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ABSTRACT

In this study, the nonlinear local Lyapunov exponent (NLLE) approach was used to quantitatively determine the pre-
dictability limit of tropical cyclone (TC) tracks based on observed TC track data obtained from the Joint Typhoon Warning
Center. The results show that the predictability limit of all TC tracks over the whole western North Pacific (WNP) basin is
about 102 h, and the average lifetime of all TC tracks is about 174 h. The predictability limits of the TC tracks for short-,
medium-, and long-lived TCs are approximately 72 h, 120 h, and 132 h, respectively. The predictability limit of the TC
tracks depends on the TC genesis location, lifetime, and intensity, and further analysis indicated that these three metrics
are closely related. The more intense and longer-lived TCs tend to be generated on the eastern side of the WNP (EWNP),
whereas the weaker and shorter-lived TCs tend to form in the west of the WNP (WWNP) and the South China Sea (SCS).
The relatively stronger and longer-lived TCs, which are generated mainly in the EWNP, have a longer travel time before they
curve northeastwards and hence tend to be more predictable than the relatively weaker and shorter-lived TCs that form in
the WWNP region and SCS. Furthermore, the results show that the predictability limit of the TC tracks obtained from the
best-track data may be underestimated due to the relatively short observational records currently available. Further work is
needed, employing a numerical model to assess the predictability of TC tracks.
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1. Introduction

Tropical cyclones (TCs) are destructive weather phenom-
ena that pose a great threat to life and property, and are
the cause of many natural disasters. Accordingly, more ac-
curate forecasts of TC tracks would help to reduce the loss
of life and minimize the damage associated with TCs. With
the development of numerical models and the more effec-
tive use of observational data, great improvements in the
accuracy with which TC tracks can be forecast have been
made in recent decades (Sampson et al., 2006; Goerss, 2009;
Elsberry, 2014; Qi et al., 2014; Thanh et al., 2016). How-
ever, as a mesoscale weather system, the predictability of
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TC tracks is limited by the chaotic nature of the system it-
self (Thompson, 1957; Lorenz, 1963, 1969). The TC track,
as one of the most significant forecast parameters, can be
further improved with better understanding of the associated
predictability limit (Zhang and Krishnamurti, 1997; Elsberry,
2007; Elsberry et al., 2010; Li et al., 2016). Therefore, the es-
timation of the predictability limits of TC tracks is worthy of
further investigation.

Numerous studies have investigated the predictability of
TC tracks in different basins (Chan and Gray, 1982; Fraedrich
and Leslie, 1989; Bender et al., 1993; Goerss, 2000; Els-
berry et al., 2010; Aiyyer, 2015; Peng et al., 2015; Munsell,
2016). Since the early 1980s, a nonlinear systems analysis
approach known as the correlation integral has been used to
examine the dimensionality of the attractor in a dynamical
system and the growth rate of the initial small error, which is
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a relevant measure of the predictability of a dynamical sys-
tem (Grassberger and Procaccia, 1984; Nicolis and Nicolis,
1984; Fraedrich, 1987; Leslie et al., 1998). Based on best-
track data, Fraedrich and Leslie (1989) used the correlation
integral method to measure the error growth of initially close
sections of TC tracks, and then estimated the predictability of
these tracks. Their results showed that the e-folding growth
timescale of the TC track error is approximately 24 h (1 day)
in the Australian Basin. Using a similar approach, Aberson
(1998) and Aberson and Sampson (2003) calculated the e-
folding growth timescale of TC track error in other basins,
and revealed that the predictability timescale of TC tracks is
roughly 60 h in the Northwest Pacific, 42 h in the Northeast
Pacific, and nearly 60 h in the Atlantic Basin. These results
suggest that the predictability of TC tracks varies between
basins and that TC tracks in the Australian Basin are likely
to be the least predictable. In addition to the nonlinear sys-
tems analysis approach, several studies have examined the
predictability of TC tracks using numerical models (Leslie et
al., 1998; Fiorino, 2009; Plu, 2011; Qin et al., 2013; Mun-
sell and Zhang, 2014; Poterjoy and Zhang, 2014). For exam-
ple, based on several up-to-date numerical models, including
the global model of the European Centre for Medium-Range
Weather Forecasts, Plu (2011) suggested that the doubling
time of small initial error is between 30 and 50 h.

These previous studies have significantly improved our
understanding of TC track predictability. However, they es-
timated the predictability of the TC tracks using mainly the
error e-folding growth time or the error doubling time. Some
studies have pointed out that these commonly used parame-
ters might not be a good measure of predictability, mainly be-
cause they are usually determined by extrapolation from the
small error and are extremely sensitive to the method of ex-
trapolation (Heckley, 1985; Dalcher and Kalnay, 1987). Arpe
and Klinker (1986) also argued that it is difficult to measure
the doubling time of small initial error directly. Moreover, the
error e-folding growth time and the error doubling time have
another limitation in that they are defined by assuming that
the error is sufficiently small that their evolution can be gov-
erned approximately by the linearized error growth equations
(Lacarra and Talagrand, 1988; Mu, 2000). Given the limi-
tations of the error e-folding growth time or the error dou-
bling time in measuring the predictability of TC tracks, in
this paper we present a new method, based on nonlinear er-
ror growth dynamics, that helps to quantitatively estimate the
predictability limit of TC tracks.

