence in probability and c is 
a constant that depends on the converged probability distri-
bution P of error growth. The constant c can be considered 
to be the theoretical saturation level of Φ̄(δ0, τ). According 
to the dynamical systems theory, the error saturation value 
represents the average distance between two randomly cho-
sen points over a chaotic attractor, implying that once the 
error growth reaches the saturation level, almost all infor-
mation on initial states is lost and the prediction becomes 
meaningless. Using the theoretical saturation level, the 
limit of dynamical predictability can be quantitatively 
determined (Ding and Li 2007; Li and Ding 2011).

3.2 � Estimating the NLLE from an observational time 
series

For nonlinear dynamical systems whose equations of 
motion are explicitly known, such as the Lorenz system 
(Lorenz 1963), we can directly calculate the mean NLLE 
via numerical integration of their error evolution equations 
(Ding and Li 2007). In addition, if large amounts of obser-
vational or experimental data are available for dynamical 
systems, we can estimate the mean NLLE by making use 
of these data when the evolution equations of the systems 
are unknown or incomplete. In previous studies, we devel-
oped an algorithm that yields estimates of the NLLE and its 
derivatives based on observational data (Ding et  al. 2008; 
Li and Ding 2011). The general purpose of this algorithm is 
to find local analogs of the evolution pattern from observa-
tional time series. The local analogs are searched for based 

(5)
�̄(δ0, τ) =

∫

Ω

�(x0, δ0, τ)dΩ

= ��(x0, δ0, τ)�N , (N → ∞)

(6)Φ̄(δ0, τ) = exp
[

�̄(δ0, τ)τ
]

.

(7)Φ̄(δ0, τ)
P

−→ c(N → ∞),

on the initial information and evolution information at two 
different time points in the time series. If the initial dis-
tance at two different time points is small, and if their evo-
lutions are analogous over a very short interval, it is very 
likely that the two points were analogous at the initial time. 
This analog is referred to as a LDA. The mean NLLE is 
then estimated by calculating the mean exponential diver-
gence rate of LDAs, and the mean error growth is obtained 
by calculating the mean RGIE between all LDAs. A brief 
description of the algorithm is given in “Appendix 1”. This 
NLLE method has been applied to atmospheric and oce-
anic observational data to investigate decadal changes in 
weather predictability (Ding et al. 2008), the temporal–spa-
tial distributions of predictability limits of the daily geo-
potential height and wind fields (Li and Ding 2011), the 
temporal–spatial distributions of predictability limits of 
monthly and seasonal means of various climate variables 
(Li and Ding 2008, 2013), and the predictability limit of 
the intraseasonal oscillation (ISO) (Ding et al. 2010, 2011).

Figure  1 shows a schematic illustration of the mean 
error growth for a chaotic system in which the growth 
of sufficiently small errors is initially exponential with a 
growth rate consistent with the maximal Lyapunov expo-
nent, as obtained using the NLLE method. We can see 
that the mean error growth initially increases quickly, 
then slows down, and finally reaches a saturation value. 
In contrast, the linear error evolution shows a continu-
ous exponential growth. These results show that the lin-
ear error approximation is not suitable for describing the 
processes from initial exponential growth to saturation 
for sufficiently small errors. The nonlinear properties of 
the NLLE make it applicable to describing the processes 
associated with nonlinear error growth in chaotic systems, 

Fig. 1   Schematic illustration of the determination of the predictabil-
ity limit from the mean error growth as a function of time, obtained 
using the NLLE method. The mean error growth on the y-axis uses a 
logarithmic scale to amplify the differences between linear and non-
linear error evolutions
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thereby overcoming the limitations of traditional linear 
error dynamics. According to the dynamical systems the-
ory, the time at which the error reaches its saturation level 
is specified as the predictability limit. However, in prac-
tice, considering that the saturation level of error growth 
is not constant, but is subject to small fluctuations (see 
Figs. 9, 10) when a relatively small number of data points 
is used to estimate the NLLE, the predictability limit in 
this study is defined as the time at which the error reaches 
95 % of its saturation value, in order to reduce the effect 
of error fluctuations. The saturation value is obtained by 
taking the average of the mean error growth after the error 
almost stops increasing (i.e., the error growth rate close 
to 0), following the work of Li and Ding (2011). Accord-
ingly, we can quantitatively determine the predictabil-
ity limit based on the nonlinear error evolution curve, as 
shown in Fig. 1.

4 � Spatial distributions of the limit of decadal 
predictability

This section focuses on investigating the spatial distribu-
tions of the limit of decadal predictability of the SST and 
SLP fields. To extract the decadal components of the SST 
and SLP, the climatological mean annual cycle and linear 
trend were removed from the monthly SST and SLP data 
at each grid point, leaving the anomalies, which were then 
passed through a 9-year low-pass Gaussian filter. The sub-
traction of the linear trend is expected to reduce effects due 
to global warming. In this way, the annual cycle, interan-
nual, and secular trend components are removed from the 
monthly data, leaving the (mostly) decadal anomalies. 
Next, we explored the spatial distributions of the predict-
ability limit of the filtered SST and SLP fields using the 
NLLE method.

