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ABSTRACT
Accurate estimates of ‘true’ error variance between Numerical Weather Prediction (NWP) analyses and forecasts and the 
‘reality’ interpolated to a NWP model grid (Analysis and true Forecast Error Variance, hereafter AFEV) are critical for 
successful data assimilation and ensemble forecasting applications. Peña and Toth (2014, PT14) introduced a Statistical 
Analysis and Forecast Error estimation (hereafter called SAFE) algorithm for the unbiased estimation of AFEV. The 
method uses variances between NWP forecasts and analyses (i.e. ‘perceived’ forecast errors) and assumptions about the 
time evolution of true error variances. PT14 successfully tested SAFE for the estimation of area mean error variances. 
In the present study, SAFE is extended by mitigating the effects of increased sampling noise and by accounting for 
the spatiotemporal evolution of forecast error variances, both critical for gridpoint-based applications. The enhanced 
method is evaluated in a Simulated Nature, Observations, Data Assimilation, and Prediction Environment using a 
quasi-geostrophic model and an ensemble Kalman Filter (EnKF). SAFE estimates of true analysis error variance are 
within 6% of the actual values, as compared to 24–55% deviations in EnKF estimates. The spatial correlation between 
estimated and actual true error variances was also found high (above 0.9) and comparable with EnKF estimates, but 
much higher than NMC method estimates (0.63–0.78). Estimates of the other two SAFE parameters, the growth rate 
and decorrelation of analysis and forecast error variances are within 3% of the corresponding actual values.

Keywords: uncertainty of analysis, forecast verification, estimation method, data assimilation, ensemble forecasts

1. Introduction

Due to the chaotic nature of the atmosphere and to the pres-
ence of initial state and model related errors, despite continu-
al improvements in NWP techniques numerical forecasts will 
never be perfect (Lorenz, 1963; Kalnay, 2002; Li and Ding, 
2011). The accurate estimation of the variance between reality 
(interpolated onto the analysis/model grid) and the NWP anal-
ysis (i.e. true analysis error variance) or forecast states (true 
forecast error variance) is therefore critical for assessing the 
performance of analysis and forecast systems. In addition, the 
estimates of AFEV provide references for tuning initial ensem-
ble perturbations (Toth and Kalnay, 1993, 1997; Molteni et al., 
1996; Wei et al., 2008; Feng et al., 2014) and background error 
variances in data assimilation (DA) schemes (Fisher, 1996; Mi-
yoshi and Kadowaki, 2008), respectively.

As reviewed by Peña and Toth (2014, hereafter PT14), the 
quality of NWP analyses is often assessed by either of two ap-
proaches. The first evaluates the analysis against observations 
valid at the same time (Houtekamer et al., 2005; Whitaker  
et al., 2008). This approach is limited by (a) the small number of 

 observations, (b) many of them used in making the analysis and 
therefore not being independent and (c) instrument and represent-
ativeness errors (with respect to the analysis grid) present in the 
observations (Dee and Silva, 1999). The second approach assess-
es analysis uncertainty through the DA schemes used in creating 
the analysis fields. These type of errors estimate rely on the same 
assumptions as the DA schemes and therefore cannot be consid-
ered independent estimates. DA-based approaches are computa-
tionally very expensive and due to approximations they may lead 
to biased or inaccurate analysis error variance estimates.

Most often the quality of numerical forecasts is assessed using 
either verifying observations or analyses as a reference for truth 
(Houtekamer et al., 2005; Whitaker et al., 2008). Such compar-
isons will be affected by errors present in either data source, es-
pecially at shorter lead times where the observational or analysis 
errors may have a magnitude comparable to that of the forecast 
errors. True forecast error variances can also be  derived from 
methods primarily used to estimate background forecast error 
covariances in DA applications. The NMC  method (Parrish and 
Derber, 1992, named after the National Meteorological Center 
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area mean and gridpoint error variance estimates are discussed 
in Sections 4 and 5, respectively, while a summary and conclu-
sions are offered in Section 6.

2. Methodology

SAFE (PT14) uses a statistical model to describe the time mean 
evolution of measured variables (i.e. variances of perceived er-
rors and lagged forecast differences) as a function of unknown 
variables (i.e. AFEV). The model is built upon prior knowl-
edge regarding the evolution of (a) true forecast error variance, 
and (b) the correlation between true errors in a free forecast 
vs. in successive verifying analyses in a DA-forecast cycle, as 
a function of forecast lead time. The unknown parameters are 
estimated via minimising the fit of the statistical model to the 
measurements.

2.1. Decomposition of perceived error variances

As in any statistical minimisation problem, we seek to establish 
connections between measured and unknown variables. We de-
fine forecast lead time as t

i
 = i × Δt, where i is the number, and 

Δt (12 h in this paper) the length of DA cycles. Let F
i
 and F

i+l
 be 

two forecasts with lead time indices i and i + l (l × Δt lagged), 
respectively, both valid at the same time. The variance of the 
difference between lagged forecasts F

i
 and F

i+l
 can be written as:

where T is the true state of the system valid at the same veri-
fying time as the forecasts; and x

i
 = F

i
 − T and x

i+l
 = F

i+l
 − T 

are the true forecast errors at lead time indices i and i + l, re-
spectively. The parentheses in Equation (1) denote spatial and 
temporal averages. Following the law of sum of variances, the 
right-hand side of (1) can be expanded to:

where x
i
 and x

i+l
 are the magnitudes of x

i
 and x

i+l
 in a L

2
 norm; 

and ρ
i,i+l

 is the correlation between x
i
 and x

i+l
. In Equation (2), 

x
i
, x

i+l
 and ρ

i,i+l
 are all unknown quantities to be statistically 

estimated. With the choice of i = 0, PT14 estimates the error 
variance x

0
 in the analysis state F

0
 by comparing the measured 

perceived error variances with its statistically modelled values:
 

where the hat represents the modelled value and the prime means 
the unknown parameters to be estimated. Varying l in Equation 
(3) yields a series of relationships between the measured and 
unknown variables. However, with each additional equation, 
new unknown variables (x′

l
 and �′

l
 – simplified from �′

0,l
) are 

introduced beyond x′
0
. To eliminate some of the unknown pa-

rameters, additional relationships need to be introduced.

