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on calculating the NLLVs. It is found that the statistical 
properties of NLLVs are not very sensitive to the breed-
ing parameters. However, the higher NLLVs (i.e., exclud-
ing NLLV1) show temporal randomness. Then, we study 
the characteristics of the spatial structures and growth rates 
of different NLLVs. The different NLLVs each have a cer-
tain probability of being the fastest error growth direction 
and together construct the error growth subspace of the ZC 
model. Compared with BVs, the NLLVs have some advan-
tages in terms of the relationship between the generated 
error growth subspace and the analysis errors. The NLLVs 
also have higher local dimensionality than the BVs. NLLVs, 
as initial ensemble perturbations, are applied to the ensem-
ble prediction of ENSO in a perfect environment. Compared 
with the results obtained using ensembles employing the 
random perturbation technique and the BV method, the pre-
sent results demonstrate the advantages of using the NLLV 
method in ensemble forecasts.

1  Introduction

Climate prediction on the seasonal scale by dynamical 
models has been an important topic in geosciences over the 
last decade (e.g., Hastenrath 1995; Chen et al. 2004; Ran-
dall et al. 2007; Smith et al. 2007; Meehl et al. 2014; Saha 
et al. 2014). The sea surface temperature (SST) provides 
the lower boundary conditions for the atmosphere and the 
prediction signal for climate prediction with a lead time 
longer than 2 weeks (Shukla et al. 2000). Therefore, it is 
necessary to estimate the future state of the SST field, par-
ticularly that in the tropical Pacific Ocean. Most interannual 
SST variability over the tropical Pacific can be explained 
by the El Niño–Southern oscillation (ENSO). ENSO 
also exerts a strong influence beyond the tropical Pacific 
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through atmospheric teleconnection that affect patterns 
of weather and climate variability worldwide (McPhaden 
et  al. 2006). For example, the Asian summer monsoon 
is weaker and its outbreak delayed in El Niño (the warm 
phase of ENSO) years (Ju and Slingo 1995). Therefore, it is 
important to predict the onset and development of ENSO. 
As one of the most predictable climate fluctuations on the 
planet, ENSO is currently predicted dynamically by many 
climate models (Wittenberg et al. 2006; Kirtman and Min 
2009; Zheng et al. 2009; Saha 2014; Barnston et al. 2015). 
Currently, there are 17 dynamical models employed in the 
International Research Institute ENSO forecast (http://
iri.columbia.edu/our-expertise/climate/forecasts/enso/
current/?enso_tab=enso-cpc_update).

The dynamical models of ENSO are multidimensional 
complex systems and their outputs are sensitive to the ini-
tial inputs. Therefore, the output results of ENSO models, 
including many oceanic and atmospheric variables, are 
influenced by the uncertainty in oceanic and atmospheric 
initial conditions (Moore and Kleeman 1998). To describe 
and reduce the degree of uncertainty associated with the 
initial situations, one can obtain many parallel but differ-
ent prediction results using an ensemble. Ensemble predic-
tion can provide probabilistic forecasts of the future state 
of the system through certain sampling approaches (Leith 
1974; Kalnay 2003). If a group of initial states samples 
the uncertainty of the initial analysis states (input data) 
reasonably well, we can integrate these different initial 
states into the various predictand states. Then, the average 
of the group of predictand states performs better than the 
single predictand and the spread of the group can provide 
the second moment of the ensemble, which are generally 
used as the quantification of the uncertainty of the result 
(Houtekamer and Derome 1995; Buizza and Palmer 1998; 
Moore and Kleeman 1998; Palmer et al. 1998; Houtekamer 
and Zhang 2016). To perform ensemble prediction, we 
need to generate different initial ensemble members. The 
basic principle of the generation of initial ensemble mem-
bers is to sample the initial error probability spaces of the 
initial analyses (Epstein 1969; Leith 1974; Toth and Kal-
nay 1997). Based on dynamical error growth theory, vari-
ous ensemble generation schemes have been introduced 
and applied to ENSO prediction and predictability. These 
include the bred vector (BV) method (Toth and Kalnay 
1993, 1997; Cai et al. 2003; Yang et al. 2006, 2009), the 
singular vector (SV) method (Lorenz 1965; Molteni et al. 
1996; Cheng et al. 2010a, b), the conditional nonlinear 
optimal perturbation (CNOP) method (Mu et al. 2007; 
Duan et  al. 2009; Duan and Mu 2009), and stochastic 
optimal theory (Tang et al. 2005). Recently, some prom-
ising methods based on the Kalman filter concept have 
been proposed and applied to ensemble forecasting, such 
as the ensemble transform rescaling developed from the 

BV scheme (Wang and Bishop 2003) and the ensemble 
Kalman filter (EnKF) (Bishop and Toth 1999; Wei et al. 
2006; Zheng et al. 2006; Wu 2016). But their application 
to ENSO predictions is still in the course of development.

Compared with other ensemble generation schemes, the 
BV method is a time-efficient approach (Wang and Bishop 
2003). The BV is an extension of the leading Lyapunov vec-
tor (LV) to a nonlinear model, with finite-time evolution and 
finite-size perturbation (Toth and Kalnay 1993, 1997). The 
leading LV defines the fastest sustainable growing direction 
in phase space that any infinitesimal perturbation will gradu-
ally evolve toward after sufficient integration time (Ginelli 
et al. 2007), while the BV represents the fastest growing 
direction of the dynamical system in the nonlinear context. 
The BVs can be acquired by the breeding process. The 
breeding process contains periodic rescaling to keep the per-
turbation within a given amplitude range, which is similar to 
the data assimilation cycle; the BVs are rescaled to a given 
amplitude by the analysis or reference trajectory instead of 
by observations. This similarity ensures that the BV can cap-
ture the main spatial structure of the forecast errors and the 
growing part of the analysis errors. The breeding process 
can be applied at every initial state and acquires the flow-
dependent unstable directions as BVs. The flow-dependent 
BVs have been applied to different ENSO dynamical sys-
tems (Cai et al. 2003; Yang et al. 2006, 2008, 2009, 2010; 
Tang and Deng 2011; Baehr and Piontek 2014). The struc-
tures of the BVs are closely associated with the real-time 
forecast error and evolve with the background ENSO phase, 
and the growth rates of BVs are a function of the season and 
ENSO phases (Yang et al. 2006, 2008). Meanwhile, BVs 
used as ensemble perturbations can improve the prediction 
skill of the ENSO prediction and be used to construct the 
background error covariance matrix in tropical ocean data 
assimilation (Yang et al. 2009).

However, BVs have certain limitations because in theory 
they are only a nonlinear extension of the leading LV. Previ-
ous studies found that although various BVs are generated 
from different initial random perturbations or through differ-
ent normalizations in the operational environment, they tend 
to have increasing projections onto the most unstable grow-
ing direction (i.e. the leading LV) through successive evolu-
tion driven by the same underlying background dynamical 
flow (Wang and Bishop 2003; Bowler 2006). The similarity 
between the structures of BVs may result in an underesti-
mate of ensemble spread. This could be more severe over 
those local regions with strong instabilities because BVs 
may be more similar there (Patil et al. 2001). Meanwhile, 
the complex dynamical models are usually high-dimensional 
and have multiple independent growth directions, which 
together collude in error growth. The small subspace of the 
fastest growing perturbations sampled by the BVs may not 
always capture the error growth space effectively.

http://iri.columbia.edu/our-expertise/climate/forecasts/enso/current/?enso_tab=enso-cpc_update
http://iri.columbia.edu/our-expertise/climate/forecasts/enso/current/?enso_tab=enso-cpc_update
http://iri.columbia.edu/our-expertise/climate/forecasts/enso/current/?enso_tab=enso-cpc_update
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In order to overcome the deficiencies of the BVs, the 
nonlinear local Lyapunov vectors (NLLVs) have been pro-
posed and developed (Li and Wang 2008; Feng et al. 2014, 
2016). NLLVs are the theoretical nonlinear extension of 
LVs. NLLVs can represent the different directions of the 
error growth space of the dynamical system from the fastest 
to slowest. The corresponding growth rates are known as 
the nonlinear local Lyapunov exponent spectrum (NLLEs) 
(Chen et al. 2006; Ding and Li 2007). Different NLLVs 
correspond to different growth rates and different physi-
cal processes. There are some differences between NLLVs 
and BVs. Theoretically, BVs are an extension of the leading 
LV, while NLLVs are inherited from the leading LV and 
other orthogonal LVs in a nonlinear framework. Similar to 
the BVs, in practice NLLVs are also calculated through the 
breeding process using nonlinear models which maintains 
the advantages of BVs, i.e. the trivial computational cost and 
the ease of implementation. However, to avoid different per-
turbations converging to the fastest error growth direction, 
the breeding process of NLLVs is coupled with orthogo-
nalization. Therefore, NLLVs that have mutually orthogo-
nal directions can fundamentally describe more broadly the 
extent of the error growth space than BVs. The NLLVs have 
been applied to some simple dynamical systems, including 
the lorenz63 and lorenz96 systems and the barotropic model 
(Feng et al. 2014, 2016). Feng et al. (2016) found that the 
NLLVs can indeed capture more directions of analysis errors 
than the same number of BVs thus having better perfor-
mance in ensemble prediction.