Figure  2a shows the spatial distribution of the predict-
ability limit of the 9-year low-pass filtered SST based on 
the ERSST dataset. The limit of decadal predictability of 
the SST ranges from about 4 to 12 years, largely depending 
on the location. It is relatively high in five main regions: 
the North Atlantic, North Pacific, Southern Ocean, tropi-
cal Indian Ocean, and western North Pacific. The limit of 
decadal predictability at most locations in these regions 
exceeds 7 years. In contrast, in the tropical central‒eastern 
Pacific, where the climate signal is dominated by interan-
nual variability associated with ENSO, the predictability 
limit of the 9-year low-pass filtered SST is relatively low 
(4‒6 years). Overall, the zonal mean limit of decadal pre-
dictability of the SST is higher in the extratropics than in 
the tropics (Fig.  2b), which is exactly the opposite of the 
zonal mean limit of monthly to interannual SST predict-
ability (Li and Ding 2013).

The spatial distribution of the limit of decadal predict-
ability of SST is consistent with that of the intensity of 
decadal SST variability (as represented by the ratio of the 
9-year low-pass filtered variance to the total variance of 
the annual mean SST time series, shown as a percentage 
in Fig.  3a). The regions where decadal SST variability is 
relatively strong (for example, the North Atlantic, North 
Pacific, Southern Ocean, tropical Indian Ocean, and west-
ern North Pacific) have a relatively high limit of decadal 
predictability; in contrast, the regions where decadal SST 
variability is relatively weak (for example, the tropical cen-
tral–eastern Pacific) have a relatively low limit of decadal 
predictability. Both distributions have a spatial correlation 
of 0.67 (significant at the 0.001 level), indicating that the 
predictability limit of decadal SST variability is closely 
related to its intensity.

The prominent decadal climate variability in the North 
Atlantic and North Pacific has been extensively docu-
mented in the literature (e.g., Schlesinger and Ramankutty 
1994; Mantua et al. 1997; Zhang et al. 1997; Delworth and 
Mann 2000). In contrast, few studies have examined the 
decadal variability of the Southern and Indian oceans. How-
ever, there is observational evidence of marked decadal and 
multidecadal variations in the Southern and Indian oceans 
(Yuan and Yonekura 2011; Nidheesh et al. 2012; O’Kanea 
et  al. 2013; Han et  al. 2014). In general, our results con-
firm these previous findings, and additionally suggest that 
regions with a large decadal variability tend to have a rela-
tively high limit of decadal predictability. A similar phe-
nomenon also occurs over interannual timescales. Kirtman 
and Schopf (1998) reported that, during decades when the 
amplitude of the interannual variability of ENSO is large, 
the forecast skill of ENSO is relatively high and the pre-
dictability limit of ENSO is relatively long. Furthermore, 
Tang et al. (2005) explicitly built a mathematical relation-
ship between ENSO variability and its predictability.

The distribution of the limit of decadal predictability 
of the Kaplan SST (Fig. 2c) is qualitatively similar to that 
from ERSST. However, in contrast to ERSST, the Kaplan 
SST shows relatively lower values of the limit of decadal 
predictability over most of the global oceans. A possi-
ble explanation for this difference may be that the Kaplan 
SST exhibits a weaker intensity of decadal variability over 
most of the global oceans compared with the ERSST data 
(Fig. 3b).

The above analysis indicates that the North Atlantic, 
Southern Ocean, and North Pacific are three regions of 
high decadal SST predictability, and this is consistent with 
the findings of previous studies (Boer 2000, 2004; Pohl-
mann et al. 2004; Latif et al. 2006). However, the present 
results indicate that in addition to these three regions, the 
tropical Indian Ocean and western Pacific (i.e., the Indo-
western Pacific) are also regions of high predictability, and 
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this was not noted by these previous studies. In contrast, 
Boer (2000) reported that there is a high predictability 
over the tropical Pacific for the decadal means of surface 
air temperature (SAT). The different results obtained in the 
present study and by Boer (2000) may be due to the dif-
ference in SST and SAT used in respective studies. Jaswal 
et  al. (2012) reported that variations in annual mean SST 
and SAT are not entirely consistent over some local oceanic 
regions (such as the Bay of Bengal) due to a less thermal 
adjustment between the upper layers of ocean and lowest 
atmosphere there.

In terms of seasonal forecasting experience, the persis-
tence of decadal SST variability can offer some degree of 
decadal predictability. Generally speaking, a long persis-
tence is favorable for a high predictability. Therefore, we 
further examine the spatial distribution of the persistence 
of the 5-year mean SST time series, with the aim of test-
ing the robustness of the SST predictability results shown 

above. We can see that autocorrelations in the tropical 
Pacific drop below the 95 % significance level at a lag time 
of only 5  years, while there are significant autocorrela-
tions up to a lag of 10 years in the North Atlantic, South-
ern Ocean, North Pacific, and Indo-western Pacific (Fig. 4). 
Autocorrelations of the 5-year mean SST averaged over 
the Indo-western Pacific (15°S–25°N, 40°–140°E), North 
Atlantic (20°–65°N, 90°–0°W), North Pacific (20°–60°N, 
120°E–120°W), Southern Ocean (65°–40°S, 0°–360°E), 
and tropical Pacific (5°S–5°N, 180°–85°W) show similar 
results (Fig.  5). These persistence results suggest that the 
Indo-western Pacific tends to be more predictable than the 
tropical Pacific for decadal SST variability, and this is con-
sistent with the predictability results shown above. This 
consistency adds robustness to the results obtained in the 
present study.