Over the last decade, a new approach, based on the
nonlinear local Lyapunov exponent (NLLE), has been intro-
duced into the study of atmospheric and oceanic predictabil-
ity (Chen et al., 2006; Ding and Li, 2007). This NLLE
approach is superior to the traditional Lyapunov exponent,
which is based on linear error dynamics, for quantitatively
estimating the predictability limit of atmospheric and oceanic
variables because it can be applied to predictability investiga-
tions of finite-size initial error and the error average growth
at a finite time. With the NLLE and its derivatives, the pre-
dictability limit can be efficiently and quantitatively deter-

mined. Li and Ding (2011) developed a reasonable and ef-
ficient algorithm that is based on local dynamical analogs
(LDAs) to calculate the NLLE and its derivatives using obser-
vational data for the investigation of atmospheric and oceanic
predictability. Much recent research has applied the NLLE
approach to the study of atmospheric predictability based on
observational data and obtained the spatiotemporal charac-
teristics of the predictability limit of different atmospheric
variables, including the geopotential height, temperature, and
precipitation (Ding and Li, 2009b; Ding et al., 2010; Li and
Ding, 2013; Li et al., 2014; Liu et al., 2016).

The remainder of this paper is arranged as follows. In
section 2, the observed TC data (best-track data) used in this
investigation are briefly described and the NLLE method and
its application based on observational data are introduced.
Section 3 presents the predictability limit of the TC tracks
over the whole western North Pacific (WNP) basin. Section
4 shows the dependence of TC track predictability on TC gen-
esis location, lifetime, and intensity. The linkages among the
predictability limit of the TC tracks, the TC genesis location,
lifetime, and intensity are discussed in section 5. Finally, a
summary of our major findings is provided in section 6.

2. Data and methods

2.1. Observational data

We use the best-track data for the period 1945–2013
provided by the Joint Typhoon Warning Center (JTWC),
downloaded from http://www.usno.navy.mil/NOOC/nmfc-
ph/RSS/jtwc/best tracks/, to investigate TC track predictabil-
ity over the whole WNP basin. The WNP basin, including the
SCS, covers the area bounded by (0◦–30◦N, 100◦–180◦E).
The TC dataset contains the maximum wind speed, central
surface pressure, and observations of the central positions
(latitude and longitude) for each 6-h interval. There were
1814 TCs with lifetimes that exceeded 48 h across the whole
WNP between 1945 and 2013 (Fig. 1a). In addition to the
best-track data from the JTWC, the most recent version of
the international best-track archive for climate stewardship
(IBTrACS v03r06) database, which is a new global TC best-
track dataset, is used to verify the results generated using
the JTWC data (Knapp et al., 2010). The IBTrACS dataset
provides the first publicly available centralized repository of
global TC best-track data from the JTWC, Japan Meteorolog-
ical Agency, China Meteorological Administration, and other
agencies. As numerous TCs were reported by other agencies
in the WNP basin, some TCs obtained from the IBTrACS
dataset may not be included in the best-track data from the
JTWC.

2.2. The NLLE approach

For vector xxx(t0) at time t0, the NLLE, λ, is defined as fol-
lows:

λ(xxx(t0), δδδ(t0), τ) =
1
τ

ln
‖δδδ(t0+τ)‖
‖δδδ(t0)‖ , (1)
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Fig. 1. (a) Spatial distribution of genesis locations of all TCs
over the whole WNP basin. The dots denote the genesis lo-
cations of TCs generated in the SCS (red dots), WWNP (green
dots), and EWNP (blue dots), and the cross denotes the MGL of
all TCs over the whole WNP basin. The longitudinal boundaries
of these three subregions are at 110◦E, 120◦E, 141◦E, and 180◦.
(b) Schematic representation of the evolution procedure used to
calculate the NLLE from the best-track data. The evolution tra-
jectory of an analog of the reference TC at time ti (i = 0,1,2, . . .)
is denoted as an analogous trajectory. The growth rate of the
absolute distance between the reference trajectory and its anal-
ogous trajectory is used to estimate the NLLE.

where λ(xxx(t0), δδδ(t0), τ) depends on the initial state xxx(t0) of the
reference orbit in phase space, the initial error δδδ(t0), and the
evolution time τ (Chen et al., 2006; Ding et al., 2007; Ding
and Li, 2007). The NLLE differs from the traditional Lya-
punov exponent, which is determined solely from the initial
state xxx(t0) and the evolution time step τ, rather than from
the initial error δδδ(t0) (Yoden and Nomura, 1993; Kazantsev,
1999; Ziehmann et al., 2000). Moreover, the NLLE measures
the average growth rate of the initial error based on the non-
linear error growth equations, thereby overcoming the limi-
tations of the traditional Lyapunov exponent, which uses the
linearized error growth equation. Figure 2 is a schematic il-
lustration of the mean error growth measured in terms of the
sufficiently small differences between the two initial states for
a dynamical system, as obtained using the linear Lyapunov
and NLLE methods. For short time intervals, the error shows
rapid linear growth. Over time, the evolution of the error be-
gins to depart from a linear trend, indicating that the evolution
of the error enters a nonlinear growth phase with a gradually
decreasing growth rate, and finally reaches saturation level.
In contrast, the evolution of the error obtained from the lin-

ear Lyapunov method shows continuous linear growth (Fig.
2). Therefore, compared with the traditional Lyapunov expo-
nent, the NLLE approach is more applicable to describing the
processes associated with the nonlinear error growth of dy-
namical systems and more suitable for describing the growth
of infinitesimal or finite-size initial error (Ding and Li, 2012;
Ding et al., 2016)

The ensemble mean NLLE over the global attractor of the
dynamical system is given by

λ̄(δδδ(t0), τ) = 〈λ(xxx(t0), δδδ(t0), τ)〉N , (N→∞) , (2)

where 〈 〉N denotes the ensemble average of samples of suf-
ficiently large size N (N →∞). The ensemble-mean NLLE
reflects the global evolution of mean error growth over an at-
tractor and can measure the global-mean predictability.