There are differences between NLLVs and SVs. Fol-
lowing the definition from Legras and Vautard (1996), 
SVs are the extension of the forward Lyapunov vectors 
from t1 = tpresent to t2 = t1 + T (t1 = tpresent) at initial time, 
whereas NLLVs as the bred-growing modes (BGMs) have 
similarities to the backward Lyapunov vectors (Legras and 
Vautard 1996; Szunyogh et al. 1997) at final time. However, 
the NLLVs and BVs are calculated using a nonlinear model 
from t1 = t2 − T to t2 = tpresent. NLLVs and SVs both are 
sets of mutually orthogonal vectors, but BVs not. Obtaining 
additional SVs requires running the tangent linear model and 
its adjoint about three times the number of singular vectors 
required (Molteni et al. 1996). However, NLLVs are directly 
acquired from the nonlinear model by the breeding process. 
Without the tangent and adjoint model, the calculation of 
NLLVs are more time-saving and convenient than SVs. Due 
to the different origin, we do not lay stress on the linkages 
between NLLVs and SVs in this paper.

Considering the differences between NLLVs and BVs, we 
want to explore whether the spatial structures and growth 
rates of different NLLVs are still related to background flow 
and ENSO development, and if NLLVs are more effective 
at describing the error growth subspace than BVs. As the 
first successful model to simulate and predict ENSO, the 

Zebiak–Cane (ZC) model is under continual development 
(Zebiak and Cane 1987; Chen et al. 1999, 2004). This inter-
mediate coupled model does not contain the weather vari-
ations, which contribute to the linkages between the error 
growth and the ENSO process. Therefore, the ZC model is 
chosen in this paper. The present paper will attempt to apply 
the NLLVs in the ENSO coupled model and inspect the sen-
sitivity of NLLVs to the parameters of the breeding process. 
We will focus on the growth rate and spatial structure of 
different NLLVs and how the performance of the NLLVs as 
ensemble perturbations compares with the other traditional 
schemes in the ZC model.

The paper is organized as follows. Section 2 explains the 
computation process of the NLLVs and introduces the ZC 
model. Section 3 is devoted to the calculation of NLLVs in 
the ZC model and the sensitivity of NLLVs to the choice of 
breeding parameters. The improved performance of NLLVs 
over BVs will also be shown in this section. Section 4 will 
demonstrate the relationship between different NLLVs and 
ENSO in terms of the growth rate and spatial structure. Sec-
tion 5 describes the benefits of NLLVs as ensemble pertur-
bations. The main conclusions are presented in Sect. 6.

2 � Method and model

2.1 � Nonlinear local Lyapunov vector

The Lyapunov exponent (LE) and LV are used to study the 
stability of a dynamical system. However, the LV and LE 
are based on linear error growth theory. To avoid this limi-
tation, the NLLVs and the corresponding NLLEs based on 
nonlinear error growth dynamics theory are introduced and 
developed to describe the nonlinear error growth characteris-
tics (Chen et al. 2006; Ding and Li 2007; Li and Wang 2008; 
Feng et al. 2014). The NLLVs and NLLEs are the extension 
of LVs and LEs to the nonlinear context. Their derivation is 
described in Appendix A.

In line with LVs in the tangent linear system, the NLLVs 
represent vectors along the directions from the fastest-grow-
ing direction to the fastest-shrinking direction of the non-
linear system (Feng et al. 2014). The NLLVs focus on the 
‘nonlinear and local’ characteristics of the system and are 
functions of the phase space states x0, the initial perturbation 
vector � (both the amplitude and the direction) and a given 
evolution time Δt.

The NLLVs are calculated through the breeding process 
(as shown in Fig. 1). Consider a series of successive refer-
ence states x−K⋅ Δt, x−(K−1)⋅ Δt,… , x0 (black line), where Δt 
is the length of a breeding cycle and K is the cycle number. 
Add a small random perturbation �1,−K⋅Δt of size M (in a 
certain norm) to x−K⋅Δt and then integrate the perturbed state 
x�
1,−K⋅Δt

 with the full nonlinear model over an interval Δt to 
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give y1,−(K−1)⋅Δt. Let ��
1,−(K−1)⋅Δt

 denote the difference 

between the y1,−(K−1)⋅Δt and the corresponding reference 
x−(K−1)⋅Δt. �

�

1,−(K−1)⋅Δt
 is then rescaled to the size of the initial 

perturbation M, to give the updated perturbation �1,−(K−1)⋅Δt. 
Then superpose the rescaled perturbation �1,−(K−1)⋅Δt onto 
the subsequent reference state x−(K−1)⋅Δt, integrate and scale 
for K cycles to x0 to derive NLLV1 or BV.

To calculate the NLLV2, superpose another different 
perturbation �2,−K⋅Δt of size M on the same reference states 
and integrate for a breeding cycle to acquire the forecast 
states y2,−(K−1)⋅Δt. The differences between the perturbed 
forecast and the reference states are denoted by ��

2,−(K−1)⋅Δt
. 

At the end of every breeding cycle, orthogonalize ��
2,−(K−1)⋅Δt

 
with respect to the first perturbation �1,−(K−1)⋅Δt using the 
Gram–Schmidt orthonormalization (GSR) algorithm (Li and 
Wang 2008; Wolf et al. 1985) and scale to size M, to give 
�2,−(K−1)⋅Δt. As shown in Fig. 1, integrate, orthogonalize with 
the corresponding �1,−i⋅Δt and scale the perturbation �2,−i⋅Δt 
through K breeding cycles to x0 to obtain the NLLV2. The 
process of calculating the subsequent NLLVn is similar to 
that of the NLLV2, but in every breeding cycle the pertur-
bation is orthogonalized with all the �n,−i⋅Δt from NLLV1 
to NLLVn–1 using the GSR algorithm. Then, NLLVs cor-
responding to the x0 are acquired.

Multiple BVs can be obtained by simply selecting differ-
ent initial random seeds. Through the dynamical evolution, 
the random components in the initial perturbations will be 
gradually eliminated. Therefore, the BVs have dominant 
projections on the leading LV and span the small space of 
the fastest growing directions. However, unlike the BVs, the 
NLLVs undergo orthogonalization in every breeding cycle. 

This operation ensures that the differently directed perturba-
tions develop fully. The NLLVs have a more stable perfor-
mance in sampling the error growth subspace.

The breeding parameters of the breeding process, such 
as the initial perturbation size M and scale temporal interval 
Δt, determine the scale of the spatial and temporal instabil-
ity represented by the NLLVs. Thus, these parameters are 
chosen to be appropriate for the problem to be studied. In 
Sect. 3, we will calculate the NLLVs in the ZC model and 
check the sensitivity of the NLLVs and the growth rates 
(NLLEs) to the breeding parameters.

2.2 � Zebiak–Cane model

In this study, we use the standard version of the ZC model, a 
nonlinear model of intermediate complexity. The ZC model 
is an anomaly coupled model that describes anomalies about 
a specified seasonally varying climatological state. It has 
been widely used in prediction and predictability studies 
over several decades (Zebiak and Cane 1987; Blumenthal 
1991; Chen et al. 2004; Mu et al. 2007; Cheng et al. 2010a, 
b; Duan et al. 2014).