Figure  6a shows the spatial distribution of the predict-
ability limit of the 9-year low-pass filtered SLP field. We 

Fig. 2   a Spatial distribution of 
the predictability limit (Tp, in 
years) of the 9-year low-pass 
filtered SST and b its zonal 
mean profile based on the 
ERSST dataset. c, d As (a, b), 
respectively, but based on the 
Kaplan SST dataset
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can see that the distributions of the predictability limit of the 
9-year low-pass filtered SLP and SST fields are not entirely 
consistent. There is a relatively large limit of decadal pre-
dictability of the SLP over the Antarctic, North Pacific, 
tropical Indian Ocean, and subtropical North Atlantic 
(>6 years), which is similar to the situation for SST. How-
ever, the predictability limit of the 9-year low-pass filtered 
SLP field is relatively low (4‒7 years) in the North Atlan-
tic poleward of 20°N, and this differs to the SST field. In 
addition, note that a high decadal predictability for SLP 
also occurs over the land regions of Africa, India, and South 
America. Boer (2000) reported that over interannual and 
longer timescales, there may be some predictability over 
certain land areas induced by that over the oceans. Autocor-
relations of the 5-year mean SLP time series (Fig. 7) show a 
relatively long persistence over the Antarctic, North Pacific, 
subtropical North Atlantic, and some land regions of Africa, 
India, and South America, which generally closely follows 
the distribution of the predictability limit in Fig. 6a.

Similar to the SST field, the predictability limit of dec-
adal SLP variability was also found to be related to its 
intensity over most global regions (Fig.  6b). The regions 
where the decadal SLP variability is strong tend to have 
a large predictability limit, and vice versa. However, it 
should be noted that some regions, such as the central‒
eastern equatorial Pacific, show a relatively strong decadal 
SLP variability, but these regions have a small predict-
ability limit and a relatively short persistence. The reasons 
responsible for this inconsistency in these regions remain 
unexplained. We speculate that unlike most other regions 
(such as the Antarctic and North Pacific) where the high 
decadal SLP variability is closely related to fluctuations 
in slowly varying boundary forcing from the underlying 
SST, the relatively strong decadal SLP variability over 
the central‒eastern equatorial Pacific is less related to the 
underlying SST (see Fig.  8), thereby possibly causing a 
relatively low predictability in this region (as discussed 
below). It indicates that the relationship between decadal 
SLP variability and predictability may be different for dif-
ferent regions, presumably depending on the sources of 
decadal SLP variability there; further research is necessary 
in this regard.

The above results focus on investigating the spatial dis-
tributions of the limit of decadal predictability of the SST 
and SLP fields. As observational data contain the compo-
nents of both oceanic or atmospheric internal dynamics 
and external forcings, and it is difficult to separate these 
components using the NLLE method, little is known of 
the physical processes responsible for spatial differences 
in SST and SLP predictability. However, we can still gain 
some knowledge on the related physical processes from 
the distributions of the limit of decadal predictability of the 
SST and SLP fields. For example, there is no consensus on 
the physical mechanisms that are responsible for atmos-
pheric circulation variability over decadal timescales (Liu 
2012). There is evidence that much of decadal atmospheric 
circulation variability arises from internal atmospheric 
processes (Hasselmann 1976; Yeh and Kirtman 2004, 
2006). On the other hand, it has long been recognized that 
decadal atmospheric circulation variability is related to 
fluctuations in slowly varying boundary conditions, such 
as SST, sea ice, soil moisture, and snow cover at the sur-
face (Watanabe and Nitta 1999; Bojariu and Gimeno 2003; 
Yang et al. 2007; Yuan and Yonekura 2011). If a large part 
of the decadal atmospheric circulation variability arises 
from internal atmospheric processes, it is reasonable to 
speculate that the predictability is limited to some degree 
by inherently unpredictable chaotic fluctuations in the 
atmosphere, and therefore has a relatively low limit on 
decadal timescales. According to our results (described 
above), decadal SST variability has a high predictability 
limit, but decadal SLP variability shows low predictability 

Fig. 3   a The 9-year low-pass filtered variance as a percentage of 
the total variance of the annual mean SST time series based on the 
ERSST dataset. b As (a), but based on the Kaplan SST dataset
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in the North Atlantic poleward of 20°N, possibly indicat-
ing that decadal SLP variability there is largely governed 
by internal atmospheric processes and is less related to the 
underlying SST. In contrast, there exists a large limit of 
decadal predictability for both SST and SLP in the North 
Pacific and high latitudes of the Southern Hemisphere, 
possibly indicating close coupling between SST and SLP 
there on decadal timescales.

By examining the correlations of the 5-year mean SST 
time series with the 5-year mean SLP time series over the 
oceans (Fig. 8), we find that significant correlation regions 
are mainly located in the North Pacific, subtropical central 
eastern North Pacific, subtropical North Atlantic, and high 

latitudes of the Southern Hemisphere, generally consistent 
with a relatively high SLP predictability in these regions. 
In contrast, there are only weak correlations in the equato-
rial Pacific and most regions of the North Atlantic poleward 
of 20°N, which also corresponds well with a relatively low 
SLP predictability there. These results support our interpre-
tation of the distribution of the limit of decadal predictabil-
ity of the SLP field.