Based on the mean NLLE, the mean relative growth of the
initial error (RGIE), which is defined as the ratio of the error
at the evolution time τ to the initial error, can be obtained as
follows:

Φ̄(δδδ(t0), τ) = exp[λ̄(δδδ(t0), τ)τ]
P−→ c(N→∞) , (3)

where
P−→ denotes the convergence in probability and

λ̄(δ(t0), τ) is the ensemble mean NLLE of the dynamic sys-
tem. Using the theorem from Ding and Li (2007), the con-
stant c can be considered as the theoretical saturation level
of the RGIE, when the sample size N tends towards infinity.
Once the mean error growth reaches saturation level, almost
all information on the initial state is lost and the prediction be-
comes meaningless. Therefore, the predictability limit can be
quantitatively determined based on the theoretical saturation
value (Ding and Li, 2007). As a measure of predictability, the
predictability limit is superior to the error e-folding growth
time or the error doubling time and, as such, information on
the predictability limit can be used as a basic guideline for
improving prediction models.

Fig. 2. Schematic illustration of the mean error growth of a dy-
namical system, as obtained using the NLLE method. The mean
error growth (y-axis) uses a logarithmic scale to amplify the dif-
ferences between the linear and nonlinear error evolutions.
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2.3. Estimation of the NLLE from observational data
The NLLE approach has been widely used to study the

predictability of weather and climate (Ding et al., 2010; Li
and Ding, 2011; Shi and Ding, 2012; Liu et al., 2016). In
comparison with the linear approach, one major advantage of
the NLLE approach is that the NLLE and its derivatives can
be used to quantitatively determine the limit of weather and
climate predictability. In addition, the NLLE approach can
be used to determine the spatial distribution of the limit of
weather and climate predictability by making use of observa-
tional data. By developing an algorithm based on LDAs, the
mean NLLE and its derivatives can be calculated using obser-
vational data. The general purpose of the algorithm is to find
the analogs of the pattern of evolution in the observational
time series.

In this study, based on best-track data, the predictability
of TC tracks is measured in terms of the mean error growth of
TC tracks, which is computed from the divergence of the evo-
lutionary tracks of two initially analogous TCs. The determi-
nation of two analogous TCs is based on the initial distance,
which is the distance between the genesis locations (along a
great circle) of two TCs, and the evolutionary distance, which
is the mean distance between two TCs evolving over an early
time interval after the TCs formed. The two independent TCs
have a sufficiently small initial distance, which ensures that
their genesis locations are close, and the small evolutionary
distance ensures the similarity of their directions of motion.
To ensure similarity of the large-scale environmental steering
flows for the two TCs, we search for an analog of the refer-
ence TC from all TCs that formed in a similar “season” but in
different years (i.e., ±45 days of the genesis time of the refer-
ence TC). Note that the genesis time and location are defined
as the time and location, respectively, of the first record of a
TC track. Furthermore, we consider the similarity of initial
intensity (the present intensity at the genesis time) when two
analogous TCs are chosen. The conditions outlined above
help us to find truly analogous TCs and to exclude, as much
as possible, non-analogous TCs (Fig. 1b). A detailed descrip-
tion of the algorithm used to find the analogous TCs and to
estimate the NLLE based on the best-track data is given in
Appendices A and B.

3. Mean predictability limit of all TC tracks

In this study, the initial error is the distance (along a great
circle) between the genesis locations of two analogous TCs,
and the real-time track error is the distance (along a great
circle) between the real-time locations of the two analogous
TCs. The mean error growth represents the RGIE, which is
defined as the ratio of the real-time track error at the time of
evolution to the initial error. Based on the NLLE approach,
the mean error growth of TC tracks over time can be obtained
using the JTWC and IBTrACS datasets. Figure 3a shows the
mean error growth of the TC tracks over the whole WNP
basin, based on the JTWC best-track data. For a short time
interval, the mean error of the TC tracks shows rapid linear

Fig. 3. Mean error growth of all TC tracks over the whole WNP
basin, obtained from the (a) JTWC and (b) IBTrACS best-track
data. Note that the mean error growth on the y-axis uses a loga-
rithmic scale to amplify the differences between linear and non-
linear error evolutions. The dashed line represents the 95% level
of the saturation value obtained by taking the average of the
mean error growth after 168 h.

growth. With increasing time, the evolution of the mean er-
ror enters a nonlinear growth phase, and this is characterized
by a relatively slow increase that finally reaches saturation
level. The mean error associated with the TC tracks even-
tually reaches a saturation point that reflects a total loss of
information regarding the initial state, meaning that the track
prediction becomes meaningless. Here, to reduce the effects
of sampling fluctuations, we define the predictability limit as
the time at which the mean error reaches 95% of its satu-
ration level (Ding and Li, 2009a; Li and Ding, 2013; Ding
et al., 2016). It should be noted that the time at which error
growth reaches saturation depends mainly on the dynamical
characteristics of the system, and thus is a relatively objec-
tive criterion with which to quantitatively determine the pre-
dictability limit. From Fig. 3a, the mean predictability limit
of the TC tracks based on the JTWC best-track data is approx-
imately 102 h (4.25 days) over the whole WNP basin. This
is in agreement with the results shown in Fig. 3b, in which
the mean error and the predictability limit of the TC tracks
were obtained from the IBTrACS database using the NLLE
method. Hereafter, having considered the consistency of the
predictability limit of the TC tracks obtained from the JTWC
and IBTrACS datasets, we use mainly the JTWC best-track
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data to examine the error growth and predictability limit of
the TC tracks.