The model is composed of a Gill-type steady-state linear 
atmospheric model and a reduced-gravity oceanic model 
(Zebiak and Cane 1987). The oceanic dynamics is described 
by a linear reduced-gravity model with a rectangular ocean 
basin that extends from 124°E to 80°W and from 29°N to 
29°S on a 2° longitude × 0.5° latitude grid. The atmospheric 
dynamics follows the steady-state linear shallow water equa-
tions on an equatorial beta-plane. The circulation is forced 
by a heating anomaly that depends partly on local heat-
ing that is associated with SST anomalies (SSTAs) and on 

Fig. 1   Breeding process of NLLVs. A breeding process is com-
posed of multiple breeding cycles. A random perturbation is initially 
added to the reference trajectory at the beginning of the breeding pro-
cess, and integrated. At the end of each breeding cycle, the NLLVs 
are orthogonalized by the GSR method and the perturbations are 

rescaled. The evolved perturbations (blue dashed line) are orthogo-
nalized with the NLLV1 (red dashed line) to give the NLLV2 (green 
dashed line). Other fastest growing NLLVn are orthogonalized with 
respect to NLLV1, NLLV2,…, NLLVn–1 (adapted from Feng et  al. 
2014, 2016)
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low-level moisture convergence (parameterized in terms of 
the surface wind convergence). Considering that the mois-
ture-related heating is operative only when the total wind 
field is convergent, the convergence feedback is nonlinear. 
The thermodynamics describe the evolution of temperature 
anomalies in the model surface layer. The evolution equation 
of the SSTA in the tropical Pacific includes three-dimen-
sional temperature advection by the specified mean currents 
and the calculated anomalous currents. The model time step 
is 10 days.

3 � Calculation of NLLVs in the ZC model

The NLLVs and BVs are dependent on the background 
flow. Different reference trajectories correspond to different 
NLLVs and BVs. Different breeding parameters determine 
the physical meaning of the NLLVs produced by the breed-
ing process. Therefore, this section explores how to obtain 
the reference trajectories and how to choose the breeding 
parameters sensibly. The important point is to clarify the 
sensitivity of the NLLVs to these parameters. Vialard et al. 
(2005) found that the uncertainties in the SST determine 
the spread of ensemble forecasts, while perturbation of 
the wind stress or atmospheric internal variability is less 
efficient. Therefore, we will focus on the SST field of the 
NLLVs and explore the instabilities in the spatial structure 
of the SST field.

3.1 � Configuration of the reference trajectory

For greater consistency with the operational application, 
the reference states (analysis data) are constructed using 
the EnKF assimilation method (Evensen 2003). A detailed 
description of the EnKF method is given in Appendix B. Cai 
et al. (2003) directly calculated BV using the true trajectory 
and simply used random perturbations as analysis errors to 
compare BV and random perturbation methods in the ensem-
ble experiment. This approach is unreasonable because the 
random errors contain less fast growing pattern than that of 

analysis errors from the assimilation process (Toth and Kal-
nay 1997). Here, analysis errors from the EnKF assimilation 
method—as the difference between the analysis data and the 
true data—are constrained by dynamical equations, which 
tallies with the operational environment.

All experiments in the present paper assume a perfect 
model under which the output of a long-period integration 
from the model is regarded as the true trajectory. The obser-
vations to be assimilated are obtained by adding a random 
noise to the true trajectory. Here we just assimilate the vari-
able—SSTA (TO in the ZC model)—which is the key vari-
able in the air–sea interaction. We assume that the locations 
of observations are as in Fig. 2, which shows the observation 
stations from the tropical atmosphere–ocean (TAO) buoy 
array. We choose to use only a subset of the TAO observa-
tion locations because of the high spatial correlation of the 
SSTA field in the ZC model. The total number of observa-
tion locations is 24. If a vector TOtru denotes the true state 
and TOobs is the observation field of SSTA, then: 

where H is the observation operator that defines the func-
tional relation from the model space to the observational 
space. The added noise error � has a Gaussian distribution 
of ℕ(0, 0.62) for the ZC model, where ℕ denotes the sam-
ple space of the Gaussian distribution, 0 is the expecta-
tion and 0.6 is the standard deviation. The value 0.6 °C is 
approximately the root mean square error (RMSE) of SST 
observations (Reynolds 1988; May et al. 1998). In the EnKF 
data assimilation method, we use 200 members and adopt 
the inflation ratio 5% to the ensemble members to prevent 
filter divergence. The assimilation interval is 1 month. 
The assimilation time is from the 132.5th to the 5132.5th 
month of the model time. The RMSE of the Niño 3 index 
(150–90°W, 5°S–5°N) is 0.198 °C, which is roughly 15% of 
the Niño 3 index standard deviation. The RMSE of SSTA in 
space is 0.178 °C and the spread error of the spatial SSTA 
is 0.238 °C, which indicates that filter divergence is not pre-
sent. The RMSE and spread evolve smoothly with time from 
the 400.5th month, which demonstrates the suitability of the 

(1)TOobs = H ⋅ TOtru + �,

Fig. 2   Distribution of model 
(blue) and observation (orange) 
locations. Locations of the 
observations are a subset of the 
TAO/TRITON array standard 
moorings
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assimilation parameters and process. The Niño 3 indexes of 
both the analysis and true trajectory are illustrated in Fig. 3, 
spanning 250 years. The Niño 3 index shows obvious dec-
adal/interdecadal variations in this period. During this time 
window, the RMSE of the SSTA (TO), surface zonal wind 
anomaly (UO), surface meridional wind anomaly (VO) and 
oceanic upper layer depth averaged onto the coarser grid 
(H1) are 0.199, 0.253, 0.167, and 5.90, respectively.

3.2 � Sensitivity of NLLVs to the breeding parameters

Once the analysis states are generated, the NLLVs can be 
calculated through the breeding process. As shown in Fig. 1, 
a breeding process consists of multiple breeding cycles. In 
every cycle, the perturbations are added to the reference state 
and grow freely. At the end of each cycle, the developed 
perturbations are re-orthogonalized using the GSR method 
and rescaled. Through the breeding process, the different 
initial random perturbations evolve into the different NLLVs. 
To make sure that the NLLVs represent the unstable struc-
tures of the temporal and spatial scales of interest, we need 
to choose appropriate parameters for the breeding process: 
breeding variables, rescaling interval, rescaling factor, and 
rescaling size.

3.2.1 � Reference breeding parameters and snapshots 
of NLLVs

The breeding variables are the variables to be rescaled and 
orthogonalized. We should choose these variables such 
that they contain information on the instabilities of interest 
at some particular scale. In the ENSO cycle, the SST is a 
key variable; it reflects the ocean state and directly forces 
the tropical atmosphere. Changes of SST characterize the 
different phases of ENSO. Therefore, the SSTA (TO in the 
model) is chosen as the breeding variable. The thermo-
cline depth (H1 in the model) represents the energy of the 
upper ocean and directly influences the SST. Meanwhile, 

the wind stress from the atmosphere component: the zonal 
wind anomaly (UO) and surface meridional wind anomaly 
(VO), drives the ocean circulation and plays an important 
role in ENSO evolution. Cai et al. (2003) chose these four 
variables to calculate BV. We also choose these two oce-
anic variables and two atmospheric variables, SST (TO), 
H1, UO, and VO, as the breeding variables for the NLLV.

The rescaling interval, the time scale of a breeding 
cycle, is a little arbitrary. Peña and Kalnay (2004) argued 
that the interval should be longer than 2 weeks for the 
slowly varying coupled instability of ENSO. Cai et al. 
(2003) used 3 months to obtain BV for the ZC model, 
Yang et  al. (2006) used 1 month for a coupled global 
general circulation model, and Tang and Deng (2011) 
adopted 1 month in a hybrid coupled model. In this study, 
we choose a rescaling period of 1 month in the ZC model.

The rescaling factor is based on the Euclidean distance 
[Eq. (2) of SSTA over the model domain]. SSTA (TO) is 
chosen here because of its critical importance in ENSO sim-
ulation and prediction (Tang and Deng 2011). The SSTA 
marks the ENSO evolution and may contain some informa-
tion with which to predict the future ENSO phase. Cai et al. 
(2003) found that the BV is, in fact, relatively insensitive to 
the definition of the rescaling norm. We will test this point 
for NLLVs using different norm definitions from a statisti-
cal view below. Here, the rescaling factor �sst is defined as 

where TOpre

i
 is the ith spatial grid point of the evolved SSTA 

field from the perturbed initial state and TOana
i

 is the cor-
responding ith grid of the reference state (i.e., the analysis 
data) and N represents the total number of spatial grid points 
in the area 20°S–20°N, 129.375°E–84.375°W. The rescal-
ing factor is 0.19 °C, which is equal to the RMSE of the 
analysis SST.