In other land regions, including Africa, India, and 
South America, we speculate that decadal variability in 
the atmospheric circulation might also be associated with 
decadal variability in the underlying boundary conditions, 
which may lead to the relatively high limit of decadal 

Fig. 4   Spatial distributions 
of the a 5-year, b 10-year, c 
15-year, and d 20-year lag auto-
correlations of the 5-year mean 
SST time series based on the 
ERSST dataset. In a–d, areas 
with correlations significant at 
the 95 % level are shaded

Fig. 5   Autocorrelations of 
the 5-year mean SST averaged 
over the Indo-western Pacific 
(15°S–25°N, 40°–140°E), North 
Atlantic (20°–65°N, 90°–0°W), 
North Pacific (20°–60°N, 
120°E–120°W), Southern 
Ocean (65°–40°S, 0°–360°E), 
and tropical Pacific (5°S–5°N, 
180°–85°W) as a function of lag 
time. The horizontal dashed line 
indicates the 95 % significance 
level
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predictability in SLP. Further study is required to verify 
this speculation and to provide a detailed understanding of 
the influence of the interactions between the atmosphere, 
ocean, and land surface on decadal predictability of vari-
ability in the atmospheric circulation.

5 � Decadal predictability of major climate modes

As the NLLE method allows us to determine the predicta-
bility limit of decadal SST and SLP variability over a small 
local region, or for a single grid point, from observational 
time series, it also enables an estimate of the decadal pre-
dictability of major climate modes based on their respective 
indices. In this section, we will attempt to estimate the limit 
of decadal predictability of several major climate modes, 
including the PDO, AMO, NAM, and SAM.

Figure  9a and b shows the mean error growth of the 
9-year low-pass filtered PDO and AMO indices, as obtained 

using the NLLE method. The mean errors of both the PDO 
and AMO initially increase quickly over about 5  years. 
Subsequently, the growth of errors slows down and finally 
reaches saturation. Ding et  al. (2010, 2011) reported that 
this phenomenon of different phases of error growth also 
occurs in the case of the ISO. They suggested that the ini-
tial conditions may play an important role in determining 
the rapid growth of the mean error of the ISO in the early 
phase; after about 2 weeks, when the initial conditions have 
no remaining impact on the error growth, the error growth 
of the ISO appears to be more strongly influenced by com-
plex nonlinear interactions between the ISO and external 
forcings (e.g., the slowly varying boundary conditions 
including SST, soil moisture, etc.). If this also applies to the 
error growth of the PDO and AMO, as shown above, then 
we can conclude that the initial conditions related to the 
PDO and AMO may provide their predictability for 5 years 
or so, after which natural internal and external forcings for 
decadal variability (e.g., changes in the thermohaline cir-
culation, solar variability, volcano activity, and aerosol 
concentrations) can extend their predictability to a longer 
lead time. This so-called initial-value predictability limit 
of about 5 years for decadal climate predictions is slightly 
less than that (of about 7  years) obtained by Branstator 
and Teng (2010) based on the Community Climate System 
Model, version 3 (CCSM3) ensemble experiments.

The mean errors of both the PDO and AMO eventually 
reach saturation (Fig. 9a, b), at which point the prediction 
becomes meaningless. If the predictability limit is defined 
as the time at which the error reaches 95 % of its satura-
tion level, the predictability limits of the 9-year low-pass 
filtered indices of the PDO and AMO are 9 and 11 years, 
respectively. This result indicates that the predictability 
limit of the AMO is higher than that of the PDO. From 
autocorrelations of the 5-year mean PDO and AMO indices 
(not shown), the persistence of the AMO is also longer than 
that of the PDO. These results indicate that the AMO tends 
to be more predictable than the PDO, and this is consist-
ent with the results of previous observational and modeling 
studies (Kim et al. 2012; van Oldenborgh et al. 2012). Liu 
(2012) pointed out that, unlike the Pacific, where decadal 
variability occurs largely in the upper-ocean wind-driven 
circulation, much of the decadal variability in the Atlan-
tic is often thought to be largely due to an active Atlantic 
meridional overturning circulation (AMOC). Msadek et al. 
(2010) reported that the AMOC tends to be a highly pre-
dictable component of the ocean state, and may be predict-
able for up to 20 years. Considering that the AMOC plays 
an important role in driving the AMO decadal SST varia-
tions, the highly predictable AMOC may also bring some 
predictability to the AMO.

The preceding analysis suggests that the PDO and 
AMO are predictable out to 10 years or longer, which has 