(1)
d2

i,i+l
=
(
�

i
− �

i+l

)2
= ((�

i
− �) −

(
�

i+l
− �)

)2
=
(
�

i
− �

i+l

)2
,

(2)d2

i,i+l
= x2

i
+ x2

i+l
− 2�

i,i+l
x

i
x

i+l
,

(3)d̂2

0,l
= x�2

0
+ x�2

l
− 2��

0,l
x�

0
x�

l
,

where it was developed, now called the National Centers for 
Environmental Prediction [NCEP]) uses differences between 
forecasts with different lead times all valid at the same time, 
as a surrogate for short-range forecast errors. Another approach 
uses the spread of ensemble forecast members (e.g. Evensen, 
1994, 2003; Houtekamer et al., 1995; Fisher, 2003; Wei et al., 
2010). Forecast error variance approximations with these meth-
ods critically depend on the choice of the lag between forecasts 
(NMC method) or of the initial ensemble perturbation variance, 
and therefore cannot provide impartial estimates.

PT14 introduced a Statistical Analysis and Forecast Error 
(SAFE) variance estimation method henceforth referred to as 
SAFE. SAFE uses perceived error (forecast minus verifying 
analysis) measurements and two assumptions to estimate AFEV. 
The first assumption is about the time evolution of the true fore-
cast error variance, while the second is related to the correlation 
between errors in analyses and forecasts valid at the same time 
as a function of lead time. Note that the two assumptions are in-
dependent of those used in DA schemes and therefore SAFE can 
be suitably applied to evaluate and compare the performance of 
different DA-forecast systems. In a simple model environment, 
PT14 showed that SAFE analysis and forecast error variance es-
timates are statistically indistinguishable from the actual values 
given the sampling noise in the perceived error measurements. 
In addition, PT14 applied SAFE for the estimation of hem-
ispheric mean error variances in forecasts from various NWP 
centres.

The present paper attempts to expand the study of PT14 in 
the following aspects: (1) To reduce the effect of sampling noise 
and improve accuracy, SAFE is upgraded with (a) a more suit-
able minimisation algorithm – the limited-memory Broyden–
Fletcher–Goldfarb–Shanno (L-BFGS) algorithm (Byrd et al., 
1995) in place of the Nelder–Mead Simplex method, and (b) 
additional measurements in the form of differences between 
forecasts valid at the same time (i.e. time-lagged forecast differ-
ences). (2) SAFE is applied and evaluated in a Simulated, Na-
ture, Observing, Data Assimilation, and Prediction (SNODAP) 
environment with a numerical model of intermediate complexi-
ty instead of the Lorenz toy model. Such an environment where 
the AFEV are exactly known offers an ideal setting for a rigor-
ous assessment of SAFE estimates. (3) Unlike the hemispher-
ic mean estimates in PT14, SAFE will be applied for spatially 
extended error variance estimation, meeting real-world DA and 
ensemble forecast application needs. (4) To assess the relative 
merits of different approaches, SAFE estimates will be com-
pared with error variance estimates from standard techniques 
such as ensemble Kalman filter (EnKF; e.g. Evensen, 1994, 
2003; Whitaker et al., 2008) and the NMC method (Parrish and 
Derber, 1992; Wang et al., 2014).

The paper is organised as follows. The error estimation meth-
odology and its enhancements are presented in Section 2. Sec-
tion 3 describes the experimental environment for the imple-
mentation and testing of the method. Experimental results for 
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2.2. Relationship between unknown parameters

To reduce the number of unknown parameters, PT14 assumed 
the time evolution of true forecast error variance follows 
well-established error growth patterns. As shown by Lorenz 
(1963), in the perfect model scenario, the initial, linear phase of 
error growth in chaotic systems follows an exponential curve:

with two independent parameters of the initial error variance x′2
0

 
and the exponential growth rate α′. To describe error growth in 
the presence of nonlinear saturation, Lorenz (1982) introduced 
the logistic error growth model:

where c = x�2
0
∕(S�

∞ − x�2
0
), and the saturation level S�

∞ is the only 
additional parameter introduced beyond the two exponential 
growth parameters of x′

0
 and α′. Over areas with significant 

model drift-related errors (e.g. the tropics as convection is gen-
erally poorly parameterised), a general error growth model can 
be introduced to describe the evolution of the total error vari-
ance, including a model drift-related component (see Section 
2.2.3 in Peña and Toth, 2014).

Considering the relationship between ρ
1
, ρ

2
, …, ρ

l
 in versions 

of Equation (3), PT14 notes that ρ
1
 measures how much the true 

first guess error x
1
 rotates to become the analysis error x

0
 as 

a consequence of observational information being ingested in 
one application of the DA scheme. Furthermore, PT14 postu-
lates that with each subsequent application of the DA scheme, 
the analysis error vector is successively rotated by ρ

1
 with re-

spect to a free forecast in which the error evolves unperturbed 
according to the dynamics of the system, yielding the following 
relationship between true analysis and true forecast errors, all 
valid at the same time:

Note that with increasing lead time, �′
l
 approaches zero as the 

true analysis and forecast error vectors become independent.

2.3. Cost function

2.3.1. Perceived errors. With the error growth and error 
decorrelation assumptions introduced above, the modelled 
temporal mean perceived error variance d̂2

0,l
 at lead time l can 

be expressed as:

where x′2
l

 is a function of the parameters of the selected error 
evolution model (Equation (4) or (5)). PT14 estimates the un-
known parameters (x

0
, α and ρ

1
) by solving the minimisation 

problem of the following cost function:

(4)x�2
l
= x�2

0
e−�

�
⋅tl

.