Instead of adding random perturbations as in Cai et al. 
(2003), we superpose different random perturbations onto 
the analysis state to give different initial states in every 
breeding process and evaluate the corresponding NLLVs, 
which may contribute to the diversity of BVs and NLLVs. 
From the physical meaning of NLLVs, we determine that 
the corresponding time of each group of NLLVs is the 
moment at which the breeding process terminates. This 
is different from the definition of Tang and Deng (2011), 
who chose the initial time at which the random initial 
perturbation was added to the reference state, as the cor-
responding time for BV, which is unreasonable because 
BGMs (i.e. BVs and NLLVs) correspond to the backward 
Lyapunov vectors and are designed to simulate the initial 
analysis errors (Legras and Vautard 1996).

(2)�sst =

�
∑N

i=1

�
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pre

i
− TOana
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Fig. 3   Niño 3 index for the analysis and true trajectory from the 
408.5th to 3407.5th months of model time. The analysis Niño 3 index 
is consistent with the true index. The Niño 3 index shows obvious 
decadal/interdecadal variations in this time window
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The parameters chosen above have some arbitrariness. 
Therefore, we test how much the NLLVs are affected by the 
parameters of the breeding process in the ZC model. Firstly, 
we want to identify how many breeding cycles are required 
for the breeding process. A sufficient number of breeding 
cycles ensures that the initial random perturbation can be 
fully developed to the fast growth directions. In order to 
explain this problem, we calculate the changes in the growth 
rate of different NLLVs with increasing number of breed-
ing cycles (only displaying NLLV1 in Fig. 4a) and find that 
the growth rate of different NLLVs can reach the statisti-
cally stable stage in 12 cycles. The same result is obtained 
for other NLLVs. Therefore, we specify that every breeding 
process is made up of 12 breeding cycles. The growth rates 
of the first 10 NLLVs at the 12th cycle are shown in Fig. 4b. 
These growth rates are all greater than 1, which indicates 
that at least the first ten NLLVs are the error growth direc-
tions. The growth rate and hence importance of the NLLVs 
gradually decreases from NLLV1 to NLLV10.

We now explore the robustness of the NLLVs using 
different initial random perturbation seeds for the above 
breeding parameters. Figure 5 shows scatter diagrams of 
the spatial correlation of the SSTA field of the first three 
NLLVs evolved from two groups of different initial pertur-
bation seeds but under the same breeding parameters. There 
are 3000 cases in each diagram, which correspond to 3000 
different states. For the NLLV1, 60% of the absolute val-
ues of the spatial correlation coefficients are greater than 
0.6 (Fig. 5a), which suggests that the sensitivity of NLLV1 
to the initial perturbation seeds is small but not negligible. 

However, for the subsequent NLLVs, such as NLLV2 
(Fig. 5b) and NLLV3 (Fig. 5c), the spatial structures of the 
NLLV become more sensitive: the corresponding percent-
age decreases from 14% of NLLV2 to 2.7% of NLLV3 and 
is smaller still for even higher numbered NLLVs. Compared 
with NLLV1, the subsequent NLLVs are more sensitive, 
which is one of the instantaneous features of the NLLVs. 
The nonlinearity of the dynamical system contributes to the 
sensitivity of the NLLVs to the initial random perturbation 
seeds. This sensitivity shows the infeasibility of checking 
the pattern correlation of NLLVs for each case to discuss the 
influence of breeding parameters. Therefore, we will focus 
on the statistical features of the NLLVs to explore the sen-
sitivity of NLLVs to different breeding parameter sets. The 
statistical features of the NLLVs can be captured by their 
empirical orthogonal functions (EOFs).

3.2.2 � Sensitivity of the statistical features of NLLVs 
to the breeding parameters

As mentioned above, it is important when calculating the 
NLLVs to choose appropriate breeding variables. There-
fore, we use different combinations of variables as the 
breeding variable set to test the sensitivity of NLLVs to 
this choice. Here, we run four experiments: (1) the refer-
ence configuration experiment using TO, UO, VO, H1; (2) 
using just TO; (3) using TO, H1, oceanic depth averaged 
zonal current (U1) and oceanic depth averaged meridi-
onal current (V1); (4) TO, UO, VO, H1, U1, V1. The 
other parameters of the breeding process are the same as 

Fig. 4   The growth rate of the SSTA field of the NLLV1 as a function 
of the number of breeding cycles (a) and the growth rate of the first 
ten NLLVs through 12 breeding cycles (b). Here, the error growth 
rate is the average from the 408.5th to 3408.5th  months. a Shows 

that the growth rate of the leading NLLV levels off first 24 breeding 
cycles. b Shows that the first 10 NLLVs are all directions of error 
growth
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for the reference configuration experiment. We compare 
the structure and corresponding explained variances of 
EOFs of the SSTA field of NLLVs from the 408.5th to the 
3407.5th month.

Table 1 shows the average and standard deviation (SD) of 
explained variances for the EOF patterns of different NLLVs 
from the different variable sets. Compared with the aver-
age, the deviations are very small, which illustrates that the 
proportions of variances explained are nearly equal using 
different breeding variable sets. The variance explained by 
the first few EOF patterns of the NLLV1 is larger than that 
of the subsequent NLLVs. For example, the percentage of 
total variance explained by the first three EOFs of NLLV1 
is 60.6%, that for NLLV2 is 47.5%, and that for NLLV3 is 
35.4%. With the increase in the number of orthogonal direc-
tions, the variance explained by an equal number of EOFs of 
the higher NLLVs decreases, which shows that the NLLV1 
is the dominant mode that is relatively less affected over 
time, but that the subsequent NLLVs cannot be completely 

described by one or a few dominant modes. The higher 
NLLVs have a certain randomness over time.

The average and SD of the correlation coefficients 
between the corresponding spatial structures of the first 

Fig. 5   Scatter diagrams showing the pattern correlations between the 
SSTA fields of NLLVs using two different initial random perturba-
tions for every breeding process. a NLLV1, b NLLV2, c NLLV3. The 
corresponding pattern correlations are also shown for d BV1, e BV2 

and f BV3. The abscissa is the Niño 3 index of the background ENSO 
events. The ordinate is the pattern correlation coefficient. The first 
three NLLVs corresponding to 3000 initial conditions are shown

Table 1   Average explained variance and corresponding standard 
deviation for different EOFs of different NLLVs from different breed-
ing variable groups

EOF1 EOF2 EOF3

Explained variance
 NLLV1 41.227 10.590 8.829
 NLLV2 21.568 14.716 11.179
 NLLV3 14.580 10.939 9.882

Standard deviation
 NLLV1 0.394 0.132 0.061
 NLLV2 0.327 0.351 0.160
 NLLV3 0.542 0.258 0.233
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few EOFs of other parameter sets and that of the reference 
parameter set are shown in Table 2. The average correla-
tion coefficients can reach 0.8 or more for the first few EOF 
patterns of the first few NLLV. The large mean and small 
SD of the correlation coefficients demonstrate that the pat-
terns of EOFs of NLLVs from different breeding variable 
groups are very similar. Therefore, from the perspective of 
the explained variance and the spatial correlation coefficient 
of the corresponding EOF, the NLLVs are not sensitive in 
a statistical sense to the choice of breeding variable group. 
Meanwhile, the NLLVs other than NLLV1 are less and less 
explained by the first few EOF modes and include a larger 
random component.

Similarly, we choose different scaling factors S (1: the 
entire field; 2: only the Niño 3 (150°W–90°W, 5°S–5°N) 
area; 3: only the Niño 4 (160°E–150°W, 5°S–5°N) area; 
4: the Niño 3 and Niño 4 areas), different scaling ampli-
tudes [(50, 75, 100, 125, 150%) × 0.199 °C] and rescaling 
intervals (1–4 months) and calculate the correlation of the 
structure and explained variance of the EOFs of the SSTA 
field of the NLLVs (not shown). Comparing the explained 
variances, averages and SDs of correlation coefficients for 
different breeding parameter sets, we find that there is very 
high consistency between these different parameter sets and 
the reference parameter set. Therefore, the structures of 
NLLVs are statistically very similar for different breeding 
parameter sets.

