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ABSTRACT
The nonlinear local Lyapunov exponent (NLLE) can be used as a quantification of the local 
predictability limit of chaotic systems. In this study, the phase-spatial structure of the local 
predictability limit over the Lorenz-63 system is investigated. It is found that the inner and outer rims 
of each regime of the attractor have a high probability of a longer than average local predictability 
limit, while the center part is the opposite. However, the distribution of the local predictability limit 
is nonuniformly organized, with adjacent points sometimes showing quite distinct error growth. 
The source of local predictability is linked to the local dynamics, which is related to the region in the 
phase space and the duration on the current regime.

摘要
非线性局部Lyapunov指数(NLLE)可以用来度量混沌系统的局地可预报性。本文基于NLLE方法
研究了Lorenz吸引子在相空间上的局地可预报性的空间分布特征。结果表明，在吸引子两翼的
内、外边缘的局地可预报性期限较高，而吸引子中部地区的局地可预报性期限则较低。然而，
局地可预报性期限的分布却没有呈现有组织的均一结构，相邻两点的局地可预报性期限可能差
别很大。局地可预报性的来源被认为与吸引子上的局地动力学有关，由所在位置和在当前状态
的持续时间决定。

1. Introduction

The atmosphere is a chaotic system that is sensitive to 
initial conditions (Li and Chou 1997). The problem of 
atmospheric predictability has been researched for sev-
eral decades, since the pioneering work of Thompson 
and Lorenz (Lorenz 1963, 1965, 1969a, 1969b; Thompson 
1957). The main achievement of these early studies was 
the exploration of the intrinsic limit of predictability in 
weather forecasting (Chou 1989; Feng et al. 2001; Mu, 
Duan, and Wang 2002).

As one of several dynamical methods, the global 
Lyapunov exponent can be used as a measure of the mean 
divergence rate of nearby trajectories on a strange attrac-
tor (Eckmann and Ruelle 1985; Sano and Sawada 1985; 
Wolf et al. 1985). Given a dynamical system with an initial 
perturbation of size δ, if the accepted error tolerance Δ 
is still sufficiently small, then the largest Lyapunov expo-
nent �1 gives a rough estimate of the predictability limit: 

Tp ∼
1

�1

ln
(

Δ

�

)
. Prediction becomes meaningless beyond 

the predictability limit owing to the propagation of initial 
errors over the entire chaotic attractor (Wang et al. 2012).

However, we are often more interested in the quanti-
fication of the local predictability limit (Ding, Li, and Ha 
2008; He et al. 2006). The identification of regions of high 
and low predictability is of critical importance to numerical 
weather forecasts. Nese (1989) investigated both the tem-
poral and phase-spatial variations of short-term predicta-
bility using local divergence rates for the Lorenz attractor. 
He concluded that predictability varies considerably with 
time, while at the same time phase-spatial organization 
to the variability exists. Mukougawa, Kimoto, and Yoden 
(1991) adopted the Lorenz index, which gives the ampli-
fication rate of the root-mean-square error during a pre-
scribed time interval to measure the local predictability, 
and obtained the organization on the Lorenz attractor. 
Abarbanel, Brown, and Kennel (1991) defined the so-called 
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Using the fourth-order Runge–Kutta method with a 
step-size of 0.01, the Lorenz model is first spun up for 5000 
time steps starting from (x, y, z) = (1, 1, 0) with the three 
model parameters listed above. Then, another 5 × 104 steps 
are integrated and used as the initial points in this study. 
Each one is superimposed with an ensemble of N = 1 × 104 
initial perturbations of magnitude 10−4. The ensemble 
mean NLLE �

(
x(t0), �

)
 and mean relative growth of initial 

error Ē
(
x(t0), 𝜏

)
 can be obtained for each initial state. Thus, 

we can quantitatively calculate the local predictability limit 
of the Lorenz system. The methods are the same as those 
employed in Ding, Li, and Ha (2008).

3. Results

Figure 1 shows the variation of �
(
x(t0), �

)
 and the loga-

rithm of Ē
(
x(t0), 𝜏

)
 as a function of time and with an initial 

magnitude of ∈ = 10−4. It can be seen that �
(
x(t0), �

)
 oscil-

lates between positive and negative values at the begin-
ning of the evolution. This is due to the transient error 
growth period, when errors of random directions align to 
the fastest growing mode (Trevisan and Legnani 1995). 
Afterwards, the value fluctuates around a positive value 
and finally approaches zero as time increases (Figure 1(a)). 
Correspondingly, the relative error growth Ē

(
x(t0), 𝜏

)
 sat-

urates to a nonlinear fluctuation level after a period of 
zigzag growth (Figure 1(b)). The local predictability limit 
is approximately 16 dimensionless time units.