Fig. 6   a Spatial distribution of the predictability limit (Tp, in years) 
of the 9-year low-pass filtered SLP based on the HadSLP dataset.  
b Percentage of the 9-year low-pass filtered variance to total variance 
of the annual mean SLP time series
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implications for decadal predictions of surface tempera-
tures and precipitation across North America and Eurasia. 
Whether major modes of atmospheric variability, such as 
the NAM and SAM, show similar decadal predictability 
remains an open question. Numerous studies have exam-
ined the predictability of the annular modes; however, most 
of these studies focus on the impact of slowly evolving 
boundary conditions (e.g., changes in the stratospheric flow, 

mid-high latitude sea ice and SST anomalies, and ENSO) 
on the amplitude of the NAM or the SAM (e.g., Zhou and 
Yu 2004; Mukougawa et  al. 2009; Lim et  al. 2013). The 
predictability limit of the NAM and SAM over decadal 
timescales is less clear. Figure 10a and b shows the mean 
error growth of the 9-year low-pass filtered NAM and SAM 
indices, respectively. The error growth of the SAM displays 
two distinct phases: a first fast-growth phase followed by a 
slow-growth phase, similar to the behavior of the PDO and 
AMO. In contrast, the error of the NAM grows very rapidly 
and reaches saturation within a few years. For the NAM, 
the fast-growth phase of the errors is evident, but the slow-
growth phase is absent. We determined the predictability 
limits of the 9-year low-pass filtered NAM and SAM indi-
ces to be around 4 and 9 years, respectively. This result indi-
cates that the predictability limit of the SAM is much higher 
than that of the NAM, and is comparable with the limit of 
the PDO obtained above. The relatively higher decadal pre-
dictability for the SAM, and the relatively lower decadal 
predictability for the NAM, are consistent with the distribu-
tion of the predictability limit of the 9-year low-pass filtered 
SLP field (Fig. 6a), which shows that decadal SLP variabil-
ity has a higher predictability limit over the Antarctic, but 
has a relatively low predictability limit over the Arctic. As 
discussed in Sect.  4, it is very likely that decadal predict-
ability of the NAM mainly arises from internal atmospheric 
processes, while the coupling between the SAM and subpo-
lar SST contributes largely to the predictability of the SAM.

Fig. 7   As Fig. 4, but for spatial 
distributions of the a 5-year, 
b 10-year, c 15-year, and d 
20-year lag autocorrelations of 
the 5-year mean SLP time series 
based on the HadSLP dataset

Fig. 8   Correlations between the 5-year mean SST time series based 
on the ERSST dataset and the 5-year mean SLP time series based on 
the HadSLP dataset over the oceans. Areas with correlations signifi-
cant at the 95 % level are shaded
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6 � Data requirements and predictability due 
to filtering

The NLLE method estimates the atmospheric and oce-
anic predictability by searching for the LDA from the 
observational time series. However, Boer (2000) noted 
that the analog approach tends to suffer from a lack of 
sufficiently close initial states in both the real and mod-
eled systems. Lorenz (1969) reported that a sufficiently 
long time series is required when using historical ana-
logs to study atmospheric predictability, and it is almost 
impossible to find good natural analogs within current 
libraries of historical atmospheric data over large regions 
such as the Northern Hemisphere. However, it should be 
noted that the LDA is searched for from the observational 
time series for a small local region or a single grid point, 
for which the small number of spatial degrees of freedom 
makes it possible to find good local analogs within cur-
rent libraries of historical atmospheric or oceanic data 

that allow an ensemble average (Ding et al. 2011; Li and 
Ding 2011).

The time series of the SST and SLP fields at one 
grid point used in the present study includes about 
12 ×  156 =  1872 data points. To examine whether this 
number of data points is sufficient to find good local ana-
logs for decadal variability, we examined the dependence 
of the estimated decadal predictability limit on the number 
of data points using a longer record of the reconstructed 
monthly SLP field from 1659 to 1999 over the eastern 
North Atlantic and Europe (Luterbacher et  al. 2002). The 
number of data points available for the analogs of the 
reconstructed SLP was 12 × 341 = 4092. Figure 11 shows 
the estimated predictability limit of the 9-year low-pass fil-
tered reconstructed SLP at the grid point 40°N, 160°W as 
a function of the number of data points. The limit shows 
a gradual decrease with decreasing number of data points 
when the number of data points is greater than 12 × 101. 
In contrast, when the number of data points is less than 
12 ×  101, the limit shows a rapid decrease with decreas-
ing number of data points. This result might be expected, 

Fig. 9   Mean error growth of the 9-year low-pass filtered a PDO and 
b AMO indices, obtained using the NLLE method. The dashed line 
represents the 95 % level of the saturation value obtained by taking 
the average of the mean error growth after 15 years

Fig. 10   As Fig. 9, but for mean error growth of the 9-year low-pass 
filtered a NAM and b SAM indices
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considering that the initial error will become larger 
(because good local analogs would be more difficult to be 
found) for a smaller number of data points (not shown). It 
is very likely that the initial error shows a rapid increase 
with a gradual decrease in the number of data points when 
the number of data points is less than 12 × 101. The esti-
mated predictability limit decreases by approximately 
12  % when using 1872 data points compared with the 
limit obtained using 4092 data points. Similar results were 
obtained at other grid points. These results demonstrate that 
although the approximately 1872 data points used in the 
present study tend to underestimate the predictability limit 
to some extent, such an underestimation is relatively slight, 
indicating that this number of data points is just sufficient 
to find good local analogs for decadal variability. Conse-
quently, the predictability limits of decadal SST and SLP 
variability, as obtained in the present study, are meaningful.