(5)x�2
l
= (S�

∞ ⋅ c)∕(e−�
�
⋅tl + c),

(6)𝜌�
l
= 𝜌�l

1
, 0 < 𝜌

1
< 1.

(7)d̂2

0,l
= x�2

0
+ x�2

l
− 2��l

1
x�

l
x�

0
,

(8)
J = max

(
||
||
d2

0,l
− d̂2

0,l

|
||
|
⋅ w−1

0,l

)

.

To measure the difference between the observed (d2

0,l
) and 

modelled (d̂2

0,l
) quantities (|•| denotes the absolute value), 

PT14 opts to use the L
∞
 norm that ensure a good fit over the 

entire range of l’s, rather than the more conventional L
2
 norm. 

This approach minimises the maximal value (function max(·)) 
of the fitting errors at any lead time within the fitting period. 
The weights w are proportional to the uncertainty in the sam-
ple-based estimates of d (see also Section 2.3.3). For stable 
statistical estimates, the number of fitting terms in Equation 
(8) is chosen to be well above the number of unknowns. Since 
the initial transitional behaviour of analysis errors (Trevisan 
and Legnani, 1995) may deviate from exponential growth, 
only perceived errors with l greater than or equal to 2 will 
be used in this paper (i.e. perceived errors in 24-h or longer 
forecasts).

2.3.2. Lagged forecast differences. SAFE estimates 
of the unknown parameters are negatively influenced by 
sampling error in the time mean of individual perceived error 
measurements. To reduce the influence of sampling error, in 
addition to perceived errors used in PT14, lagged forecast 
differences will also be measured and modelled. In particular, 
it is assumed that in a perfect model environment used in this 
study, the variance between two lagged forecasts amplifies 
with the same exponential growth rate as the true forecast error 
variance (Lorenz, 1982). For example, the growth of variance 
between forecasts lagged 24 h apart can be modelled like:

Since no new unknowns appear in Equation (9), the corre-
sponding fitting terms can be directly introduced into the cost 
function:

2.3.3. Weights. Uncertainty in the sample-based estimates 
of time mean perceived error, or lagged forecast difference 
variances grows with increasing variance in these quantities 
as a function of increasing lead time. Correspondingly, the 
weights on fitting errors between the observed and estimated 
quantities at longer lead times must be reduced. PT14 defined 
the weights w

i,i+l
 in Equation (10) as:

The sampling standard error of the mean (SEM) of perceived 
errors and forecast differences between lead time i and i + l is 
given as follows:

(9)d̂2

i,i+2
= d2

2,4
⋅ e�

�
t
i−2 , i ≥ 2.

(10)

J = max

(
||
||
d2

0,l
− d̂2

0,l

||
||
⋅ w−1

0,l
) + max(

||
||
d2

i,i+2
− d̂2

i,i+2

||
||
⋅ w

i,i+2−1

)

, (1)

l ≥ 2, i ≥ 2. (2)

(11)w
i,i+l

= SEM
i,i+l

∕
∑

i,i+l

SEM
i,i+l

.

(12)SEM
i,i+l

= sd
i,i+l

⋅ f ∕
√

N ,
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resolution (truncated at wavenumber 21) will be used both for 
simulating and predicting reality. The forcing in MM-QG is 
carefully chosen in the form of spatially varying but temporally 
stationary potential vorticity source terms so that the observed 
large-scale extratropical boreal winter climatology is reasona-
bly reproduced. MM-QG is well suited for this study as with its 
6144 total degrees of freedom it is complex enough to represent 
basic baroclinic processes critical to extratropical forecast error 
growth. The lack of convective processes, however, renders the 
model’s tropical circulation less realistic.

After discarding the first 500 days of integration started from 
an operational analysis field, geopotential height (GH) at 12-h 
intervals over a 90-day period is used to simulate reality. Sites 
for simulated observations are selected to mimic the geograph-
ical distribution of real-world traditional in situ observing net-
works (Fig. 1). Observations are simulated by adding Gaussian 
uncorrelated noise with a variance of 260, 80 and 30 m2 at the 
3 model levels (from top to bottom) to simulated reality. To 
assimilate the simulated observations, the EnKF scheme de-
scribed in Appendix A is used. Vertically correlated noise (see 
Appendix A) is superposed on the true state to produce an initial 
first guess. Analysis, 12-h first guess as well as 30-day forecasts 
are created twice a day with the same MM-QG model used to 
simulate reality. This, perfect model scenario ensures that all 
forecast error originates from initial condition (i.e. analysis), 
and not model-related errors. After the behaviour of the DA – 
forecast system asymptotes (30 days) following the introduc-
tion of an arbitrary initial first guess, a total of 180 consecutive 
cases are selected for experimental use in this study.

As reality is perfectly known, all components of the SNODAP 
can be perfectly diagnosed. This offers an opportunity to assess 
the quality of AFEV estimates produced by SAFE in a realistic 
setting using perceived error measurements by comparing such 
with actual error variances. Beyond such estimates simulating 
real-world applications, some components of SAFE will also be 
tested in an ‘ideal’ setting. Error growth curves, for example, 
can be fitted to actual error variances to ascertain the validity of 
some assumptions used in SAFE (see Section 5.2) – something 
that can only be accomplished in SNODAP experiments.

4. Spatial mean error variance estimates

In this section, the method described in Section 2 will be used 
and evaluated for the estimation of area mean forecast error 
variances. The estimates will be based on perceived error meas-
urements with the assumption of either exponential (limited to 
short-range error growth) or logistic error growth assumptions.