Repeating this procedure over the Lorenz attractor, 
the distribution of the local predictability limit can be 
presented quantitatively in the phase space (Figure 2). 
On the whole, the inner and outer rims of each lobe show 
a higher local predictability limit, while for the center of 
each lobe the local predictability limit is lower. This result 
is quite different from that reported by Nese (1989), but 
corresponds well with Li et al. (2012), who estimated the 
predictability limit using space entropy. The reason behind 
this is the measure of the predictability limit adopted in 
each study. What Nese (1989) was trying to investigate was 
the local divergence rate of the linear error growth period. 
However, the nonlinear error growth dynamics are most 
prominent after the linear error growth. Only considering 
the linear error growth makes it impossible to reflect the 
overall predictability limit. The other characteristic of cha-
otic systems is the phenomenon of ‘isolated islands’, where 
nearby points in the phase space may be quite different 
in the local predictability limit. This is closely related to 
the sensitivity to the initial conditions of chaotic systems.

Nese (1989) constructed a Poincare section of the 
Lorenz-63 attractor by intersecting a trajectory with the 
plane x  =  −9. He found that the local divergence rates 
for the lower piece of the map were always large and 
positive, while most of the local divergence rates for the 

finite time Lyapunov exponent and studied the variation 
of predictability over the attractor. Yoden and Nomura 
(1993) discussed the problem of applying the finite-time 
Lyapunov exponents and vectors to the problem of atmos-
pheric predictability.

Generally speaking, the aforementioned studies belong 
to the field of linear error dynamics, because the initial per-
turbations are infinitesimal and therefore can be approx-
imated by a tangent linear model (TLM). As time evolves, 
the TLM cannot simulate the error growth, as nonlinear 
effects begin to dominate the evolution of the initial per-
turbations. A better option is to turn to the nonlinear local 
Lyapunov exponent (NLLE), which integrates the original 
equations without linearizing them (Chen, Li, and Ding 
2006; Ding and Li 2007; Ding, Li, and Seo 2010, 2011; Ding, 
Li, and Zheng 2015; Li and Ding 2011, 2013). Taking the 
Henon attractor as an example, Ding, Li, and Ha (2008) 
applied the NLLE to quantitatively determine both the 
temporal and phase-spatial variation of the local predict-
ability limit on the attractor. What they found was that 
the local predictability limit of the Henon attractor varies 
widely with time. Meanwhile, no significant phase-spatial 
structure was found in the phase space.

The question remains, however, as to whether there 
are regions of high and low predictability for the Lorenz 
attractor using the NLLE method. And if so, is the organ-
ization of the local predictability limit the same as that 
derived from linear methods? More importantly, what 
is the source of the local predictability? These are the 
objectives of the present research. We show that the 
organizations of the local predictability limit quantified 
by the NLLE method and the short-term methods are 
quite different.

Following this introduction, Section 2 describes the 
model and experimental design. The phase-spatial struc-
ture and a description of the statistical properties of the 
local predictability limit of the Lorenz system are given in 
Section 3. Finally, a conclusion is presented in Section 4.

2. Experimental setup

The Lorenz system was first used by Lorenz (1963) to rep-
resent cellular convection. The equations include
 

where the parameters are σ = 10, r = 28, b = 8/3. As the 
most frequently studied chaotic system, the Lorenz model 
has two wings that look like those of a butterfly, with one 
wing as the warm regime (x > 0, y > 0) and the other as the 
cold regime (x < 0, y < 0).

(1)

⎧⎪⎨⎪⎩

ẋ = −𝜎(x − y)

ẏ = −xz + rx − y,

ż = xy − bz
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upper piece were negative. Thus, he concluded that the 
predictability is organized, and it is low (high) on the lower 
(upper) curve. However, Figure 3(a) shows that there are no 
obvious differences between the distribution of the local 
predictability limit on the lower and upper curves. Both 
curves show a higher local predictability limit at both ends 
but a lower limit in the central parts. The average values of 
the local predictability limit on the upper and lower curves 
are 11.4 and 11.7, respectively. Furthermore, the proba-
bility distributions are given in Figure 3(b). The difference 
between the two probability distributions can be meas-
ured by the Kullback–Leibler (KL) divergence (Kullback and 
Leibler 1951). For probability distributions P and Q of a 
discrete random variable, the KL divergence DKL (P||Q) of 
Q from P is calculated by

 

The KL divergence between the probability distri-
butions of the lower and upper curves is 0.0065, which 
means that the distributions have little difference. This 
result indicates that the results from the short-term local 
divergence rate and the long-term local predictability limit 
are different.