However, the variances explained by the first few EOFs 
of the later NLLVs (such as NLLV4, 5, etc.) become smaller 
with similar magnitude, so cannot be distinguished, which 
make it difficult to judge the similarity of the NLLVs struc-
tures statistically. Considering that the NLLVs can be used 
as ensemble perturbations for ENSO ensemble prediction 
and that the subspace made up of ensemble perturbations 
should involve the direction of analysis errors to ensure the 
effectiveness of ensemble forecasts (Toth and Kalnay 1993, 
1997), we check the relationship between the subspaces 
composed of the first few NLLVs and the analysis errors. In 

this paper, we constructed the analysis data with the EnKF 
assimilation method under the perfect assumption and can 
acquire the analysis error by calculating differences between 
analysis data and true data. Referring to the Perturbation ver-
sus Error Correlation Analysis (PECA) proposed by Wei and 
Toth (2003), we obtain the correlation coefficient between 
the subspaces consisting of NLLVs and the analysis errors 
of SSTA at the same time through multiple linear regression 
methods. The square of this coefficient can be considered as 
the proportion of variance explained by the subspace con-
structed from the first few NLLVs to the analysis error. The 
correlation coefficient at each time is calculated by solv-
ing the maximum correlation between Y =

∑k

i=1
aiNLLVi 

and Y0, where Y0 represents the analysis error of the SSTA 
field, the ai are undetermined parameters and k is the number 
of selected first few NLLVs. To obtain Y at each time, we 
determine ai by the least squares method. Using different 
breeding variable sets, the averages of the coefficients of 
different states (3000 cases) for different numbers of NLLVs 
are shown in Table 3. The relationship between the subspace 
and the corresponding analysis error is similar for different 
breeding variable groups. For other different parameter sets, 
the values are also consistent (not shown). Therefore, the 
NLLVs from different parameter sets or random perturba-
tions are closely connected with the analysis error and this 
relationship is stable.

The instantaneous relationship of the NLLVs from differ-
ent initial random perturbation seeds and different parameter 
sets, implies some sensitivity of the NLLVs, especially the 
subsequent NLLVs (NLLV2, NLLV3…), to the nonlinear 
evolution of the dynamical system over time. The subse-
quent NLLVs are more sensitive than NLLV1, which can 
be understood as the diversity of instantaneous NLLVs over 
time, which may contribute to the improvement of ensemble 
prediction. However, statistically, the NLLVs from different 
breeding parameter sets have great similarity in terms of the 
structure and explained variance of the EOFs. The relation-
ship of the subspace of the first few NLLVs to analysis error 
is also similar. Thus, the features of NLLVs from different 
breeding parameter are similar and stable.

Table 2   Mean and standard deviation of correlation coefficients for 
the leading EOFs of the first three NLLVs between the reference 
parameter set and other breeding variable groups

EOF1 EOF2 EOF3

Correlation
 NLLV1 0.999 0.999 0.999
 NLLV2 0.996 0.993 0.996
 NLLV3 0.982 0.868 0.825

Standard deviation
 NLLV1 1.56E−05 0.000551 0.000317
 NLLV2 0.0018 0.0043 0.0016
 NLLV3 0.0026 0.0774 0.0851

Table 3   Average correlation coefficient of the subspace composed of 
the leading few NLLVs and the corresponding analysis error for the 
3000 samples for different sets of breeding variables

Coefficient TOUOVOH1 TO U1V1TOH1 U1V1TO
UOVOH1

NLLV1 0.259 0.264 0.255 0.261
NLLV12 0.399 0.387 0.406 0.402
NLLV123 0.479 0.483 0.468 0.474
NLLV1234 0.534 0.542 0.532 0.536
NLLV12345 0.574 0.581 0.569 0.570
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Therefore, in the remainder of the paper, results are pre-
sented with the breeding parameters set as: the L2 norm (the 
entire field), with rescaling size equal to the RMSE of the 
analysis SSTA field (0.199 °C), with one month for a breed-
ing cycle and SSTA UO VO H1 as the breeding variables to 
set the orthogonality of the perturbations at the end of every 
breeding cycle.

4 � Growth rates and modes of NLLVs

Previous research (Cai et al. 2003; Yang et al. 2006, 2008; 
Tang and Deng 2011) has produced the important results 
that the growth rate and mode of BVs are functions of back-
ground ENSO phase and season. The maximum BV growth 
rate occurs between the two extreme phases of ENSO epi-
sodes and the extreme centers of the BV mode vary with 
ENSO phase (Cai et al. 2003; Yang et al. 2006). Consider-
ing NLLVs as the nonlinear extensions of LVs in a multidi-
mensional context, we conjecture that there is a relationship 
between the ENSO phase and the growth rate or modes of 
the different NLLVs. Therefore, having determined the con-
figuration of the breeding process, in this section we will 
explore the features of NLLV modes and their variations 
with initial state, season, and ENSO signal over a 250-year 
period, starting at year 34 of model time.

4.1 � Variations of NLLV growth rate

NLLV growth rate is measured as the ratio of the SSTA field 
of the NLLV at the end of the breeding interval (one month) 
compared with its initial amplitude (i.e., the rescaling fac-
tor) and it has units of per month. The growth rate is just the 
relative increment in a breeding cycle of 1 month, which 
is different from the time span used by Cai et al. (2003). 
Figure 6a displays the percentage of cases for which the 
growth rates of the first three NLLVs rank at position i in the 
3000 sample pool. In this figure, we find that although the 
NLLV1, defined as the statistic fastest growth direction, is 
fastest (i = 1) the greatest percentage of the time, the percent-
ages of the next two NLLVs together reach 60%. Figure 6b 
shows the growth rates of the first three NLLVs in the steady 
growth period of the breeding process for different seasons. 
The growth rates of the first three NLLVs, in rough agree-
ment with the variation of the optimal error growth rate for 
the BV from Cai et al. (2003), are larger in summer and fall 
than in other seasons. This may be because of the stronger 
convectional heating in summer and the fact that ENSO 
events tend to strengthen during the fall season. The growth 
rates in late spring rapidly increase, which may correspond 
to the rapid decrease of the prediction skill in spring (i.e. 
the spring prediction barrier). The change of amplitude of 
the growth rate of late spring indicates the unstable part of 

ENSO that is difficult to predict. The different NLLVs have 
similar seasonal variations in growth rate although there 
are some differences in the values of the growth rates. The 
growth rates of subsequent NLLVs in some seasons are even 
larger than that of the NLLV1, which indicates the impor-
tance of subsequent NLLVs at some times. In Fig. 6c, the 
NLLV2 has the highest probability to be the fastest growth 
direction in the summer, especially in June and July, which 
further confirms that the first NLLV is not always the fastest 
growth direction over a short time interval, although statisti-
cally NLLV1 has the fastest growth rate. In the spring, the 
percentage of the NLLV2 as the fastest direction rapidly 
increases, which corresponds to the spring barrier. There-
fore, from this growth rate perspective, we cannot discard 
the subsequent NLLVs and just choose the NLLV1 or BV 
and it is necessary to consider the subsequent NLLVs to 
describe the multidimensional error growth space of the ZC 
model.

We want to identify the relationship between the growth 
rates of these subsequent NLLVs and the background ENSO 
phase. Thus, we will check the growth rate of the NLLVs 
at different ENSO phases. The dependence of the growth 
rates of BVs on ENSO phase has been addressed in Cai et al. 
(2003) and Yang et al. (2006). They found that a neutral or 
onset/breakdown stage of an ENSO event tends to have a 
large error growth about 3–4 months prior to the peak phase, 
whereas error growth is often small in an ENSO peak phase. 
Tang and Deng (2011) also pointed out similar character-
istics of BV growth rate in a hybrid coupled ENSO model 
of the 120 year between 1881 and 2000. In addition, Tang 
and Deng (2011) showed that the BV growth rate is smaller 
during El Niño than La Niña events. Here, we follow Cai 
et al. (2003) and divide the background ENSO events into 
24 categories. The boundaries of the 24 bins are based on 
the Niño 3 index of the control run and its temporal trend. 
Table 4 summarizes the lower and upper boundaries of the 
bins in terms of the Niño 3 index and its temporal tendency. 
The choice of limits means that bins 12 and 13 represent the 
warmest SST anomaly phase of the composite ENSO event. 
Bins 5–20 have a positive Niño 3 index and the remaining 
bins correspond to a negative index. Figure 6d displays the 
composite mean of the growth rate of the first three NLLVs 
as a function of the background ENSO phase. It is clear that 
the NLLVs tend to have a larger growth rate in the develop-
ing stage of the ENSO positive phase. In the mature stage 
of the ENSO positive phase, the growth rate is the smallest. 
Besides, there are some differences in the amplification of 
the growth rates of the ENSO positive and negative stages. 
In the negative phase, the growth rate of the NLLV1 is lower 
compared with the NLLV2 and NLLV3, which shows the 
importance of the subsequent NLLVs’ directions for describ-
ing the error growth subspace, particularly in the ENSO 
negative phase. Therefore, the instabilities related to ENSO 
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are not only determined by one direction such as the NLLV1 
but are also influenced by the subsequent NLLVs.