According to the above analysis, although the predictabil-
ity limit of the TC tracks exceeds 100 h for both datasets,
the relatively short observational records that are currently
available make it likely that the predictability limit of the TC
tracks is underestimated based on the best-track data. The to-
tal number of TCs that develop across the whole WNP basin
is relatively small. Some false analogs were inevitably found
in the best-track data, and these caused the initial error as-
sociated with the TC tracks to increase (because analogous
TCs would be more difficult to find). This may accelerate
the growth of the mean error and reduce the estimate of the
predictability limit. Considering the underestimation of the
predictability limit of the TC tracks based on the observa-
tional data, there is considerable potential for improving the
forecast skill of TC tracks. As pointed out by Plu (2011), the
predictability limit would provide objective information that
would allow us to determine the improvement that could be
expected from future advances in data assimilation and nu-
merical models.

In previous studies, evaluations of the forecast track er-
ror associated with numerical models of TC tracks were per-
formed using along- and cross-track components (Elsberry
and Peak, 1986; Goerss, 2000; Sampson et al., 2006). Here,
the magnitudes of the track error between analogous TCs are
also defined in terms of the cross- and along-track compo-
nents to examine the predictability of TC tracks based on the
NLLE method. We use the convention that the along- and
cross-track error represent the speed bias (fast or slow) and
direction bias (right or left), respectively, of the reference TC,
relative to the verified position of the analogous TC. Figure
4 shows the mean error growth of the along- and cross-track
components of the TC tracks. There are only trivial differ-
ences between the error growth curves of the two components
over a short time interval. Afterwards, however, the mean er-
ror of the along-track component increases more rapidly than
that of the cross-track component. This result indicates that
the error of the along-track component dominates the error
growth of all TC tracks.

Fig. 4. As in Fig. 3 but for the mean error growth of the along-
and cross-track components of the TC tracks.

4. Dependence of the predictability of TC

tracks on the genesis location, lifetime, and

intensity

The above results focus primarily on the predictability
limit of all TC tracks over the whole WNP basin. How-
ever, the response of the predictability limit of TC tracks to
changes in genesis location, lifetime, and intensity remains
unclear. Consequently, in this section, we explore the depen-
dence of the predictability of TC tracks on these factors.

4.1. TC genesis location
TC tracks vary in space and TCs are generated over a

broad area across the entire WNP basin. The spatial distribu-
tion of TC track predictability can be approximated by func-
tions depending on the genesis locations of the TCs. To de-
termine the spatial distribution of TC track predictability, we
first quantitatively estimated the predictability limit of the in-
dividual TC tracks using the NLLE method and the latitude
and longitude of the TC genesis locations. This estimation of
the predictability limit was then interpolated onto a 2◦ lati-
tude by 2◦ longitude spatial grid across the WNP basin. Fig-
ure 5a shows the spatial distribution of the predictability limit
of the TC tracks over the WNP basin. The predictability limit
of the TC tracks ranges from 48 to 120 h (2–5 days) over the
basin, and depends largely on TC genesis location. Over-
all, the predictability limit of the TC tracks shows a gradual
increase from 100◦E to 180◦, and this is highlighted by the
meridional mean (Fig. 5b). The predictability limit of the TC
tracks is lowest (<72 h) in the SCS (110◦–120◦E), possibly
because the TCs generated in this region are already closer
to the mainland or islands (such as the Philippines), and so
TC motion is complicated by the influence of topography
and boundary layer friction (Chan, 2005; Wong and Chan,
2006). In the western region of the WNP (120◦–140◦E), the
predictability limit of the TC tracks is relatively high, rang-
ing from 72 to 96 h (3–4 days). In the eastern region of the
WNP (140◦E–180◦, and especially the southeastern region of
the WNP), the predictability limit of the TC tracks is greater
than those in the SCS and the western region of the WNP.
We speculate that the future TC tracks may be affected by the
genesis locations. When the TCs are generated over the cen-
tral and eastern regions of the WNP, their initial movement is
typically to the west or northwest at a relatively steady rate,
but this is followed by an eventual poleward turn. Such turn-
ing is referred to as recurvature, and these TC tracks tend to
have relatively low predictability. This may explain why the
predictability limit of the TC tracks depends strongly on TC
prevailing tracks and genesis locations. Therefore, we must
compare the predictability limit of the TC tracks originating
from different regions of the WNP basin.

The genesis location for each TC is considered to be a
point (see Fig. 1a). The mean genesis location (MGL) for all
TCs formed in the WNP basin is (13.5◦N, 141◦E) (orange
cross in Fig. 1a). Based on the longitude of the MGL, we
divided the WNP (120◦E–180◦) into two subregions: the east
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Fig. 5. (a) Spatial distribution of the predictability limit of the
individual TC track obtained from the JTWC best track data and
(b) its meridional mean profile.

WNP (EWNP; east of 141◦E) and the west WNP (WWNP;
west of 141◦E). In addition to these two subregions, we
treated the SCS as a separate region because TCs generated
here behave differently, and this is a statistical characteristic
of genesis number and the mean lifetime of these TCs when
compared with those from the WNP (Wang et al., 2007; Yan
et al., 2012). Over the study period (1945–2013), the num-
bers of TCs observed in the SCS, WWNP, and EWNP were
209, 712, and 893, respectively.