Compared to the method used in PT14, the version of the 
SAFE method proposed in Section 2 in this study is enhanced 
by the use of an additional, lagged forecast difference term in the 
cost function. The effect of this change on the accuracy of SAFE 
estimates based on short-range perceived error measurements 

where sd
i,i+l

 is the sample standard deviation of d2

i,i+l
 in Equa-

tion (1), N is the sample size. f = 
√

(1 + r
1
)(1 − r

1
)−1 is an ad-

justment factor accounting for serial correlation in the sample 
(Bence, 1995), and r

1
 is the lag-1 autocorrelation in the sample. 

Perceived error and lagged forecast difference terms in Equa-
tion (10) are given the same (unity) weight in the cost function.

2.3.4. Confidence interval. The SEM values can also 
be used to quantify confidence intervals for SAFE estimates. 
Assuming that the finite-sample mean of individual perceived 
error variance measurements follows a Gaussian distribution, 
the 95% confidence interval is defined by adding and subtracting 
1.96 times the SEM value to/from the best estimates. In 
realistic situations, only SEM for perceived errors and forecast 
differences can be computed. In the present idealistic SNODAP 
study, however, the individual true forecast error variance and 
analysis – forecast correlation values are also known. Therefore, 
confidence intervals for their time mean estimates can and will 
also be computed.

2.3.5. Minimisation. The minimisation of the cost 
function defined by Equation (10) is a nonlinear constrained 
optimisation problem. Since the Nelder–Mead simplex 
minimisation method (Lagarias et al., 1998) used in PT14 is 
sensitive to the choice of the first guess parameters, in this paper 
the L-BFGS algorithm (Byrd et al., 1995) will be used. This 
algorithm is designed for the solution of constrained nonlinear 
optimisation problems and can be easily ported across different 
computational platforms.

3. Experimental design

In this paper, the SAFE method, as described and enhanced in 
Section 2 will be tested and evaluated in an intermediate com-
plexity perfect model SNODAP environment. In a SNODAP, a 
numerical model integration (i.e. a ‘free’ forecast) is considered 
as reality. To focus on chaotically growing, and avoid model-re-
lated errors, the global quasi-geostrophic model of Marshall 
and Molteni (1993 – MM-QG) with a three-layer vertical pres-
sure coordinate system (200, 500, 800 hPa) and at T21 spectral 

Fig. 1. Distribution of simulated observations (hollow circle).



5SPATIALLy ExTENDED ESTIMATES OF ANALySIS AND SHORT-RANGE FORECAST ERROR VARIANCES

The estimated true error variance values also fall within the 
95% confidence interval of the actual true error variance values 
in the 1–5 days lead time fitting period. Larger deviations are 
observed at initial and 12-h lead time between the extrapolat-
ed estimated and the actual error variances, presumably due to 
the assumption that all initial errors grow exponentially. Note 
the significant, up to a factor of two differences between the 
perceived and true forecast error in the first 2–3 days lead time 
range, attesting to the importance of properly considering anal-
ysis error variance when evaluating short-range forecast per-
formance.

If we compare the equations for actual (x2

l
) and perceived 

(x2

0
+ x2

l
− 2�

0,l
x

l
x

0
) forecast error variances, we find that their 

difference is mainly determined by the parameter ρ
0,l

 which is 
related to the size of change the DA makes to the first guess 
forecast. Specifically, if the observing network contains large 
amount of available observational information, the analysis 
error would be extensively rotated from the first guess error 
by the observations used in DA cycles, generally resulting in 
a small ρ

1
. The perceived error variance is likely to be larger 

than the true forecast error variance within the first few days. In 
contrast, if the observing network has only limited information, 

with an exponential error growth assumption is shown in Table 1. 
In 11 out of the 12 regional parameters presented in Table 1, the 
new method provides better estimates while in the majority of 
the cases the new, but not the PT14 estimates are within the 95% 
sampling confidence interval of the actual values.

4.1. Exponential error growth

First, we test the applicability of the exponential error growth 
assumption. Assuming that the effect of nonlinear saturation 
on short-range forecast errors is small, we use perceived error 
measurements in the 1–5 day lead time range (24-, 36-, …, 120-
h). Globally (both vertically and horizontally) averaged sim-
ulated and actual perceived and true error variances, as well 
as the correlation between analysis and forecast errors valid at 
the same time, along with their 95% confidence intervals are 
shown in Fig. 2. Importantly, all simulated perceived error val-
ues fall within the 95% confidence intervals of the correspond-
ing1–5 day led time measurement-based perceived error values 
used in the estimation. This indicates that the assumptions used 
in SAFE are consistent with the measurements from the SNOD-
AP analysis-forecast system.

Table 1. Estimated values of parameters x2

0
, α and ρ

1
 with the Statistical Analysis and Forecast Error (SAFE) estimation in PT14 and its enhanced 

version proposed here for the 500 hPa global (GB), Northern (NH) and Southern (SH) Hemisphere, and Tropical belt (TRO) regions. The actual 
values of the parameters and the SEM corresponding to the 95% significance level are also shown.

GB NH SH TRO

x2

0
Actual/1.96SEM 42.23/2.43 32.12/2.78 72.82/5.87 25.32/1.30
New estimate 39.58 34.04 68.16 19.51
PT14 estimate 44.10 39.27 77.72 15.23

α Actual/1.96SEM 0.405/0.024 0.574/0.033 0.297/0.024 0.300/0.027
New estimate 0.408 0.565 0.287 0.331
PT14 estimate 0.391 0.540 0.270 0.389

ρ
1

Actual/1.96SEM 0.84/0.010 0.789/0.021 0.859/0.014 0.860/0.01
New estimate 0.837 0.789 0.838 0.844
PT14 estimate 0.857 0.822 0.871 0.790