Decadal and interdecadal variations in ENSO variability 
exist as shown in Fig. 3. ENSO variability is weak during 
the period from the 700.5th to 1700.5th months and is strong 
from the 2000.5th to 3000.5th months as determined by the 
Niño 3 index. It is interesting to examine the temporal vari-
ations of the NLLVs growth rate on the decadal/interdecadal 
scale. Figure 7 shows variations in the NLLVs growth rate 

from the 408.5th to 3408.5th month; a 48-month (4-year) 
running average has been applied to highlight interannual or 
longer signals. Forty-eight months is the significant period 
of the ENSO cycle in the ZC model. Scrutiny of Fig. 7 
reveals that the differences between the growth rates of the 
NLLVs also have decadal/interdecadal variation. NLLV2 or 
NLLV3 as well as NLLV1 all have the potential to become 
the fastest growing direction of the leading NLLVs in some 
periods. The Niño 3 index indicates that the ENSO has 

Fig. 6   Percentage of the first three NLLVs in the position of the 
corresponding rank (a), the growth rates of the first three NLLVs 
for different seasons (b), the percentage of the first three NLLVs as 
the fastest growth direction for different seasons (c) and the aver-
age growth rate of the first three NLLVs as a function of the ENSO 

phase (d). The black curve of d is the Niño 3 index of the composite 
background ENSO cycle corresponding to the right vertical axis. The 
growth rate � is calculated as the scaling factor in the final breeding 
cycle of the breeding process

Table 4   Lower and upper 
limits of the 24 Niño3 bins for 
the composite ENSO event

Bin no.

1 2 3 4 … 12 13 … 21 22 23 24

Lower limit <− 1.5 − 1.5 − 1 − 0.5 … 3.5 3.5 … − 0.5 − 1 − 1.5 <− 1.5
Upper limit − 1.5 − 1 − 0.5 0 … > 3.5 > 3.5 … 0 − 0.5 − 1 − 1.5
d(Niño3)/dt > 0 > 0 > 0 > 0 > 0 > 0 < 0 < 0 < 0 < 0 < 0 < 0
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different characteristics in the periods 1000.5–1500.5th and 
2000.5–2500.5th months: the former represents an irregular 
stage and the latter is the regular stage of the ENSO cycle. 
The two stages have different NLLV growth rates: the growth 
rates in the irregular period are higher than in the regular 
stage. The regular ENSO cycles contribute to increasing pre-
dictability and the irregular cycles give decreased predict-
ability. The variability of the NLLVs growth rate at various 
time scales is more obvious in the wavelet analysis shown 
in Fig. 8. The local wavelet power spectrum of the NLLV1 
growth rate clearly indicates that significant periods were 
localized in time and varied from 180 to 240 months from 

the 1000.5th to 2200.5th months, which agrees with the 
Niño 3 index wavelet power characteristics.

The wavelet power spectrum analysis for the NLLVs 
growth rate and Niño 3 index also reveals similar spectral 
characteristics between the NLLVs growth rate and ENSO 
variability, suggesting a connection of the growth rates of 
different NLLVs with the ENSO background. There are 
some differences in the time and duration of the most sig-
nificant frequencies of variation of different NLLVs, which 
further confirms the diversity of the increasing error direc-
tions represented by the NLLVs. Therefore, different first 
NLLVs, including at least NLLV1, NLLV2, and NLLV3, 
actually have a close relationship with the ENSO process 
and have sufficient diversity to describe the different aspects 
of ENSO.

4.2 � ENSO NLLV modes

Cai et al. (2003) pointed that the BV mode exhibits a large-
scale spatial pattern somewhat similar to ENSO over much 
of the equatorial Pacific basin. Yang et al. (2006) found the 
BV has similar behavior to the forecast error field. Therefore, 
in this section we want to show whether the NLLV struc-
tures have a temporal dependence on the background ENSO 
flow. Thus, we randomly chose a period that ranges from one 
ENSO negative mature phase to the next negative mature 
phase and examine the zonal and temporal snapshots of the 
SSTA field of NLLVs along with the background SSTA 
(as shown in Fig. 9). Figure 9 reveals that the structure of 
the first three NLLVs (color shading) is dependent on the 

Fig. 7   Variation in the growth rate of the first three NLLVs. A 
48-month running mean has been applied to the rate and index to 
highlight interannual and longer signals

Fig. 8   Morlet wavelet power spectra of the NLLV growth rates and 
the Niño 3 index. The thick contour encloses regions of greater than 
95% confidence using a red-noise background spectrum. The solid 

smooth curves in the bottom left and right corners indicate where 
edge effects become important
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background SSTA fields (contours). The NLLVs often have 
centers of extreme values in the area where the background 
SSTA field varies rapidly with time, such as the eastern 
Pacific. When it is the developing stage of an El Niño or 
La Niña, the SSTA field of the NLLVs has more extreme 
centers and extends from the eastern Pacific to the west-
ern Pacific. During the El Niño mature phase, the NLLV 
structures are weaker and lie mainly in the east Pacific. 
From the La Niña to El Niño phase (from the 2466.5th to 
2490.5th month), the extreme centers of NLLVs in the west-
ern Pacific gradually decay but that in the eastern Pacific is 
maintained and enhanced, which agrees with the develop-
ment of the background fields. Compared with the NLLV1, 
the subsequent NLLVs such as NLLV2, NLLV3 have finer 
structure, for example during the beginning of the El Niño 
phase (at the 2494.5th month), NLLV2 and NLLV3 have a 
stronger signal in the central and eastern Pacific, which con-
tributes to the development of the El Niño phase. Therefore, 
NLLVs are dependent on the background flow and have dif-
ferent patterns at different ENSO phases, which is consistent 
with the behavior of BVs. The subsequent NLLVs besides 
NLLV1 can also represent the instability structure associated 
with ENSO and contain finer scale information. They also 
contribute toward the error growth subspace of the multidi-
mensional system.

As mentioned in the Sect. 3.2, the statistical properties 
of the NLLVs are stable and to some extent insensitive to 
the choice of the breeding parameter. To explore the physi-
cal significance of the statistical structure, the EOFs of the 
SSTA field of each of the NLLVs are displayed in Fig. 10. 
The different EOF patterns of the NLLVs have different 
numbers of extreme centers. The EOF1 of NLLV1 has a 

uniform structure; the EOF2 has a dipole structure and 
the EOF3 is tripolar. The first three EOF patterns of the 
NLLV1 have physical significance related to ENSO. The 
EOF1 pattern represents the uniform ENSO-like structure 
with a large-amplitude signal in the equatorial central and 
eastern Pacific, which is similar to the final evolved sin-
gular vector and is closely related to the delayed-oscillator 
mechanism (Tang and Deng 2011). The EOF2 pattern is 
similar to the nonlinear forcing singular vector (NFSV) of 
the growth-phase predictions (Duan and Zhao 2014), which 
also has a zonal dipole structure and positions of the extreme 
centers that are consistent with those of the NLLV1 EOF2. 
Duan and Zhao (2014) pointed out that this NFSV pattern 
is responsible for the prediction error of the correspond-
ing El Niño event in the ZC model. The tripole structure of 
the EOF3 pattern is more or less consistent with the EOF 
structure of the subsurface ocean temperature (Zhang et al. 
2017). The EOF structures of different NLLVs have certain 
similarities. For example, the EOF1 of the NLLV1 and the 
EOF1 of the NLLV2 both have the single structure in all 
fields. These similarities are because all the NLLVs are asso-
ciated with the background ENSO evolution and represent 
the flow-dependent error growth directions. However, there 
are also differences between EOF1s for different NLLVs. 
The single structures have different intensity and extent. The 
results are similar for other EOF modes. The differences are 
due to the nonlinearity of the dynamical system and show 
the diversity of the NLLVs.