We next examined the mean error growth of the TC tracks
in the SCS, WWNP, and EWNP regions and found that the
mean error of the TC tracks in the SCS was the first to reach
saturation state, followed by the WWNP, and then the EWNP
(Fig. 6). We used these error growth curves from the TC
tracks in these regions to determine that the predictability
limits of the TC tracks in the SCS, WWNP, and EWNP re-
gions were about 60 h (2.5 days), 84 h (3.5 days), and 108 h
(4.5 days), respectively. This indicates that the predictability
limit of the TC tracks in the EWNP is much higher than that
in the SCS, and the predictability limit of the TC tracks grad-
ually increases from the SCS to EWNP, which is consistent
with the results shown in Fig. 5a.

4.2. TC lifetime
The above results indicate that the predictability limit of

the TC tracks shows considerable dependence on TC genesis
location over the whole WNP basin. Previous studies have
found that TCs generated in different regions have differ-
ing lifetimes (Wang and Chan, 2002; Camargo and Sobel,
2005; Camargo et al., 2007; Murakami et al., 2011). There-
fore, it is important to consider whether there is any con-
nection between the lifetime and predictability limit of TC
tracks. To address this question, we classified all TCs into

Fig. 6. As in Fig. 2 but for the mean error growth of the TC
tracks in the (a) SCS, (b) WWNP, and (c) EWNP.

three groups according to their lifetime: short-lived (lifetime
<144 h), medium-lived (lifetime 144–216 h), and long-lived
(lifetime >216 h). The number of TCs in each group was
689, 602, and 523, respectively. This classification scheme
is broadly similar to that used by Camargo and Sobel (2005),
but they classified TCs into only two groups; i.e., short-lived
and long-lived.

Figure 7 shows that the mean error associated with the
TC tracks of short-, medium-, and long-lived TCs gradually
depart from each other after about 12 h. The mean error of
the medium- and long-lived TC tracks show relatively slow
growth, and ultimately reach saturation state after a few days
(about 168 h). By comparison, the mean error growth of
the short-lived TC tracks increases at the fastest rate of these
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Fig. 7. As in Fig. 2 but for the mean error growth of (a) short-
lived, (b) medium-lived, and (c) long-lived TC tracks.

three groups. As the quick decay of the short-lived TCs re-
sults in a relatively short lifetime and restricted dataset, error
saturation values for the short-lived TC tracks do not exist af-
ter 120 h. Considering that the mean error of short-lived TC
tracks shows extremely slow growth at the end (close to the
saturation state), the maximal error value of the short-lived
TC tracks was taken as the approximate saturation value,
making it suitable for estimating the predictability limit of the
TC tracks. It should be noted that this might lead to a slight
underestimation of the predictability limit of short-lived TC
tracks. According to the 95% error saturation criterion, the
predictability limit of the short-, medium-, and long-lived TC
tracks was approximately 72 h (3 days), 120 h (5 days), and
132 h (5.5 days), respectively. We found that the predictabil-

ity limit of the long-lived TC tracks was about twice that
of the short-lived TC tracks. These results indicate that the
predictability limit of TC tracks is generally associated with
changes in TC lifetime, and a TC with a relatively long life-
time may be favorable for a relatively high predictability of
TC track.

4.3. TC intensity
According to recent studies of TC activity, intensity is

one of the most important TC metrics (Knutson et al., 2010;
Walsh et al., 2016). To further clarify the effect of TC inten-
sity on the predictability limit of TC tracks, we classified TC
intensity into four levels based on the maximum sustained
wind speed: tropical depression (TD; 10.8–17.1 m s−1); trop-
ical storm (TS; 17.2–32.6 m s−1, including tropical storm
and severe tropical storm); typhoon (TY; 32.7–41.4 m s−1);
and severe typhoon (STY; >41.5 m s−1, including severe ty-
phoon and super typhoon), which is similar to the classifica-
tion scheme used in previous studies (Wu et al., 2012; Zhang
et al., 2012). As intensity changes throughout the lifetime of
a TC, the intensity levels in this investigation were based on
the peak intensity over the lifetime. The mean error growth
of the TC tracks in the four intensity categories (TD, TS, TY,
and STY) is shown in Fig. 8. The STY track has the highest
predictability limit of the four categories, at approximately
114 h (4.75 days), and is significantly higher than that of the
TD tracks (about 60 h). In contrast to the TD tracks, the pre-
dictability limits of the TS and TY tracks are also relatively
high, with values of 96 h (4 days) and 102 h (4.25 days), re-
spectively. These results suggest that the predictability limit
of the TC tracks differs for different TC intensities, and that
relatively weak (strong) TCs tend to have a relatively low
(high) TC track predictability.

5. Discussion

5.1. Distribution of genesis location for different TC types
In section 4, we demonstrated that the predictability limit

of TC tracks depends on the genesis location, lifetime, and in-
tensity of the TCs. Next, we show that the lifetime, intensity,
and genesis location are closely related. Figures 9a–c show
the spatial distributions of the genesis locations of the short-,
medium-, and long-lived TCs, respectively, over the whole
WNP basin. The whole WNP domain is also divided into
three subregions: the SCS, WWNP, and EWNP. The most
striking feature of the spatial distributions is the prominent
west–east shift in the genesis location between the short-lived
and long-lived TCs. More short-lived TCs were generated to
the west of 141◦E (including the SCS and WWNP regions),
whereas most of the long-lived TCs were generated to the east
of 141◦E (i.e., the EWNP region). In contrast, the medium-
lived TCs were generated in the region ranging from 130◦E to
150◦E (i.e., the middle of the WNP region). Furthermore, we
examined the MGLs of the short-, medium-, and long-lived
TCs over the WNP. Compared with the MGL of all TCs over
the whole WNP basin), there is no obvious difference in the
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Fig. 8. As in Fig. 2 but for the mean error growth of the (a) TD, (b) TS, (c) TY, and (d) STY intensity tracks.