We will now consider another important question con-
cerning the influence of temporal filtering on the estima-
tion of decadal predictability. Following on from the above 
analysis, we applied a 9-year low-pass filter to isolate the 
decadal signals of the SST and SLP fields and then esti-
mated their predictability using the NLLE method. It 
should be noted that the use of temporal filtering tends 
to inflate the estimation of decadal predictability, mainly 
because the filtered value for the present year contains 
information from both past and future years. As the filtered 
value contains future information, it tends to enhance the 
forecast skill as a result of the propagation of observed 
information into the forecast data (Seo et al. 2009). More-
over, those predictability limits estimated based on the 
9-year low-pass filtered SST and SLP fields are difficult to 
attain in real time because the temporal filtering has only 

limited use in real-time predictions due to its requirement 
for information beyond the end of the time series (Wheeler 
and Hendon 2004).

Following Ding et  al. (2010, 2011), we applied the 
Monte Carlo method to test how much predictability is 
derived from the temporal filtering itself. First, we took 
the discrete Fourier transform (DFT) of the 9-year low-
pass filtered PDO and AMO indices, and generated random 
numbers that give the same power at each wavenumber and 
frequency as the 9-year low-pass filtered PDO and AMO 
indices. Then, we computed the discrete inverse Fourier 
transform over the wavenumber–frequency band of the 
PDO and AMO to obtain the filtered noise characterized by 
the same spectrum as the real PDO and AMO. Finally, we 
applied the NLLE method to a time series from the filtered 
noise and tested its predictability. The above procedure was 
repeated 1000 times, yielding 1000 values of the predict-
ability limit of filtered noise with the same spectral char-
acteristics as the PDO and AMO. A brief description of the 
above algorithm is given in “Appendix 2”.

Figure 12a, b shows the probability distributions of these 
values of the predictability limit of filtered noise with the 
same spectral characteristics as the PDO and AMO, respec-
tively. In both cases, the predictability limits of filtered 
noise with a maximum probability occur when the limit is 
about 3 years. Accordingly, we conclude that the temporal 
filtering itself may bring a predictability of about 3 years. 
This predictability due to the filtering is much less than 
the 10-year predictability of the PDO and AMO obtained 
above, indicating that the estimated predictability of the 
PDO and AMO mainly arises from the real signal of the 
physical processes responsible for the PDO and AMO dec-
adal variability, although the filtering tends to extend the 
predictability to some extent. In contrast, if climate modes 
such as the NAM have a decadal predictability close to, or 
slightly greater than, the approximate 3-year predictability 
of background noise caused by the temporal filtering, it is 
very likely that a large part of the estimated predictabil-
ity of these climate modes is artificial, and arises mainly 
from the filtering itself. It seems that these climate modes 
are less predictable over decadal timescales. Most of these 
results are also applicable to local regions of the SLP and 
SST fields.

7 � Summary and discussion

This study aimed to investigate the limit of decadal pre-
dictability using the NLLE method, which can provide 
a quantitative estimate of atmospheric and oceanic pre-
dictability based on observational data. As the limit of 
decadal predictability varies widely with region, we first 
examined the spatial distributions of the limit of decadal 

Fig. 11   Estimated predictability limit of the 9-year low-pass filtered 
reconstructed SLP at the grid point 30°N, 10°E as a function of the 
number of data points. Dashed line represents the predictability limit 
obtained using 101 × 12 data points
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predictability of the 9-year low-pass filtered SST and SLP 
fields. The limit of decadal predictability of the SST field 
is relatively large in the North Atlantic, North Pacific, 
Southern Ocean, and Indo-western Pacific, exceeding 
7  years at most locations in these regions. In contrast, 
the limit of the SST field is relatively small in the tropi-
cal central‒eastern Pacific (4‒6  years). Similar to the 
SST field, the SLP field has a relatively large limit of 
decadal predictability over the Antarctic, North Pacific, 
and tropical Indian Ocean (>6 years). However, the limit 
of the SLP field is relatively low in the North Atlantic 
(4–7 years), and this differs from the SST field. In addi-
tion, a relatively large limit of decadal predictability of 
the SLP field also occurs over the land regions of Africa, 
India, and South America. Distributions of the limit of 
decadal predictability of both the SST and SLP fields are 
almost consistent with those of the intensity and persis-
tence of the decadal SST and SLP variability. The regions 
where the decadal SST (SLP) variability is strong and has 

a long persistence tend to have a large limit of decadal 
SST (SLP) predictability, and vice versa.

We used the NLLE method to perform a quantitative 
analysis of the limit of decadal predictability of several 
major climate modes, including the PDO, AMO, NAM, 
and SAM. The limit of decadal predictability of the PDO 
was found to be about 9 years, which is slightly less than 
that of the AMO (about 11 years). As the major mode of 
atmospheric circulation, the SAM has a limit of decadal 
predictability of about 9 years, which is much higher than 
that of the NAM (about 4 years). Our investigation of the 
mean error growth of these climate modes revealed an ini-
tial-value predictability limit of about 5 years for decadal 
prediction.