Considering that the background ENSO states have a sig-
nificant difference in the two spans: the 700.5th–1700.5th 
and 2000.5th–3000.5th months (shown in the Fig. 3), the 
first three EOF of first three NLLVs have some differences 

Fig. 9   Evolution of SSTA 
structures (contour interval 0.5 
units; solid for positive and 
dashed for negative) and cor-
responding SSTA fields of the 
first three NLLVs (shaded) for 
a particular randomly chosen 
ENSO cycle. Here the displayed 
fields are averaged over the 
region from 5°S to 5°N
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in structures and explained variances. The difference exists 
in the growth rate of the NLLVs (as shown in Fig. 7).

These figures demonstrate that the different directions of 
the first few NLLVs represent the growth directions and are 
related to the ENSO evolution. The directions of the differ-
ent NLLVs all have the potential to be the fastest direction at 
a particular instantaneous state. The subsequent NLLVs are 
random to a certain extent; this contributes to the diversity 
of the first few NLLVs. Therefore, using different NLLVs 
is helpful to describe the subspace of the error growth. We 
are confident that NLLVs will perform better as ensemble 
perturbations than BVs.

5 � Advantages of NLLVs over BVs

As mentioned above, in theory the NLLVs have some 
advantages over BVs. The orthogonalization of the breed-
ing process means that the NLLVs can represent differ-
ent error growth directions and include greater diver-
sity than the BVs. As shown in Fig. 5, the subsequent 
NLLVs (Fig. 5a–c) are somewhat more random than the 
BVs (Fig. 5d–f). Therefore, the subspace constituted by 
the first few NLLVs should have a higher correlation with 
the analysis error than that of the BVs. Figure 11 dis-
plays the correlation coefficients between the subspace of 
NLLVs and BVs against the analysis error by the PECA 
method. The coefficient is the average of 3000 cases, cor-
responding to different initial states from the 408.5th to 
3407.5th months. The different numbers of vectors repre-
sent the different dimensions of the subspace. Figure 11 
shows that the coefficient of the NLLVs is always larger 
than that of the BVs for different dimensional subspaces. 
The difference reaches almost 0.1 with five vectors. The 

difference is not due to the similarity of BVs, because the 
orthogonalization of BVs cannot change the subspace 
consisting of BVs. The difference is because the different 
NLLVs represent different error growth directions which 
have physical meaning. The orthogonalization of the 
breeding process ensures the different NLLVs adequately 
resolve the physics. Therefore, the subspace consisting of 
NLLVs can better and more effectively capture the analysis 
error than that of an equal number of BVs.

Fig. 10   The first three EOF structures of the SSTA fields of the first three NLLVs (contour interval 0.02 units; solid for positive and dashed for 
negative): NLLV1 (a), NLLV2 (b), NLLV3 (c)

Fig. 11   Average correlation coefficient between the subspace com-
posed of the first few NLLVs (blue line) and BVs (red line) and the 
corresponding analysis error for the 3000 cases. The number of vec-
tors on the horizontal axis represents the different numbers of NLLVs 
or BVs used to construct the subspace
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In fact, the orthogonality contributes to the effectiveness 
of NLLVs in describing the error growth subspace. How-
ever, the orthogonality of NLLVs holds in a whole-regional 
sense and does not guarantee the mutual independence of 
local NLLVs. The diversity of local perturbations impacts 
the ensemble skill (Wang and Bishop 2003). Here, we want 
to identify whether the local dimensionality of the NLLVs 
is higher than that of the BVs.

We calculate the local dimensionality of the NLLVs or 
BVs following Patil et al. (2001). We chose 5 × 5 grid cells, 
roughly 1000 km × 2500 km, as the local region and regard 
it as the local 25-dimensional vector. The total number of 
vectors (NLLVs or BVs) is k. The k local column vectors 
form a 25 × k matrix, B. The k × k covariance matrix of B is 
C = BTB, where BT is the transpose of B. C is non-negative 
definite and symmetric, so its k eigenvalues �i are non-neg-
ative. Therefore, the singular values of B are �i =

√
�i, and 

the local dimensionality of vectors is defined as: 

where � returns a real value between 1 and k. Here, k is 
chosen to be 5.

In Fig. 12, we show the spatial distribution of the local 
dimensions of NLLVs and BVs. The local dimensionality 
is calculated at each spatial point on the grid and colored 
blue for lower values and red for larger values. As shown 
in Fig. 12, the local dimensions of NLLVs are higher than 
those of BVs, and this is not sensitive to the grid size or the 
number of vectors k. The difference is up to 0.8 over almost 

(3)�
�
�1, �2,… , �k

�
=

�∑k

i=1
�i

�2

∑k

i=1
�2
i

,

the whole region and becomes larger when the grid number 
increase. The local dimensions of NLLVs are higher in the 
western and eastern Pacific than in the central tropical ocean, 
which may be because the western and eastern areas are the 
regions of varying SSTA. Therefore, the NLLVs have more 
diversity than the BVs whether in a whole-region sense and 
locally, which is beneficial for the prediction skill of NLLVs 
as the ensemble perturbations.

6 � Application of NLLVs in ensemble prediction

In this section, we apply the first few NLLVs as ensemble 
perturbations to predict ENSO and demonstrate the poten-
tial benefits in the context of the perfect model scenario. 
Four groups of forecast experiments are designed. In addi-
tion to the control experiment from the single analysis state 
of the EnKF assimilation method, we perform three other 
ensemble prediction experiments whose ensemble perturba-
tions are produced separately by the NLLV, BV, and random 
schemes. These perturbations are added and subtracted from 
the analysis states. As mentioned above, the NLLVs are gen-
erated through breeding processes. The breeding processes 
contain twelve breeding cycles and the length of a breeding 
cycle is 1 month. The parameters of the breeding process for 
BVs are the same for NLLVs. The orthogonalization process 
is included in each breeding cycle for the NLLVs but not for 
the BVs. The ensemble perturbations of the three methods 
have the same size as those of the analysis errors of the 
SSTA field in L2 norm. The number of ensemble members 
is ten using the five directions from the BV, NLLV and ran-
dom vectors (positive–negative pairs). Five modes are cho-
sen because the first five NLLVs can explain the majority 

Fig. 12   Local dimensionality 
of the fore five NLLVs (upper) 
and five different BVs (lower). 
The local regions are made up 
of 5 × 5 grid cells. The local 
dimensionality is the average of 
3000 cases from the 408.5th to 
the 3407.5th month
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of the analysis errors at reasonable computational cost. The 
ensemble members are integrated for 48 months, almost 
equal to the period of the ENSO cycle in the ZC model. The 
initial forecast time is every month over a 250-year period 
and there are 3000 forecast cases in total. We check the pre-
diction skill of the Niño 3 index of the different schemes 
with regard to the ensemble mean and probability prediction.

6.1 � Skill of the ensemble mean

The overall prediction performances of the ensemble mean 
can be measured through mean square root error (RMSE) 
and pattern anomaly correlation (PAC) (Buizza et al. 2005). 
These are expressed as: 

 where t is lead time, i represents the number of samples 
used to calculate the forecast skill. N is the total number of 
objects considered; prei is the predictand and trui represents 
the corresponding analysis quantity. pre is the average of all 
prei and tru is that of all trui.