Fig. 2. (a) Globally (vertically and horizontally) averaged 90-day time mean perceived (black) and true (red) forecast error variances, and (b) 
resulting correlation of true forecast and analysis errors as a function of lead time. Hollow circles and lines represent actual and estimated values 
(assuming exponential error growth), respectively. Vertical bars show the 95% confidence interval corresponding to sampling uncertainty in the time 
mean error estimates. Since ρi (i > 1) is a simple function of ρ

1
, a confidence interval is shown only for ρ

1
. The estimated and actual values of the 

unknown parameters are x2

0
 = 48.12, α = 0.392, ρ

1
 = 0.836 and 53.0, 0.38, 0.85, respectively.
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 actual values. Attested by Fig. panels 3a and d, SAFE can rea-
sonably simulate both the perceived and the true forecast error 
variance. In fact, the fitting error is lower than the 95% sam-
pling uncertainty confidence level at every time level from 0 to 
30 days, except where true errors are extrapolated to the 0–12 h 
lead time period (Fig. panels 3b, c, e, and f). Not surprising-
ly, the use of the more general, logistic error growth model 
and more measurements leads to more informative (i.e. with 
an  estimate of the saturation value) and slightly more accurate 
(i.e. improved analysis error) estimates when compared to those 
with the exponential growth assumption (cf. Figs. 2 and 3).

5. Spatially extended error variance estimates

In this section, we extend the application of SAFE from spatial 
mean (PT14 and Section 4) to pointwise error variance estima-
tion.

ρ
1
 could be relatively large, and hence the true forecast error 

variance would be more likely to exceed the perceived error 
variance. For longer lead times, due to the decrease in ρ

0,l
 with 

increasing lead time, the analysis error becomes decorrelated 
from the true forecast error, and the perceived error variance 
would be simply the sum of AFEV theoretically.

4.2. Logistic error growth

Beyond an initial, quasi-linear phase of exponential growth, due 
to the finite size of dynamical systems the evolution of forecast 
errors is also influenced by nonlinear saturation (Lorenz, 1965). 
To describe such behaviour, we use the logistic error growth 
model with perceived error measurements in the 1–30 day lead 
time range. Attested by Fig. 3 and its legend, three of the four 
estimated values have less than 2% error when compared to 
their actual counterpart, while the variance/absolute value of 
the estimated analysis error variance is within 7/4% of the 

Fig. 3. Globally (both vertically and horizontally) averaged 90-day time mean actual (open circles) and simulated (assuming logistic error growth, 
continuous lines) perceived (a) and true (d) forecast error variances, and their absolute differences (continuous lines for perceived (b and c, the latter 
a zoom-in version of b), and true error (e and zoom-in f), as well as the 95% confidence level corresponding to sampling uncertainty in the time mean 
estimates (dotted curves). The correlation between true analysis and forecast errors is shown in (g). The estimated and actual values for the known 
parameters are x2

0
 = 56.5, α = 0.38, ρ

1
 = 0.86, S

∞
 = 13672.8, and 53.0, 0.38, 0.85, 13889.1, respectively.
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choice of a spatial filter used (i.e. a broad Gaussian filter or 
domain means as in Table 1).

5.1.2. Spatiotemporal evolution of errors. Analysis error 
variance (x2

0
) is used in SAFE in two different contexts: as the 

error in the initial condition of NWP forecasts (Equations (4) 
and (5)), and as errors in the analysis used to verify the NWP 
forecasts (Equation (7)). When SAFE is applied over large 
latitudinal belts as in PT14 and Section 4, these two quantities 
can be considered identical. In gridpoint applications, the initial 
errors affecting forecasts of various lead times at a selected 
verification location originate, however, from different, upstream 
locations. SAFE analysis and growth rate estimates derived 
through the use of perceived forecast errors of different lead times 
at a selected verification gridpoint therefore are misplaced due to 
the spatiotemporal evolution of different lead time forecast errors 
and reflect conditions upstream of the verification gridpoint.

Bishop and Toth (1999) proposed the use of ensemble per-
turbations to estimate the spatiotemporal evolution of anal-
ysis – forecast errors. Given the multiple lead time and large 
number of gridpoints involved in SAFE, the application of their 
Ensemble Transform method, however would be algorithmical-

5.1. Methodological considerations

Gridpoint as opposed to large area mean estimates of AFEV are 
potentially more useful in practical applications like the spec-
ification of initial perturbation spread in ensemble forecasting 
or background error variance in DA systems. Gridpoint, as 
compared to area mean estimation, however, has some special 
challenges. First, the lack of spatial averaging of the input (per-
ceived error) measurements results in increased sampling noise. 
And second, one must recognise that forecast errors verified at 
a selected location originate from an upstream location.

5.1.1. Sampling noise reduction. While analysis error 
variance (x2

0
) and error growth (α) estimates even averaged over 

large domains show large, greater than a factor of two variations 
(see Table 1), the correlation between analysis and first guess 
forecasts (ρ

1
) exhibit much less (less than 10%) variability. To 

reduce the effect of sampling noise in the estimation of ρ
1
 while 

retaining detailed information in the gridpoint estimates of the 
geographically more variant x2

0
 and α, in the gridpoint estimation 

of the unknown parameters (Section 5.3), we prescribe ρ
1
 to 

its domain average estimates listed in Table 1. Note that the 
gridpoint estimates of x2

0
 and α are insensitive to the particular 

Fig. 4. Distribution of 90-day sample mean estimated (a) and actual (b) 500 hPa initial ensemble spread and actual 12–84-h ensemble spread. The 
spatial correlations of panels (b–i) to (a) are listed above the panels.



