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Abstract A nonlinear local Lyapunov exponent method based onmonthly sea surface temperature data is
employed to explore the predictability limit of warm El Niño–Southern Oscillation (ENSO) events. Results
using observational data show an asymmetry of the predictability limit between the developing and
decaying stages of the warm ENSO phase. To wit, predictability of the developing stage of warm ENSO events
is found to approach a limit of 10 months, less than that of the mature and decaying stages. This
asymmetrical predictability limit is also found in a long climate model simulation and may explain the
asymmetry in operational forecast skill of warm ENSO events. Through exploring the error growth rate as
represented by nonlinear local Lyapunov exponent and the instantaneous error growth rate, it is shown that
error growth, especially during the first 8-month lead forecasts, is the primary contributor to the asymmetry
of the predictability limit of warm ENSO events.

Plain Language Summary El Niño events have a characteristic development and decay cycle,
whereby most events start developing in late boreal spring, peak in boreal winter, and subsequently
decay. Model skill in operational forecasting of El Niño events depends on whether the forecast is done
during the developing or decaying stage of the event. This study shows that this asymmetry in forecast skill is
associated with an asymmetry in the inherent predictability limits of the developing and decay stages of
warm El Niño–Southern Oscillation events. These inherent predictability limits stem from the fact that small
perturbations of a dynamical system may grow into large forecast errors after a period of time.

1. Introduction

The El Niño–Southern Oscillation (ENSO), as the prominent coupled ocean-atmosphere phenomenon gener-
ated in the tropical Pacific, is associated with irregular variations of atmospheric and oceanic circulation at
seasonal time scales (McPhaden et al., 2006; Philander, 1990). Although originating and developing in the tro-
pics, ENSO has widespread impacts on the global climate system, including many extratropical regions
(Bradley et al., 1987; Feng & Li, 2011; Rasmusson & Carpenter, 1982; Ropelewski & Halpert, 1989; Trenberth
et al., 1998). Thus, seasonal forecast skill over various regions depends critically on ENSO predictions
(McPhaden et al., 2006; B. Wang et al., 2009). Consequently, the question, whether ENSO has inherent predict-
ability and how it may manifest in seasonal prediction problems has attracted considerable attention in the
ENSO research community.

Depending on one’s preferred theoretical model of the ENSO system, its predictability arises from difference
sources. Leading theoretical hypotheses for ENSO can be loosely grouped into two types (C. Wang et al.,
2016). According to the first hypothesis, El Niño is one phase of a self-sustained, unstable, and naturally oscil-
latory mode of the coupled ocean-atmosphere system (Münnich et al., 1991; Timmermann & Jin, 2002; Zebiak
& Cane, 1987). The initial uncertainty of ENSO state will lead to the separation of the evolutionary trajectories
of two initial adjacent states as lead time increases; therefore, ENSO has a predictability limit (PL). According
to the second hypothesis, El Niño is a stable (or damped) mode triggered by random atmospheric “noises”
(An, 2008; Newman & Sardeshmukh, 2017; Penland & Sardeshmukh, 1995; Stein et al. 2014; Thompson &
Battisti, 2000). Thus, stochastic forcing or noise plays an important role in the predictability of ENSO.
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Additionally, C. Wang et al. (2016) suggested that ENSO is a combination of the first and second types, as the
third type. Under the first ENSO theoretical framework, it is possible to make an effective prediction several
years in advance when the initial error of the forecast system is reduced (e.g., D. Chen et al., 2004). Predictability
of ENSO is an initial value problem and finally controlled by the error growth rate (EGR) in the specification of
initial conditions. Karamperidou et al. (2014) approximated such small error growth in the ENSO system using
local Lyapunov exponents (LLEs) in observations and models and showed that ENSO predictability exhibits
multidecadal-to-centennial variability in the absence of external forcings. While Karamperidou et al. (2014)
focused on multidecadal modulation of intrinsic ENSO predictability and did not investigate the dependence
of EGRs on the ENSO stage, other studies have undertaken this task, for example, Cai et al., 2003; Cheng,
Tang, Jackson, et al., 2010; Cheng, Tang, Zhou, et al., 2010; Tang & Deng, 2010, 2011. These studies showed that
EGRs calculated using singular or breeding vectors during the developing and decaying stage are similar in
magnitude and larger than that of the mature stage of warm ENSO events.