Fig. 9. Spatial distributions of the genesis locations of (a) short-lived, (b) medium-lived, and (c) long-lived TCs
over the whole WNP basin. The small black dots indicate the genesis locations of the TCs and the big dots
indicate the MGL of each category of TC. Crosses indicate the MGL. (d) Number of TCs generated in the three
subregions for the three lifespan groups.

latitude of the MGLs of the short-, medium-, and long-lived
TCs, but the longitude of the MGL differs considerably for
the three groups of TCs. The MGL of the short-lived TCs is
west of the MGL of all TCs, whereas the MGL of the long-
lived TCs is east of the of all TCs. The longitude of the MGL
also differs significantly, by 17.2◦, between the short-lived
and long-lived TCs. However, in contrast to the MGL of all
TCs, the MGL of the medium-lived TCs is shifted slightly

westwards, by about 0.4◦ of longitude.
The numbers of short-, medium-, and long-lived TCs gen-

erated in the SCS, WWNP, and EWNP subregions are shown
in Fig. 9d. A greater number of short-lived TCs formed in the
SCS and WWNP (516), i.e., nearly three times the number
in the EWNP (173). In contrast, most of the long-lived TCs
were generated in the EWNP (379), whereas fewer long-lived
TCs were generated in the SCS and WWNP (144). These re-
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sults indicate that the TC genesis location is a significant con-
trol on TC lifespan, and that the longer-lived TCs tend to be
generated in the east of the WNP region, which is consistent
with the findings of Chan (2005) and Wang and Chan (2002).

We also explored the relationship between TC intensity
and genesis location. Figures 10a–d show the spatial distri-
bution of TC genesis location for the four categories of TC
intensity (TD, TS, TY, and STY) over the whole WNP basin.
We see that more TDs and TSs were generated in the SCS and
WWNP, and their MGLs are west of the MGL. The MGL
of the TY group is located close to the MGL. In contrast,
the MGL of the STY group is located well to the east of
the MGL, and the longitude of the MGL of the STY group
and the MGL differs by 6.6◦. In addition, we note that the
stronger TCs tend to be generated in the east of the WNP
region, whereas fewer strong TCs are generated in the SCS
(Fig. 10e). This result is consistent with Chan (2005), who
found that the SCS does not favor the generation of strong
TCs, possibly because the TCs are already close to land and
tend to have a shorter lifetime.

According to the above analysis, there are close relation-
ships among TC genesis location, lifetime, and intensity over
the whole WNP basin. Stronger and longer-lived TCs tend
to be generated in the east of the WNP, whereas the weaker

and shorter-lived TCs tend to be generated in the west of the
WNP and in the SCS. However, the question remains as to
why long-lived and strong TCs generated in the EWNP tend
to have a higher TC track predictability limit. To address this
question, we calculated the mean tracks of all of the lifetime
and intensity categories of TC (Fig. 11). For each category of
TCs, its mean track is successive mean positions (including
the mean longitude and latitude) of TCs at each time. The
TCs in the three lifetime categories (short-, medium-, and
long-lived TCs) maintain a northwestward path in the early
stages, and then curve back towards the northeast. The long-
lived TCs generated in the EWNP follow a northwestward
track within the first 168 h (7 days), after which they curve
from a northwestward to a northeastward track. In contrast,
those short-lived TCs that are generated in the WWNP move
northwestwards over the first 66 h (2.75 days) before chang-
ing direction. As pointed out by Leslie et al. (1998), the
TCs that tend to curve track suddenly and exhibit significant
erratic motion are inherently unpredictable. Wang and Chan
(2002) and Wu et al. (2012) pointed out that the tracks of
TCs generated in the east of the WNP tend to be steadier, and
thus more predictable, before entering midlatitude waters or
encountering land. We see that the four TC intensity cate-
gories also follow a northwestward track in the early stages.

Fig. 10. As in Fig. 9 but for the spatial distributions of the genesis location of the (a) TD, (b) TS, (c) TY, and
(d) STY intensity groups over the whole WNP basin. (e) Number of TCs generated in the three subregions for
the four intensity categories.
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Fig. 11. Mean track of all TCs for different (a) lifetimes and (b)
intensities.

However, it takes longer for the STY group (ca. 5 days) to
curve northeastwards than for the TD group (ca. 2.5 days).
These results indicate that the predictability of the TC tracks
is closely linked to their lifetime, intensity, and genesis loca-
tion. Generally speaking, the longer-lived and stronger TCs
tend to be generated in the east of the WNP region, where
the TCs have a relatively long travel time before they curve
northeastwards, and thus tend to be more predictable. These
results further suggest that TC genesis location has a signif-
icant influence on the predictability limit of TC tracks in the
WNP and SCS.