The above findings lead us to conclude that decadal SST 
or SLP variability in some regions may be predictable for 
up to 10 years. This result is encouraging for decadal pre-
diction. However, the use of temporal filtering to extract 
decadal-scale variability in the present study tends to over-
estimate the decadal predictability. The limit of decadal 
predictability based on the time-filtered data, as obtained in 
the present study, can be regarded as the limit of potential 
decadal predictability. For real-time decadal prediction, the 
application of temporal filtering is restricted and the limit 
of decadal predictability could be lower than the above 
estimate. Figure  13 shows the mean error growth of the 
5-year mean PDO index, which avoids a temporal filtering 
to extract the decadal signals. The limit of real-time dec-
adal predictability based on this 5-year mean PDO index 
is higher than 5  years but lower than 10  years, presuma-
bly less than the potential predictability obtained from the 
9-year low-pass filtered PDO index (about 9 years). Given 
the relatively short observational records of the PDO index, 
this comparison between real-time and potential decadal 

Fig. 12   Probability distribution of the predictability limits based on 
filtered background noise, which has the same spectral characteristics 
as the 9-year low-pass filtered a PDO and b AMO indices

Fig. 13   Mean error growth of the 5-year mean PDO index, obtained 
using the NLLE method. The dashed line represents the 95 % level of 
the saturation value obtained by taking the average of the mean error 
growth after 10 years
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predictability would inevitably include large uncertainties. 
Further study is required to assess the differences in real-
time and potential decadal predictability by employing the 
SST and SLP data from a longer period of observations or 
a long-term simulation of a more realistic model of decadal 
variability.

Although the limit of decadal predictability may be 
overestimated in the present study, the spatial variability of 
the limit of decadal predictability of the SST and SLP fields 
could be realistic. Decadal prediction could be helped by an 
improved understanding of the spatial variability of decadal 
predictability of the SST and SLP fields. As it is difficult 
for the NLLE method to isolate the individual influence of 
various physical processes on decadal predictability from 
the observed SST and SLP data, little is known of the phys-
ical processes responsible for spatial differences in the SST 
and SLP decadal predictability. Further study will be neces-
sary to examine the physical processes that influence local 
SST and SLP decadal predictability in different regions.
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Appendix 1: An algorithm for NLLE estimation 
from observational data

If we obtain the experimental data of a single variable 
x of an n-dimensional chaotic system, or observe the 
atmospheric or oceanic data of variable x at one point of 
n spatial grid points (e.g., the time series of x is given by 
{x(ti), i = 0, 1, 2, . . . ,m− 1} where m represents the length 
of the time series), an algorithm that allows an estimation 
of the mean NLLE from the experimental or observational 
time series of variable x is as follows.

Step 1. Taking x(t0) as the reference point at time t0, 
we first seek the LDA x(tk) of the reference point from the 
raw series. Two distances (i.e., the initial distance between 
two points and the evolutionary distance between their 
trajectories within a short initial period) are used to meas-
ure the degree of similarity between the points. All points 
x(tj)(

∣

∣tj − t0
∣

∣ > tD), where tD is the time taken for autocor-
relations of variable x to drop to around 0.0, ensuring that 
a good analog pair is not merely due to persistence) in the 
raw series form a set S. The initial distance di between the 
points x(t0) and x(tj) is given by

(8)di =
∣

∣x(t0)− x(tj)
∣

∣.

We assume that the evolutions of the two points are analo-
gous over a very short time τ, which is referred to as the 
initial evolutionary interval, if they are analogous at the ini-
tial time. The choice of the initial evolutionary interval τ 
depends on the persistence of variable x; if the persistence 
is low, the time over which two initially close points remain 
analogous is relatively short. The time taken for autocor-
relations of variable x to drop to 0.9 can be regarded as a 
rough estimate of the initial evolutionary interval τ. A high 
value (0.9) of autocorrelation is chosen to ensure a short 
initial evolutionary interval (the results were found to be 
insensitive to the selected value). Within the initial evo-
lutionary interval τ (τ =  KΔ), where Δ is the sampling 
interval of the time series (i.e., Δ = ti − ti−1) and K is the 
number of sampling intervals over the initial evolution-
ary interval), the evolutionary distance de between the two 
points x(t0) and x(tj) is given by:

Here, di is the amount of the initial separation between the 
two points x(t0) and x(tj), while de is the evolutionary dis-
tance between their trajectories over the initial evolutionary 
interval. The total distance dt, considering not only the ini-
tial distance but also the evolutionary distance, is found by 
adding di and de:

If dt is very small, it is highly likely that the points x(t0) 
and x(tj) are LDA points at the initial time. Of course, this 
approach is unlikely to exclude the possibility that only 
the variable x and its most relevant variables remain close, 
whereas other variables evolve very differently over time, 
especially for high-dimensional dynamical systems. There-
fore, the analogs based on variable x are only local analogs, 
and they cannot simply be considered as global analogs. 
The constraint of the total distance dt, which contains both 
initial information and evolutionary information over an 
initial evolutionary, allows us to exclude a large portion of 
all points with large initial distances, thereby helping us to 
find a truly local analog for the reference point.

For every point x(tj) in the set S, the value of dt can be 
determined. The nearest neighbor (LDA) x(tk) of the refer-
ence point x(t0) can be chosen from the set S only if dt is the 
minimum. Then, the initial distance between x(t0) and x(tk) 
is denoted as follows:

Step 2. At time τi = i × Δ (i = 1, 2, 3, …, M, where M 
is the total number of evolutionary steps), x(t0) will have 
evolved to x(t0 + τi) along the reference trajectory, and s(tk) 

(9)de =

√

√

√

√

1

K + 1

K
∑

i=0

[

x(ti)− x(tj+i)
]2
.

(10)dt = di + de.