8 J. FENG ET AL.

The initial ensemble perturbation variance estimated via fit-
ting 1–5 day ensemble forecast perturbation variance at each 
gridpoint is shown in Fig. 4a. While the estimated initial ensem-
ble perturbation variance field is strongly correlated with the 
actual initial ensemble perturbation variance (Fig. 4b, 0.934), 
the estimated field is clearly misplaced. Larger than actual es-
timated values along the West Coast of North America (NA), 
for example, reflect the influence of larger initial ensemble var-
iance over the Pacific propagating and growing into the coastal 
area where the spread influenced by those initial conditions are 
evaluated. Interestingly, the estimated initial ensemble pertur-
bation variance has the highest correlation with 24-h ensemble 
forecast perturbation variance (0.986, see Fig. 4d), indicating 
that the misplacement of the SAFE gridpoint initial variance 
estimates may best correspond with an approximately one-day 
evolution of the errors.

To confirm that ensemble perturbation variance is a good 
predictor for the spatiotemporal evolution of true analysis – 
forecast error variance, analogous to Fig. 4, in Fig. 5 we show 
the evolution of the global distribution of the SAFE estimate of 
true analysis error variance, along with the actual AFEV. Apart 
from a significant disparity in their magnitudes, the overall pat-
tern of error variance evolution is qualitatively well captured by 

ly  complex and lead only to approximate results. Instead we 
substitute forecast error variance with ensemble perturbation 
variance1 and use the SAFE method to simulate and quantify 
the misplacement of SAFE analysis error variance estimates. 
In particular, an exponential growth curve (Equation (4)) is fit 
to ensemble variance values measured at different lead times 
at each gridpoint. Using ensemble variances from the same 
1–5 days lead-time range that is used in the error estimation, 
we ensure that the spatiotemporal behaviour of ensemble per-
turbation variances will well capture that of the true analysis 
– forecast errors manifested in SAFE.

Fig. 5. Distribution of 90-day sample mean estimated (a) and actual (b) 500 hPa analysis error variances and 12–84-h actual true forecast error 
variances. The spatial correlations of panels (b–i) to (a) are listed above the panels.

Fig. 6. Estimated displacement vector field transposing Fig. 4b to a.



9SPATIALLy ExTENDED ESTIMATES OF ANALySIS AND SHORT-RANGE FORECAST ERROR VARIANCES

initial ensemble variance field estimated by SAFE (Fig. 4a). 
The large amplitude vectors over the NW part of NA reflect 
the previously noted fast propagation of initial errors from the 
NE Pacific to NA, while small vector amplitudes for example 
over Asia are indicative of mostly local error development. The 
final gridpoint estimates of analysis error variance evaluated in 
Section 5.3 will be transposed by the vectors opposite to those 
shown in Fig. 6.

5.2. Distribution of actual parameters

An advantage of working in a SNODAP environment is that 
all information about the natural and NWP systems is either 
readily available or easily attainable. Before applying SAFE 
to estimate its three free parameters, in this section we present 
their actual values. The analysis error variance (x2

0
, Fig. 7a) is 

calculated at each gridpoint as the time mean of the variance 
between the EnKF analysis fields and the MM-QG model in-
tegration considered reality in SNODAP. The correlation be-
tween analysis and forecast errors (ρ

1
, Fig. 7b) is calculated at 

each gridpoint as the temporal correlation between the series 
of actual true analysis and 12-h forecast error variances valid 
at the same time.

The third unknown parameter of SAFE, the exponential 
growth parameter (α, see Fig. 7c), is determined at each gridpoint 
by fitting the exponential growth curve of Equation (4) to actual 
true forecast errors in the 1–5 days lead time range. Note that 
strictly speaking, due to the spatiotemporal propagation of errors 
discussed in Section 5.1.2, α computed here is representative 
of error growth upstream of the gridpoint where it is displayed. 
Such a spatial mismatch, however, will not affect the evaluation 
of growth parameter estimates in the next section as due to the 
use of the same 1–5 days lead time fitting range, the SAFE esti-
mate of α is affected by exactly the same spatial misplacement. 
A comparison of the fitting errors (i.e. difference between actual 
and modelled true error values, not shown) and the corresponding 
SEM values (see Equation (11)) reveal that the exponential error 
growth model is fully consistent with the experimental data.

The larger growth rates observed over the Northern (NH) 
compared to the Southern Hemisphere (SH) extratropics in Fig. 
7c are due to the choice of boreal winter forcing in the MM-QG 
model. Note the general tendency for analysis error variance 
(Fig. 7a) to be lower over well observed and low growth rate 
areas (e.g. N Europe, cf. Figs. 1 and 7c). The generally lower 
analysis error variance over the NH also indicates that the dens-
er observing network over the NH more than compensates for 
the error amplifying effect of larger growth rates there. Due to 
the presumably larger changes introduced by more voluminous 
observational data over the NH, the correlation between the er-
ror in the concurrent background forecast and analysis fields is 
lower there (Fig. 7b). The ideal parameter values displayed in 
Fig. 7 will be used in the next section as a reference when eval-
uating realistic perceived error-based SAFE estimates.

the ensemble variance (cf. Fig. 4). Note that like in the ensem-
ble, the estimated initial error variance reassuringly correlates 
best (though at a lower, 0.912 level due to more prevalent noise 
in a single error realisation as compared to the statistically more 
robust ensemble variance estimates) with the one-day forecast 
error variance.

Thus the evolution of ensemble (cf. Fig. 4a and b) can be 
used to describe the spatial mismatch between Fig. 5a and b. 
To quantify the displacement in SAFE analysis error variance 
estimates, we use the field alignment (FA) method of Ravela 
(2007) and Ravela et al. (2007). In our application, the displace-
ment vector field (DV, see Fig. 6) is determined by a variation-
al algorithm that minimises the difference between trial fields 
– actual initial ensemble variance estimates shown in Fig. 4b 
transposed by a DV field iteratively estimated by FA, and the 

Fig. 7. Distribution of the actual values for the 500 hPa parameters (a) 
analysis error variance x2

0
, (b) correlation of analysis and background 

forecast errors ρ
1
 and (c) exponential growth rate. Global mean values 

are 42.24, 0.829 and 0.379, respectively.
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 confidence interval at 23% of the gridpoints (marked by brown 
dots on Fig. 8a). Conspicuously, points with poor estimates 
tend to be associated with areas of large DV magnitudes (cf. 
Figs. 8a and 6), indicating that the displacement of pointwise 
error estimates discussed in Section 5.1.2 has a clear negative 
effect on the quality of analysis error variance estimates.