However, simple visual inspection of the operational forecast results during themost recent 2015–2016 ENSO
event (Figure 1a; obtained by the IRI database at International Research Institute for Climate and Society) indi-
cates that the model spread is larger during the warm ENSO developing stage compared to the decaying
stage. To confirm that this is characteristic of warm ENSO events, we calculated the root-mean-square error
(RMSE) at 3- and 6-month lead times using the ensemble of Niño 3.4 index forecast results from February
2002 to June 2017 provided by the IRI database and the Kaplan sea surface temperature (SST) data set
(Kaplan et al., 1998). We chose four strong El Niño events (2002/2003, 2006/2007, 2009/2010, and
2015/2016) to create a composited RMSE of the Niño 3.4 index at 3- (Figure 1b, green curve) and 6-month
lead times (Figure 1b, red curve) from the IRI Multimodel Ensemble. The 3- and 6-month RMSE values evolve
consistently. Both are low in the decaying phase of the event and high in the developing stage. In addition,
Yu et al. (2009) used the conditional nonlinear optimal perturbation method (Mu & Duan, 2003) to investigate
the predictability for El Niño and showed that forecasting El Niño in the decaying phase could be much easier
than doing so in the developing phase. All these imply that the forecast skill of the different stages of warm
ENSO events is asymmetrical.

Is the above-described asymmetry of ENSO forecast skill due to an asymmetry of the inherent PLs of ENSO?
EGRs calculated using singular or breeding vectors cannot indicate quantitatively the length of the ENSO PL.
Meanwhile, although dynamical models have advanced greatly (Jin et al., 2008; Latif et al., 1998; Mu & Duan,
2003; Tang & Deng, 2011), they are still limited in their ENSO forecast skill, and using them to perform large
sets of reforecast experiments is computationally expensive (Kumar et al., 2017). Therefore, using methods
that can determine the ENSO PL based on observed SSTs may prove a useful alternative. For example,
Karamperidou et al. (2014) compared ENSO predictability estimates derived using LLEs to that gained from
the forecast error growth in hindcast experiments using a global climate model. They found that the differ-
ence between derived EGR of LLE and the forecast EGRs varies linearly with forecast lead time, which indi-
cates that the “real” PL may be reasonably approximated by using dynamical systems methods based on
SST time series (observed or modeled) and without the need to resort to expensive reforecasts.

An improvement to the above-described method is the nonlinear LLE (NLLE), which has been introduced to
study atmospheric and oceanic predictability from weather scale to climate scale (B. Chen et al., 2006; Ding
et al., 2008, 2010, 2011, 2017; Hou et al., 2017; Li & Ding, 2013). Li and Ding (2013) studied the temporal-spatial
distribution of the SST PLs using the NLLE method with monthly observational SST data. They found that the
maximum value of annual mean SST PL appears in the tropical central-eastern Pacific (more than 8 months).
However, Li and Ding (2013) did not consider the different stages of ENSO development in their study. The
present study aims to fill this gap, by using the NLLE method on observational SST data, as well as on SST out-
put from a long control climate model simulation, to estimate how ENSO PLs depend on the stage of warm-
ENSO-event development.

2. Methods and Data

The limit of ENSO predictability due to initial conditions is determined using the NLLE approach. A n-
dimensional nonlinear dynamical system is described by

d
dt

y ¼ F yð Þ; (1)
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where y = [y1(t), y2(t),……, yn(t)]
T is the state vector at time t, F denotes the dynamical system and the super-

script T represents the transpose. The evolution equation of an error δ = [δ1(t), δ2(t),……, δn(t)]
T, superim-

posed on a state y, is given by

d
dt

δ ¼ J yð Þδþ G y; δð Þ; (2)

where J(y)δ are the tangent linear terms of the error δ, and G(y, δ) are the nonlinear terms. Without making a
linear approximation, solutions of equation (2) can be solved by numerically integration along the reference
solution y, that is,

δ tið Þ ¼ η y t0ð Þ; δ t0ð Þ; tið Þδ t0ð Þ; (3)

where η(y(t0), δ(t0), ti) represents the nonlinear propagator. The definition of NLLE is

λ y t0ð Þ; δ t0ð Þ; tið Þ¼ 1
ti � t0

ln
δ tið Þk k
δ t0ð Þk k ; (4)

where λ(y(t0), δ(t0), ti) is the function of the initial state y(t0), the initial error δ(t0) and time ti.