(11)L1(t0) = |x(t0)− x(tk)|.
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will have evolved into x(tk + τi) along the analogous trajec-
tory. The initial difference L1(τ0) will have become:

The growth rate of the initial error during the evolutionary 
interval (τi) is:

With i gradually increasing, we can obtain the variation of 
ξ1(τi) as a function of the evolution time τi (i =  1, 2, 3, …, 
M).

Step 3. Taking x(t1) as the reference state and evolution 
time τi =  i × Δ (i = 1, 2, 3, …, M), and repeating Steps 
1 and 2 above, we obtain the error growth rate ξ2(τi) as a 
function of the evolution time τi:

where L2 = (0) is the initial distance between the reference 
point x(t1) and its LDA, and L2 =  (τi) is the evolution of 
L2 = (0) with time τi.

Step 4. The above procedure is repeated until the 
trajectory reaches the last reference point x(tm−M−1), 
and we have error growth rates at all reference points 
{x(t0), x(t1), · · · · · · , x(tm−M−1)} given by:

where N = m − M is the total number of reference points 
on the reference trajectory, τi =  i × Δ (i =  1, 2, 3, …, 
M) is the evolution time, Lk(0) is the initial distance 
between the reference point x(tk) and its LDA, and Lk(τi) 
is the evolution of Lk(0) with the time τi. It follows that 
the average of error growth rates at all reference points 

is: ξ(τi) =
1

N

∑

N

k=1
ξk(τi) =

1

N

∑

N

k=1

[

1

τi
ln

Lk(τi)
Lk(0)

]

=
1

τi

ln

[

N

√

L1(τi)
L1(0)

L2(τi)
L2(0)

· · ·
LN (τi)
LN (0)

]

. That is:

Step 5. Observing that the right-hand-side of Eq. (14) is 
the geometric mean of the relative growth of initial error 
(RGIE) of all reference points, we obtained the approxima-
tion of the mean RGIE:

By investigating the evolution of Φ(ti) with increasing τi, 
we can estimate the mean predictability limit of the vari-
able x.

(12)L1(τi) = |x(t0 + τi)− x(tk + τi)|.

(13)ξ1(τi) =
1

τi
ln

L1(τi)

L1(0)
, (i = 1, 2, 3, . . . ,M)

ξ2(τi) =
1

τi
ln

L2(τi)

L2(0)
,

ξk(τi) =
1

τi
ln

Lk(τi)

Lk(0)
, (k = 1, . . . ,N; i = 1, 2, 3, . . . ,M)

(14)exp
[

ξ(τi)τi
]

=
N

√

L1(τi)

L1(0)

L2(τi)

L2(0)
· · ·

LN (τi)

LN (0)
.

(15)Φ(τi) = exp
[

ξ(τi)τi
]

, (i = 1, 2, 3, . . . ,M).

Appendix 2: A Monte Carlo algorithm allowing 
for the estimation of the predictability caused 
by the temporal filtering itself

Given the time series xn (n =  1, 2, …, N), it was passed 
through a temporally low-pass filter. The low-pass filtered 
time series is denoted as sn (n = 1, 2, …, N). An algorithm 
obtained by applying the Monte Carlo method to test how 
much predictability is derived from the temporal filtering 
itself is as follows.

Step 1. For the time series sn (n = 1, 2, …, N), if N is 
even, the Fourier series coefficients can be obtained using a 
discrete Fourier transform (DFT):

If N is odd, cm is defined as above for m from 2 to 
(N + 1)/2.

Step 2. Based on the Fourier series coefficients obtained 
above, one forms the vector P of length (N  +  1)/2 as 
follows:

where Pk corresponds to the power level at the dominant 
frequencies of sn. Then, we generate random sequence Rk 
(k = 1, 2, …, (N + 1/2)) that gives the same power at each 
wavenumber and frequency as sn.

Step 3. We compute the discrete inverse Fourier 
transform of Rk to return the filtered noise sequence 
s′n(n = 1, 2, . . . ,N) characterized by the same spectrum as 
sn. Specifically, if M = (N + 1)/2 is even, the filtered noise 
sequence s′ of length N can be obtained using the discrete 
inverse Fourier transform of Rk:

c1 =

N
∑

n=1

sn

c2m−1 = −

N
∑

n=1

sn sin

[

(m− 1)(n− 1)2π

N

]

,
(

m = 2, . . . ,N
/

2
)

c2m−2 =

N
∑

n=1

sn cos

[

(m − 1)(n− 1)2π

N

]

,
(

m = 2, . . . ,N
/

2+ 1
)

P1 = |c1|

Pk =

√

c22k−2 + c22k−1,
(

k = 2, 3, . . . , (N + 1)
/

2
)

,

s
′
n = R1 + (−1)(n−1)

RM + 2

M/2
∑

m=2

R2m−2 cos
[(m− 1)(n− 1)2π ]

M

− 2

M/2
∑

m=2

R2m−1 sin
[(m− 1)(n− 1)2π ]

M
, (n = 1, . . . ,N)
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If M is odd:

Step 4. We apply the NLLE method to the filtered noise 
sequence s′n(n = 1, 2, . . . ,N) and determine its predictabil-
ity limit.

Step 5. The above procedure is repeated 1000 times, 
yielding 1000 values of the predictability limit of filtered 
noise with the same spectral characteristics as sn. By ana-
lyzing the probability distributions of these values of the 
predictability limit, we can estimate how much predictabil-
ity is derived from the temporal filtering itself.
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