When the position of true analysis error variance estimates 
(Fig. 8a) is corrected with the FA method using the inverse of 
the vectors derived from ensemble variances (Fig. 6), the per-
centage of gridpoint estimates that fall outside the sampling 
uncertainty confidence interval around the actual true error is 
reduced from 23 to 19% while the spatial correlation between 
the estimated and actual true analysis error variance fields in-
creases from .81 to .902 (see Fig. 8b).

5.4. Comparison with other methods

In this section, AFEV estimates with SAFE are compared with 
those from other widely used methods. In Table 2, first we com-
pare the performance of perceived error variance in predicting 
the magnitude and spatial distribution of true error variance. As 
seen from Table 2 perceived errors, due to the use of analyses 
as verifying fields, seriously underestimate true forecast error 
variance at early (shorter than 48 h) lead time ranges. Beyond 
48 h, perceived error and SAFE estimates perform compara-
bly. As for predicting the spatial distribution of the true forecast 
error variance, perceived errors and SAFE have comparable 

5.3. Estimated parameters

As described in Section 5.1.1, in the gridpoint application of 
SAFE ρ

1
 is prescribed from prior area mean estimates over the 

NH and SH extratropics and the Tropical belt (Table 1). Grid-
point perceived errors are statistically modelled and fitted to 
the time mean actual perceived errors in the 1–5 days lead time 
range. The fit of the modelled time mean perceived error vari-
ance at each gridpoint is within the 95% sampling uncertainty 
confidence interval around the actual time mean perceived error 
variance values at each time level

Fig. 8a and d shows the distribution of the estimated true 
analysis error variance (x2

0
) and growth rate (α), respectively. 

The global mean of the estimated gridpoint x2

0
 and α values 

(39.86 and 0.382) are close to their actual values (42.24 and 
0.379, cf. Figs. 7 and 8). Another measure of performance, the 
spatial correlation between the estimated and actual fields for x2

0
 

and α is 0.81 and 0.85, respectively.
The percentage of gridpoints where the estimated true error 

value falls within the 95% sampling uncertainty confidence in-
terval around the actual time mean true error value is shown 
in Fig. 8c. While the forecast error estimates over the fitting 
period of 1–5 day lead time range are within the confidence 
interval at 96–97% of the gridpoints (except at day 1 lead time 
where this condition is met at 92% of the gridpoints), the anal-
ysis error variance extrapolated from the fitting period with the 
use of the exponential error growth relationship falls out of the 

Fig. 8. Distribution of estimated 500 hPa analysis error variance without (a) and with (b) the application of field alignment (FA) technique, and 
the estimated exponential error growth rate (d). Global mean value of (a), (b) and (d) are 39.86, 39.79 and 0.382, respectively. (c) Percentage of 
gridpoints with estimated true forecast error variance within the 95% sampling confidence interval of their respective actual time mean values. For 
further details, see text.
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with a .63 (48- and 24-h) and .78 (24- and 12-h lagged differ-
ences) correlation between the actual and its predicted spatial 
background error variance distributions. These results can be 
compared to .90 and .87 correlations between the spatial distri-
bution of actual and SAFE estimated AFEV, respectively.

6. Conclusions and discussion

Accurate estimation of true analysis and short-range forecast 
error variances are critical to the proper evaluation and calibra-
tion of DA and forecast systems, including the optimal tuning 
of background forecast error and initial ensemble perturbation 
variances. To advance error variance estimation, the SAFE 
method introduced in PT14 was further developed and tested 
in this paper. Barring systematic errors, the SAFE assumes that 
the true initial error variance (x2

0
) amplifies in the forecast ac-

cording to well-established exponential or logistic error growth 
relationships. Assuming also that errors in the verifying analy-
sis decorrelate exponentially with increasing lead time forecast 
errors, perceived error variance (variance between forecasts and 
verifying analyses) is decomposed and related to the unknown 
variables of true analysis error variance (x2

0
), dynamical growth 

rate (α), and the correlation between analysis and background 
forecast errors (ρ

1
). The unknown variables are determined 

by minimising the difference between the modelled and sam-
ple-based measurements of perceived error variance at different 
lead times.

To improve the performance of SAFE, we introduced ad-
ditional constraints into the cost function (i.e. the variance 
between lagged forecasts at different lead times), as well as 

 performance. Since perceived errors are not available at anal-
ysis (i.e. zero lead) time, we tested the use of 12-h lead time 
perceived error variance for the prediction of the distribution 
of analysis error variance. Its correlation with the actual true 
error, 0.81 (the highest correlation value for perceived error var-
iance at any lead time, not shown in Table 2) is notably below 
the 0.90 correlation for SAFE estimates. These results suggest 
that as expected, SAFE may have the largest improvement upon 
perceived error estimates at the analysis and short lead times.

As one of a variety of ensemble-based DA methods, EnKF 
offers error variance estimates for both analyses and forecasts, 
while the NMC method for estimating background error covar-
iance (Appendix B) addresses only background forecast error 
variances (see Table 3). As for the absolute magnitude of analy-
sis and background forecast error variances, EnKF suffers from 
a serious underestimation of analysis (55%) and forecast (55% 
before and 23–24% after the application of covariance infla-
tion) error variances. Depending on the choice of forecast lead 
times, the NMC method3 underestimates the actual forecast er-
ror variance by 3% (48- and 24-h) or 62% (24- and 12-h lagged 
differences), compared to a 6% error in the SAFE estimate.