For a specific class of states, the ensemble mean NLLE, obtained by averaging λ(y(t0), δ(t0), ti), can be used to
calculate the mean error growth. The method assumes that two state points which have a relatively small
initial distance from each other will diverge and, as their trajectories eventually fall into the dynamical sys-
tem’s attractor (Li et al., 2017), they will be indistinguishable from random points. The separation distance,
or error, eventually grows to saturation level for a dynamical system (Ding & Li 2007; Li et al., 2017). The error
saturation value represents the average distance between two randomly chosen points in the given probabil-
ity set, implying that once the error growth reaches the saturation level, almost all information on initial states
is lost and the prediction becomes meaningless. When the error reaches its saturation value, the PL is
reached, and the initial adjacent states drop into the same probability set (attractor; Li et al., 2017). The
NLLEs represent the separation rate between the initial adjacent states as the dynamical system evolves,
and the PL can be defined by means of the error saturation value. In this study, the 99% percent of the satura-
tion value is used as to define the PL, to reduce the effect of sampling fluctuations. The signal-to-noise ratio is
also used to qualitatively verify the potential predictability (Mann & Lees, 1996; Tang et al., 2008).

Figure 1. (a) Forecasts of sea surface temperature anomalies for the Niño 3.4 region (5°S–5°N, 170–120°W) with a lead time of 9 months (http://iri.columbia.edu/our-
expertise/climate/enso/). (b) Composited root-mean-square error (RMSE) and Niño 3.4 index (black) for four strong El Niño events (2002/2003, 2006/2007, 2009/2010,
and 2015/2016). The green (red) curve in (b) represents the RMSE during 3-month (6-month) lead times. ENSO = El Niño–Southern Oscillation.
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Based on the observation SST data, the EGR acquired by NLLE merges
linear and nonlinear components. The NLLE method has been widely
applied to the dynamical systems of ocean and atmosphere and esti-
mated their predictability causing from the uncertainty of initial state,
such as Madden-Julian Oscillation (Ding et al., 2010). Thus, we can cal-
culate ENSO PL with NLLE method using observational data in this
paper, whether ENSO is chaotic or not.

Monthly mean SST data are used from the Kaplan Extended SST V2
(1856–2016) reconstruction (Kaplan et al., 1998). Lorenz (1969) pointed
that finding historical analogues to assess predictability requires a suf-
ficiently long-time series. Li and Ding (2013) indicated that the PL
would be undervalued when the observational points are too few to
find good local analogues. Karamperidou et al. (2014) also showed that
the accuracy of EGRs calculated using a similar method (LLEs) is sensi-
tive to the length of the time series used. The short length of the recon-
structed SST data set (161 years; 40 identified ENSO events) may
preclude the NLLE method from finding proper analogous trajectories
to the reference state. Therefore, 1,280 years of Niño 3 (°S–5°N and
150–90°W) SST anomalies and thermocline depth from a GFDL CM2.1
preindustrial control simulation (Wittenberg, 2009; Wittenberg et al.,
2006) are also used in this study to assess the robustness of results.

CM2.1 exhibits an irregular ENSO cycle with phase-locking to the boreal winter, albeit with overestimated
magnitude, and has been previously used to explore multidecadal-to-centennial modulation of ENSO
strength and predictability (Karamperidou et al., 2014; Wittenberg, 2009; Wittenberg et al., 2014). Before cal-
culating the limit, we removed the annual cycle from the SST data and the SST data are smoothed by 3-month
running mean.