As already known, the fixed points of Equation (1) are O(0, 
0, 0) and P

±
(x

±
, y

±
, r − 1), where x = y =

√
b(r − 1) (Lorenz 

1963; Mittal, Dwivedi, and Pandey 2005). For parameters 
σ = 10, r = 28, b = 8/3, unstable fixed points on the warm 
regime and the cold regime are P

+
= (8.4853, 8.4853, 27) 

and P
−
= (−8.4853,−8.4853, 27), respectively. Next, we 

calculate the Euclidean distance between each point and 
its corresponding fixed point. For a point P0(x0, y0, z0), the 
distance R is calculated by

 

where P(xp, yp, zp) is the fixed point in its existing regime. 
Then, we divide R into several intervals. Afterwards, the 
probability distributions of the local predictability limit 
in each interval of R are estimated (Figure 4(a)). Clearly, 
in each interval, the probability of the local predictability 
limit is nonuniformly distributed. This indicates that the 
spatial structure of the local predictability limit is quite 
complex. By taking out the local predictability limit with 
maximum probability in each interval, a single curve can 
be drawn, as shown in Figure 4(b). The parabolic shape of 

(2)DKL(P||Q) =
∑
i

P(i)log
P(i)

Q(i)
.

(3)R =

√
(x0 − xP)

2
+ (y0 − yP)

2
+ (z0 − zP)

2,

(a) (b)

Figure 1. temporal evolution of the (a) nonlinear local Lyapunov exponent �
(
x(t

0
), �

)
 and (b) logarithm of Ē

(
x(t

0
), 𝜏

)
 for the initial state 

x(−4.87, −7.35, 18.68) on the Lorenz attractor.
note: the horizontal and vertical dashed lines in (b) are the saturation value of error growth and the local predictability limit, respectively.
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One point, PL(9.24, 6.79, 30.76), has a relatively long local 
predictability limit of approximately 16, while the other 
point, PS(−11.57, −20.58, 16.74), is shorter. PL is chosen 
from the inner rim of the warm regime, while PS is in the 
central part from the cold regime. For each initial point, 
500 different perturbations in random directions with 

the curve indicates that the points are likely to have long 
predictability limits in the inner and outer rims of both 
wings on the attractor. Meanwhile, the local predictability 
limit for the central parts of each regime is prone to be low.

The evolutions of two different points in the phase 
space are investigated to study the error growth dynamics. 
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Figure 5. phase-space evolution of an ensemble of initial errors from (a) the point pL(9.24, 6.79, 30.76) and (b) the point ps(−11.57, 
−20.58, 16.74), at the dimensionless time of 10, 12, 14, and 16, respectively.
note: the attractor is plotted in gray for reference.
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in a quasi-periodic manner after leaving PL. Meanwhile, 
the spiral divergence from P

+
 as the circuit becomes larger 

before the trajectory finally shifts to the cold regime after 
around 8 time units. However, the regime shifts to the 
warm regime soon after the trajectory leaves PS in the cen-
tral part of the cold regime. From this, we conclude that, 
for the inner and outer rims of each regime, it is easier for 
the trajectory to oscillate around the unstable fixed points, 
thus leading to a longer existing time and, ultimately, a 
longer predictability limit. However, for the central parts 
in the phase space, the trajectories are prone to shifting 
from their existing regimes to the other regime. So, the 
local predictability limit for these points is lower.

4. Conclusion

The NLLE is used in the present study to quantitatively 
estimate the local predictability limit of the Lorenz attrac-
tor. The result is quite different to that derived from linear 
dynamics. Though the local predictability is not uniformly 
organized, several statistical properties for the Lorenz 
attractor exist. On the inner and outer rims of both wings 
of the Lorenz attractor, the local predictability limit is 
higher than average, while the center part of the attractor 
shows a lower local predictability limit. However, initially 
adjacent points in the phase space may possess quite dis-
tinct local predictability limits. This corresponds to the sen-
sitivity to the initial conditions of chaotic systems, which 
may cause considerable difficulties in making long-term 
analogue forecasts. The source of the local predictability 
limit is linked to the local dynamics of the point. The region 
where the point lies in the phase space and the residence 
time in the current regime are considered. Further work is 
needed to investigate the source of the local predictability.
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