5.2. Dependence of the predictability limit on the real-
time location

Our results indicate that the predictability limit for TC
tracks across the whole WNP basin is closely linked to the
genesis location. In addition to the genesis location, the
change in track predictability throughout the TC lifecycle is
worthy of investigation. Therefore, we further examined the
mean error growth of a TC track as a function of the time
since the TC formed. Note that the analogous TCs are based
on the similarity of the TC’s real-time location at 24, 48, 72,
and 96 h after TC genesis. If the reference TC was unable to
find its analog TC at these four real-times, we excluded the
reference TC. Figure 12 shows the mean error growth of a
TC track obtained from the different real-time locations that
include the genesis location (00 h), 24 h real-time location
(24 h after TC genesis), 48 h real-time location (48 h after
TC genesis), and 72 h real-time location (72 h after TC gen-
esis), respectively. There are some differences in the mean
error growth of the track for the TC at the different real-time

Fig. 12. Mean error growth of a TC track obtained from dif-
ferent real-time locations over the whole WNP basin, including
the genesis location (00 h) and its real-time locations at 24, 48
and 72 h after TC genesis. The genesis time and location are
defined as the time and location of the first record of a TC track,
respectively.

locations. The mean error growth of tracks shows the slow-
est growth and takes the longest time to reach saturation state
when the TC forms in the open Pacific (at genesis time, 00 h),
whereas the time at which the mean error reaches saturation
level is reduced for a TC at the 24, 48, and 72 h real-time
locations. As reported by Leslie et al. (1998), a TC tends to
have a relatively small track error or a slower error growth
rate when the TC generates over the open ocean (far from
continental land or islands). These results indicate that the
predictability limit of a TC track gradually decreases between
the genesis location and the 72 h real-time location.

6. Summary

In this study, we used the NLLE approach to estimate the
predictability limit of TC tracks over the whole WNP basin
using observed TC best-track data. We found that the av-
erage predictability limit of all TC tracks across the entire
WNP basin was approximately 102 h (4.25 days). However,
the predictability limit of the TC tracks varied widely with
the genesis location, lifetime, and intensity of the TCs. The
predictability limits were highest in the EWNP, followed by
the WWNP, and then the SCS, with values of about 108 h
(4.5 days), 84 h (3.5 days), and 60 h (2.5 days), respectively.
Moreover, the predictability limit of the TC tracks tended to
increase with increasing TC lifetime, and the predictability
limits of the TC tracks for short-, medium-, and long-lived
TCs were approximately 72 h (3 days), 120 h (5 days), and
132 h (5.5 days), respectively. Likewise, the predictability
limits of the TC tracks also differed with TC intensity, and
the predictability limits of the TC tracks for the TD, TS, TY,
and STY intensity categories were about 60 h (2.5 days), 96
h (4 days), 102 h (4.25 days), and 114 h (4.75 days), respec-
tively.

Further analysis indicated that the predictability limit of
the TC tracks, and the lifetime, intensity, and genesis location
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of the TCs, are closely related. We found that the relatively
strong and long-lived TCs tend to be generated in the EWNP,
whereas the relatively weak and short-lived TCs tend to form
in the WWNP and SCS. As the relatively strong and long-
lived (weak and short-lived) TCs generated in the EWNP
(WWNP and SCS) have a relatively long (short) travel time
before they curve northeastwards, they tend to have a high
(low) predictability limit. The link among the predictability
limit of the TC tracks, lifetime, intensity, and genesis location
of the TCs highlights the potential importance of the genesis
location in contributing to TC predictability.

In this paper, the predictability limit of TC tracks over
the whole WNP basin was quantitatively estimated using ob-
served TC track data. Given the relatively short observa-
tional records of observed TC track data, our estimation of
the predictability limit of the TC tracks will inevitably in-
clude large uncertainties. Further study is required to assess
the predictability of TC tracks using the best-track data from
a longer period of observation or a long-term simulation by
a more realistic TC model. In addition, to gain a more com-
plete understanding of TCs, it will be necessary to investigate
the predictability of TC intensity in our future work.
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APPENDIX A

Algorithm for finding two analogous TCs

Let the TC {xi(θi(tk),ϕi(tk)),k = 0,1,2, · · · · · · ,M − 1, i =
1,2, · · · · · · ,N} be a set of points indicating TC position, where
M represents the length of a TC time series, N represents
the total number of TCs, and θi(tk) and ϕi(tk) represent the
longitude and latitude, respectively. For a continuous series
of points describing the evolving TC position, the distance
(along a great circle) between two independent TCs is given
by

di, j(tk) = Rarccos{sinϕi(tk) sinϕ j(tk)+
cosϕi(tk)cosϕ j(ti)[θi(tk)− θ j(tk)]} , (A1)

where i and j are the serial number of TC, k is the serial num-
ber of time, R is the average radius of the Earth and tk are the
times of TCi and TC j.

The determinations of two analogous TCs are based on
the initial distance di, j(t0) and the evolutionary distance de.
A brief description of the algorithm that we used to find two
analogous TCs from all TCs over the WNP basin is given
below:

Step 1. Taking the genesis location x1(θ1(t0),ϕ1(t0)) of
TC1 as a reference initial position at the initial time (genesis
time) t0, we first seek the genesis location x j(θ j(t0),ϕ j(t0)) of
TC j. The initial distance d1, j(t0) is the distance between the
genesis locations of TC1 and TC j. To ensure the similarity
of the large-scale environmental steering flows for the two
TCs, the reference TC (TC1) and TC j should have formed
in a similar “season” in different years (i.e., ±45 days of the
genesis time of the reference TC), and the difference in initial
intensity between TC1 and TC j should be less than 10 kt.