3. Results

Here the limits of warm ENSO phase predictability are calculated based on the monthly Niño 3 index,
smoothed by a 3-month running mean. Warm ENSO events are defined when the December Niño 3 index
is greater than 0.5 °C, which takes into account the phase-locking of ENSO to the boreal winter (An &
Wang, 2001; Ham & Kug, 2014). The composited PL (Figure 2, red curve) changes during the developing
and decaying of ENSO warm anomalies (Figure 2; black curve). In the initial neutral stage, the limit is approxi-
mately 10–11months. The limit has a growing tendency in pace with the warm ENSO phase developing (from
December [�1] to December [0]) which lasts until the decaying warm ENSO stage (June–September [+1]).
The limit reaches 12 months in the mature warm ENSO phase and 14–15 months in the decaying warm
ENSO phase. The difference in PLs between the developing and decaying warm ENSO stage measures up
to 4–5 months, which is significant at the 90% level in a bootstrapping test and cannot be explained merely
by seasonality in the limit, which is only 2–3 months, as shown in Table 1, a. The difference in predictability
found here is confirmed by the signal-to-noise ratio qualitatively (not shown) and is consistent with the var-
iation in model forecast skill across ENSO stages that was shown in Figure 1. Using the Kaplan Extended SST
V2 (1950–2016), which has higher quality than before 1950 but includes fewer warm ENSO events, the differ-
ence of PL still exists (not shown). In addition, we considered the sensitivity of the PL to the percentage of the

Figure 2. Composited predictability limit (red) of the observed Niño 3 index
(black) from 40 warm El Niño–Southern Oscillation events. The gray line gives
a level of 90% confidence for the predictability limit of every stage by the
bootstrap (resampling) method. The data set used is Kaplan Extended SST V2
(1856–2016).

Table 1
Predictability Limit for Different Seasons

Month

Predictability limit January February March April May June July August September October November December

(a) From the observed dataa 14.70 14.91 17.25 15.25 15.75 14.47 14.92 15.57 13.95 13.77 15.09 15.60
(b) From the GFDL CM2.1 simulationa 14.83 15.57 17.10 16.15 17.11 16.33 16.03 15.44 15.30 14.97 15.04 15.27

aUnits (month).
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saturation value and confirmed that the asymmetry of PL still exists for saturation values ranging from 80% to
99% (the latter value was used in this study).

As discussed in section 2, the NLLE method is sensitive to the length of the time series used; therefore, we
employ the long GFDL CM2.1 simulation to confirm the dependence of ENSO predictability on the stage of
development. Indeed, the evolution of the composite PL in 321 events in CM2.1 is similar to the one obtained
by observations (cf. Figures 2 and 3a). Note that two warm events spanning two consecutive years are
regarded as one warm ENSO event here. Figure 3a shows that the PL in the warm ENSO decaying stage
(approximately 16 months) is higher than that in the warm ENSO developing stage (12–13 months). The low-
est limit (11–12 months) is found in the neutral stage before the warm developing phase. The PL in different
calendar months fluctuates within a range of 1–2 months (Table 1, b); therefore, the differences across calen-
dar months cannot explain the limit differences across the different stages of warm ENSO events. The pre-
sence of noise in the observational data set influences the accuracy of estimated PL. However, in a series
of experiments adding Gaussian noise at different variance levels, we find that the asymmetry of PL still exists
at the 90% significance level (not shown).

To assess whether the method of compositing (based on the magnitude of the Niño 3 index in December)
affects the results, we also composited the events around the peak of the full ENSO cycle without regard

Figure 3. Composited predictability limit (red) as a function of the background warm El Niño–Southern Oscillation event
(black) using different composited methods with the 1,280-year monthly Niño index time series from GFDL CM2.1
preindustrial simulation. In (a) the ENSO phase-locking to the boreal winter is considered and the total number of warm
ENSO events chosen is 321. (b) The focus is on the ENSO cycle regardless of the month of peak SST anomalies and the
number of La Niña to El Niño (El Niño to La Niña) transitions is 114 (136). The gray line gives a level of 90% confidence for
the predictability limit of every stage in (a, b). The mean nonlinear local Lyapunov exponent (NLLE; red) spanning 3 (c) and
6 months (d) as a function of the background Niño 3 index (black) shown in (a).
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for the month of peak SST anomaly to ensure robustness of the results (see supporting information for
details). This alternatively composited Niño 3 index and PL are displayed in Figure 3b. The PL exhibits its
highest values in the mature (15–19th month) and decaying phase (22–26th month) compared to the
development phase (1–7th month), in agreement with the previous composite (Figure 3a). Here the analogue
states in the NLLE method are searched based on the Niño 3 Index time series; using both the Niño 3 Index
and the thermocline depth to identify analogical trajectories and calculate the PL yields almost identical results
(not shown).