Despite the large errors in its magnitude estimates, EnKF 
can well predict the spatial distribution of error variances (.92 
and .91 correlation between the actual and predicted analysis 
and forecast error variance fields, respectively). Here, EnKF 
is used to predict error variances in EnKF analyses or back-
ground forecasts. It is not clear how much the performance may 
degrade had it been used to predict error variances in another 
DA scheme, like the hybrid Gridpoint Statistical Interpolation 
(GSI) operational at NCEP. The NMC method is less skillful 

Table 2. Spatial correlations between actual perceived and true forecast error variances at different lead times (2nd row). The spatial correlations 
between estimated (with SAFE algorithm) and actual true forecast error variances are shown on the 3rd row. Their global mean error variances at 
different lead times are listed on 4th–6th rows, respectively. The initial perceived errors are 0 and thus its field is replaced by the 12-h field when 
calculating the spatial correlation.

0 h 12 h 24 h 36 h 48 h 60 h 72 h 84 h 96 h

Corr SAFE 0.90 0.87 0.91 0.94 0.95 0.96 0.97 0.97 0.97
PerErr – 0.88 0.91 0.93 0.94 0.96 0.97 0.98 0.98

Error Var (m2) SAFE 40.0 47.5 56.8 68.3 82.6 100.6 123.4 152.3 189.3
PerErr – 15.0 30.9 49.4 71.1 96.3 125.0 158.8 198.2
Actual 42.2 50.3 61.7 76.6 95.0 116.9 143.0 174.2 211.9

Table 3. Comparison of EnKF, NMC and SAFE estimates of the actual 500 hPa analysis and first guess forecast error variance fields using global 
mean magnitude and spatial correlation.

EnKF NMC SAFE

Actual analysis error variance (m2): 42.2 Spatial corr 0.92 NA 0.90
Error variance(m2)/deviation of Est 19.0/55% NA 39.8/6%

Actual first guess error variance 12 h 
(m2): 50.3

Spatial corr 0.91 48–24 h: 0.63 0.87
24–12 h: 0.78

Error variance(m2)/deviation of Est Before inflation: 22.8/55% 48–24 h: 48.9/3% 47.5/6%
After inflation: 38.6/23% 24–12 h: 18.9/62%
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scribe error behaviour in the short, transitional period affected 
by decaying errors, future studies will explore the use of the 
enhanced SAFE method in estimating errors in forecasts made 
with imperfect models at various NWP operational centres.
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Notes

 1.  Even though both in our simulated or in realistic environments 
initial ensemble variance only approximates true analysis error 
variance, as we will see below, the dynamics of error propagation 
can be well approximated from the ensemble.
Note that even in a perfect model environment, ensemble 
perturbation variance would provide a perfect prediction of 
the forecast error variance only if the ensemble initial variance 
perfectly matches analysis error variance, which in practice is 
unattainable.

 2.  The minor change in the global mean of analysis error variance 
estimates with FA (39.79) compared with the original estimate 
of 39.86 (cf. Fig. 8d and a) is due to a modest deformation of 
the estimated analysis error variance field associated with the 
application of FA.

 3.  Note that the NMC method provides estimates for background 
forecast but not analysis error variances.

 4.  Smaller inflation numbers result in filter divergence while larger 
numbers lead to suboptimal performance.
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Assuming perfect knowledge of the observational error variance, the 
random perturbations ε

i
 follow the same covariance matrix as ε. The 

observations are assimilated to produce a new analysis of the state:

 

The Kalman gain K is calculated by:

K is actually a weighting measuring the ratio of the forecast and ob-
servational error covariance which determines to what extent the back-
ground forecasts will be corrected to fit the observations.
To avoid the collapse of the ensemble (i.e. filter divergence, Houteka-
mer and Mitchell, 1998) due to EnKF approximations including the 
undersampling of the full phase space of the MM-QG system (6144 
total degrees of freedom) with only 200 perturbations, the magnitude 
of first guess perturbations are inflated by 30%.4 No background co-
variance localisation scheme is applied since the use of 200 ensemble 
members reduces the presence of spurious long-distance correlations. 
The assimilation cycle is repeated every 12 h for a 90-day period and in-
itial conditions for single (unperturbed) forecasts are created by taking 
the mean of the analysis ensemble �a

i
(i = 1, 2, …, N).

Appendix B.

The NMC method

A common method to estimate the background error covariance ma-
trix widely used in operation is the NMC method (Parrish and Derber, 
1992,). The method uses differences between pairs of forecasts with 
different lead times, valid at the same time (i.e. lagged forecast differ-
ences). In global scale applications, the background error covariance B 
is the statistics of differences between 48- and 24-h forecasts aggregat-
ed over time and/or space:

where x48 and x24 are 48- and 24-h forecasts, respectively, valid at the 
same time. In regional-scale applications, usually 24- and 12-h lagged 
forecasts are used in place of 48- and 24-h forecasts. The spatial distri-
bution of B is often smoothed and the magnitude of the matrix can also 
be tuned for optimal performance in DA schemes.
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24)T

Appendix A. The EnKF and its application

True states denoted by xt are generated by integrating the QG model 
for a long time period. Simulated observations y are produced from the 
true state using:

where H provides a mapping from the model space to the observation 
space, and ε are the observation errors of GH (m2). Following Houteka-
mer and Mitchell (1998), ε are from the observational error covariance 
matrix R:

Observations are provided every 12 h. The ensemble of forecast 
states is obtained as background states. Initial background states are 
generated by superposing random errors from the covariance matrix 
⎛
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 to true states. The ensemble background matrix 

Xf for a given observation time is defined by the ensemble background 
forecasts �

f

i
 as:

where N = 200 here. The ensemble perturbation matrix can then be 
expressed as:

where �f  denotes the mean of the ensemble. The covariance matrix of 
the ensemble Xf is:

The background ensemble is updated by a set of perturbed observation 
vectors y

i
 (i = 1, 2, …, N):
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