Step 2. Within a short initial period, the evolutionary dis-
tance de is used to measure the degree of similarity of the
motion direction between TC1 and TC j. Note that in a pre-
vious study, the choice of the initial evolutionary stage de-
pended on the persistence of the variable of interest (Li and
Ding, 2011). In the present study, because it is impossible
to obtain the persistence of the TC tracks, we set the initial
evolution stage as two 6-h time steps (i.e., 12 h), and we find
that the predictability results of the TC tracks obtained are
not sensitive to the choice of this parameter. During the ini-
tial evolutionary stage, the evolutionary distance de between
TC1 x1(θ1(tk),ϕ1(tk)) and TC j x j(θ j(tk),ϕ j(tk)) is given by

de =

√√√
1

K +1

K∑
k=0

[d1, j(tk)]2, K = 2,3,4 (A2)

where K is the steps of the evolutionary interval and d1, j(tk)
is the amount of distance between TC1 x1(θ1(tk),ϕ1(tk)) and
TC j x j(θ j(tk),ϕ j(tk)).

Step 3. The total distance dt, considering not only the ini-
tial distance within range of 50 km between two indepen-
dent TCs, but also the evolutionary distance, which should be
less than 100 km during their evolution, is found by adding
d1, j(t0) and de:

dt = d1, j(t0)+de . (A3)

If the total distance dt is very small, it is likely that TC1
x1(θ1(tk),ϕ1(tk)) and TC j x j(θ j(tk),ϕ j(tk)) have a similar gen-
esis location and movement direction. The constraint of the
total distance dt, which contains both initial information and
evolutionary information over an initial evolutionary period,
allows us to exclude a large portion of all the non-analogous
TCs, thereby helping us to find a true analogous TC j for the
reference TC1.

APPENDIX B

Algorithm for NLLE and RGIE estimation from

best-track data

For every TCi {xi(θi(tk),ϕi(tk)),k = 0,1,2,3, · · · · · · ,M −
1}, the total distance dt can be determined based on the
algorithm in Appendix A. The TC j {x j(θ j(tk),ϕ j(tk)),k =
0,1,2, · · · · · · ,M−1} that is analogous to the reference TCi can
be chosen from all TCs over the whole WNP basin if the to-
tal distance dt is very small. The procedure of the estimate of
NLLE and RGIE is outlined below:
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Step 1. The initial distance is the distance between the
genesis locations (along a great circle) of the reference TCi
and its analogous TC j, as follows:

Li(t0) = Rarccos{sinϕi(t0)sinϕ j(t0)+
cosϕi(t0)cosϕ j(t0)[θi(t0)− θ j(t0)]} . (B1)

Step 2. At time tk = k×Δ (k = 1,2, · · · ,M), the reference
TCi will have moved from xi(θi(t0),ϕi(t0)) to xi(θi(tk),ϕi(tk)),
and the analogous TC j will have moved from x j(θ j(t0),ϕ j(t0))
to x j(θ j(tk),ϕ j(tk)) (see Fig. 1b). The initial difference Li(t0)
will have become

Li(tk) = Rarccos{sinϕi(tk) sinϕ j(tk)+
cosϕi(tk)cosϕ j(tk)[θi(tk)− θ j(tk)]} . (B2)

To estimate the NLLE, it is necessary to examine the
growth rate of the distance between two initially close TCs
over the whole WNP basin. The growth rate of the initial
error (initial distance) during the evolutionary interval (tk) is

ξi(tk) =
1
tk

ln
Li(tk)
Li(t0)

, (k = 1,2,3, · · · · · · ,M) , (B3)

where Li(t0) is the initial distance between the reference TCi
xi(θi(tk),ϕi(tk)) and its analogous TC j, and Li(tk) is the evo-
lution of Li(t0) with time tk. With k gradually increasing, we
can obtain the variation in ξi(tk) as a function of evolved time
tk (k = 1,2,3, · · · · · · ,M).

Step 3. The above procedure is repeated for each TC, and
we obtain the error growth rate for all reference TC locations
{[x1(tk), x2(tk), · · · · · · , xi(tk)], (i = 1,2,3, · · · · · · ,N)} as follows:

ξi(tk) =
1
tk

ln
Li(tk)
Li(t0)

, (i=1,2,3 · · · · · · ,N;k=1,2,3, · · · · · · ,M) ,

(B4)

where i = N is the total number of TCs over the whole
WNP basin, tk = k×Δ (k = 1,2,3, · · · · · · ,M) is the evolution
time, Li(t0) is the initial distance between the reference TC
xi(θi(t0),ϕi(t0)) and its analogous TC, and Li(tk) is the evolu-
tion of Li(t0) at time tk. It follows that the average of the error
growth rates for all reference TCs is

ξ̄(tk) =
1
N

N∑
i=1

ξi(tk) =
1
N

N∑
i=1

[
1
tk

ln
Li(tk)
Li(t0)

]

=
1
tk

ln

⎡⎢⎢⎢⎢⎢⎢⎢⎣
N
√

L1(tk)
L1(t0)

L2(tk)
L2(t0)

· · · · · · LN(tk)
LN(t0)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ . (B5)

That is,

exp[ξ̄(tk)tk] =
N
√

L1(tk)
L1(t0)

L2(tk)
L2(t0)

· · · · · · LN(tk)
LN(t0)

. (B6)

Step 4. Observing that the right-hand-side of Eq. (B6) is
the geometric mean of the relative growth of initial error (i.e.,

RGIE) of all reference TCs, we obtain the approximation of
the mean RGIE as follows:

Φ̄(tk) = exp[ξ̄(tk)tk], (k = 1,2,3, · · · · · · ,M) . (B7)

By investigating the evolution of Φ̄(tk) with increasing tk, the
time at which the mean error reaches 95% of the saturation
level can be defined as the mean predictability limit for all
TC tracks.
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