The EGR during the forecast period has a direct effect on the PL (Li & Ding, 2013). Indeed, the average non-
linear error relative growth rates for 3- and 6-month lead times (Figures 3c and 3d) show maximum values
when the PL has low values. The NLLEs have the highest values in the neutral stage before the developing
stage and are small in the mature and decaying stages of warm ENSO events (Figures 3c and 3d). The char-
acteristics of the limit are already present at NLLEs of a 3-month lead time, which further supports the struc-
ture of the PL diagnosed previously.

The PL in the decaying phase of the warm ENSO is longer than that of the developing phase because of the
different error growth characteristics. Based on Figure 3a, we selected the period December (�1) to February
(0) as the developing stage and June (+1) to August (+1) as the decaying stage. The composited Niño 3 index
is 0.06 (0.05) °C and the composited PL is 11.89 (17.94) months for the developing (decaying) stage. Figure 4a

exhibits the relative error ln δ tið Þk k
δ t0ð Þk k for the developing (red line) and decaying (blue line) stages. The relative

error in the developing stage is larger than that in the decaying stage. To explain the EGR difference between
the two stages, we calculated the NLLE and the instantaneous EGR (γ) in Figure 4a. The NLLE emphasizes the
EGR over a period, while the instantaneous EGR γ(ti) gives monthly information and helps identify the key
month of growth. The EGR in a given month is defined as follows:

γ tiþ1ð Þ ¼ 1
tiþ1 � ti

ln
L tiþ1ð Þ
L tið Þ ; (5)

where i is natural numbers and represents the lead time, L(ti) is the error between the analogue and reference
trajectories at ti.

The NLLE in the developing stage is larger than that in the decaying stage expect the first 2 months
(Figure 4b). This is because the instantaneous EGR in the developing stage is larger in the 2–9th month
(Figure 4c). The larger the instantaneous EGR and the NLLE is, the larger the relative error is. From the third
to eighth lead month, the γ in the developing stage is larger and the error continually increases faster than

Figure 4. Relative error (a), nonlinear local Lyapunov exponent (NLLE; b) and instantaneous error growth rate γ(ti) in a given month (c) for the developing phase
(December [�1] to February [0], red line) and the decaying phase (June [+1] to August [+1], blue line) based on Figure 3a. The vertical red (blue) dashed line in
(a) represents the predictability limit of the developing (decaying) phase.
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in the decaying stage. The relative error of the developing stage is larger than that of the decaying stage at
the same lead month. Thus, the PL of the developing stage is shorter than that of the decaying stage of the
warm ENSO event.

4. Conclusions

This study used the NLLE method to provide a quantitative estimate of the PL of the different stages (devel-
opment, mature, and decaying) of warm ENSO events in observational data and assessed its robustness using
a long climate model control simulation. The PL approaches 10 months in the developing stage of warm
ENSO events. Meanwhile, the mature and decaying phase have high PL, 13 and 16 months, respectively.
The difference in inherent predictability across the different ENSO stages, which is quantified in this study,
may explain the asymmetry of ENSO forecast skill by the suite of dynamical and statistical models used for
operational ENSO forecasts. We showed that the difference in predictability across ENSO stages is due to
the error growth, rather than due to inherent seasonal variations. Here we used the EGR described by
NLLE and the instantaneous EGR γ(ti) and showed the impact of lead period on the PL of ENSO, and specifi-
cally that error growth mostly contributes to the limit during 8-month lead periods. According to previous
studies, the linear EGR, represented by singular values from the tangent linear approximating equation of
the ENSO dynamical system (Cheng, Tang, Zhou, et al., 2010), at the decaying stage of the warm ENSO event
was equivalent to, or even larger than that at the ENSO developing stage. This could mean that the linear
component of the realistic error growth of the ENSO dynamical system cannot explain the PL asymmetry
of the warm ENSO. Thus, we hypothesize that the PL asymmetry of warm ENSO events might result from
the nonlinear component of the NLLE.
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