(4)RMSE(t) =

�
∑N

i=1

�
prei(t) − trui

�2

N
,

(5)
PAC(t) =

∑N

i=1

�
prei(t) − pre(t)

�
× (trui − tru)

�∑N

i=1

�
prei(t) − pre

�
×
�
prei − pre

�
×

�∑N

i=1
(trui − tru) × (trui − tru)

,

pre(t) =

∑N

i=1

�
prei(t)

�

N
, tru =

∑N

i=1

�
trui

�

N

We focus on the prediction skill of the Niño 3 index. Fig-
ure 13a, b show the RMSE and PAC of the Niño 3 index, 
respectively, as a function of lead time. The corresponding 
measurements from the control forecasts are also shown for 
comparison. The ensemble averaging significantly outper-
forms the single control forecast as a whole, although dif-
ferent ensemble methods, because of their distinct initializa-
tion schemes, have different forecast skills. For the first few 
months (about 5 months), ensemble averages are indistin-
guishable from the control forecasts. The initial time span 
can be considered as a linear stage, during which the pairs 
of positive and negative perturbations cancel each other out 
almost completely and the average results of the pairs are 
almost equal to the control forecast results. However, when 
the errors gradually increase and enter the nonlinear stage, 
ensemble averaging plays a much more important role in fil-
tering nonlinearly to reduce error. In the nonlinear stage, the 
BV method evidently outperforms the random vector method 

in ensemble prediction skill, because of the representation of 
the analysis error directions by the BVs. Due to the assimi-
lation cycles that generate the analysis states, non-growing 
error directions are reduced down to a low proportion and a 
significant fraction of the analysis errors are represented by 

Fig. 13   RMSE (a) and mean correlation (b) of 3000 samples as a function of lead time for the control run (black line), random perturbation 
method (green line), BV method (red line), and NLLV method (blue line)
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the growing error directions. Random perturbations that only 
include a small proportion of the growing errors describe 
the probabilistic distribution of analysis errors in the less 
efficient directions and have the worst ensemble prediction 
skill. The ensemble skill of the NLLVs is higher than that 
of BVs, which is due to the diversity of the NLLVs. NLLVs 
sample the analysis errors in more mutually orthogonal 
directions and can describe the probability distribution of 
the analysis errors more fully than the other two schemes. 
The subspace of the first NLLVs has better correlation with 
the fast-growing component of the analysis errors, and thus 
the NLLVs behave better than the traditional BV and random 
method, especially for long-range predictions. This point is 
proved by the PECA method.

6.2 � Probabilistic forecast verification

The probability forecast can provide information about the 
predictability. Murphy (1988) pointed out that the spread 
of an ensemble distribution can in principle give an a pri-
ori indication of forecast skill. The smaller the spread, the 
higher is the prediction reliability and vice versa. Therefore, 
there is an inverse relationship between ensemble spread 
and the mean prediction accuracy for a statistically reliable 
ensemble system. The ensemble spread should be close to 
the error of the ensemble mean (Buizza et al. 2005). The 
ensemble spread is given as (Buizza and Palmer 1998; Zhu 
and Toth 2008): 

 where t represents the lead time, pre is the average value 
of the ensemble prediction and the Spread(t) represent the 
standard deviations of the ensemble members.

Figure 14 shows the ratio between the ensemble spread 
and the RMSE of the Niño 3 index as a function of lead 
time for different perturbation schemes. At the lead time of 
3 months, the Spread is larger than the RMSE for NLLV and 
BV ensemble schemes. The spread of the Niño 3 index of the 
random scheme is too low, because the random values in the 
Niño 3 region cancel each other out when added together. 
With increasing lead time, the ratio of the NLLV and BV 
schemes gradually reduces to less than 1. In this process, 
the ratio of the NLLV scheme is always larger than that of 
other schemes, which demonstrates that the NLLV scheme 
can more accurately describe the relationship between the 
Spread and RMSE. This is attributed to the NLLVs sampling 
the analysis errors in directions that are much less correlated 
than those used in the BV scheme.

(6)Spread(t) =

√√√
√ 1

N − 1

N∑

i=1

(
prei − pre

)2
,

In ENSO prediction, we are interested in the prediction 
of the La Niña (cold events) and El Niño (warm events). 
There are a number of scalar accuracy measures for veri-
fication of probabilistic forecasts of dichotomous events, 
but by far the most commonly used is the Brier score (BS). 
Thus, we use the BS to verify the prediction skill of the 
two kinds of event. We define warm events as when the 
Niño 3 index is larger than 2.15 °C (the upper 10% range 
of the Niño 3 index series) and cold events as when it 
is less than − 0.86 °C (the lower 10%). The BS can be 
defined as the mean square probability error (Wilks 2011): 

where the index i denotes a numbering of the N fore-
cast–event pairs; fi is the prediction probability of the events 
occurring; if the event happens, the observation Oi = 1, and 
Oi = 0 if the event does not occur. In this form, the BS is 
anti-correlated with the skill of the forecast: a higher BS rep-
resent a less accurate prediction (Murphy 1973). The BS can 
take on values only in the range 0 ⩽ BS ⩽ 1. Figure 15 shows 
the BS of warm and cold events evaluated for three methods 
as a function of forecast time. At the beginning of the first 
5 months, the prediction ability of warm and cold events by 
the three methods is close. With increasing lead time, the 
ability of the NLLV and BV methods becomes increasingly 
clear. The BS of the NLLV method is always lower than for 

(7)BS =
1

N

N∑

i=1

(
fi − Oi

)2
,

Fig. 14   Ratio of the ensemble member spread (represented by the 
averaged standard deviations of the model ensembles) and the RMSE 
of the ensemble mean shown as functions of lead time for different 
ensemble schemes: random perturbation method (green line), BV 
method (red line), and NLLV method (blue line). Values close to 1 
represent good results



300	 Z. Hou et al.

1 3

other methods. The NLLV method performs better in pre-
dicting warm and cold events than other schemes.

The diversity and the close relationship with the analysis 
error of NLLV contribute to its performance in ensemble 
prediction. Using the PECA methods, we check the rela-
tionship between the analysis error field and the different 
perturbation schemes for SSTA. We calculate the explained 
variance of the analysis error for the ensemble perturbations 
each month and obtain the square root of the explained vari-
ance as the correlation coefficient from the 408.5th to the 
3407.5th month. The correlation coefficient of the NLLV 
scheme is 0.574 and that for an equal number of random per-
turbations is only 0.083, which indicates that the subspace 
made up of the first few NLLVs is more closely related to the 
analysis error than that of random vectors. The analysis error 
from the assimilation process consists of the background 
error from the background field and the random error from 
observations. The growing directions of the background 
error account for the important structure of the analysis error 
in the ZC mode. Because the breeding process is similar to 
the assimilation process, NLLVs represent the increasing 
directions of the dynamical system and have a close relation-
ship with the background error through the breeding process. 
Compared with the BV method, the mutual orthogonality of 
NLLVs contributes to the diversity of the ensemble pertur-
bation. Therefore, using the NLLVs as the ensemble pertur-
bation can improve the prediction skill of ENSO in the ZC 
model, as proved by the experimental results.

7 � Conclusions

In this study, we interpret NLLVs as extensions of the 
theoretical Lyapunov vectors and apply NLLVs to the ZC 
model to explore how to calculate the NLLVs, explore the 

NLLV characteristics, and evaluate the performances of the 
NLLV scheme for ENSO ensemble prediction in the per-
fect model environment. The NLLVs are a development of 
BVs. Through the breeding process, both the NLLV and BV 
can capture the growing directions of analysis errors from 
assimilation cycles. However, unlike the BV, the NLLV is 
periodically orthogonalized by the GSR process to separate 
various growing directions of the dynamical system. The 
continual orthogonalization in the breeding process ensures 
that the different unstable directions represented by NLLVs 
can develop sufficiently and be maintained. The mutually 
orthogonal NLLVs have greater diversity and higher inde-
pendence than the BVs.

Before calculating the NLLVs in the ZC model, for closer 
consistency with the operational environment, we con-
structed the assimilation process using the EnKF method 
to generate the analysis data without considering the model 
error. Using this analysis data as the reference trajectory, we 
demonstrated the feasibility of NLLVs to facilitate ENSO 
studies in this near-operational prediction environment. The 
ZC model has no weather or other fast timescale instabilities. 
Therefore, we have little doubt in relating the growing struc-
ture identified with NLLVs to the background flow. We ran 
some experiments to illustrate the potential benefit of using 
NLLVs in this coupled model. We explored the characteris-
tics of the spatial patterns and the growth rates of NLLVs.

We found that the instantaneous structures of NLLVs dif-
fer with the choice of breeding parameters and initial random 
perturbation seeds, especially the higher NLLVs (NLLV2, 
NLLV3,…). Due to nonlinear effects and the orthogonali-
zation process, the subsequent NLLVs have a certain ran-
domness. The randomness of the NLLVs contributes to the 
diversity of the NLLVs and guarantees the effectiveness of 
the subspace consisting of the first few NLLVs in describ-
ing the unstable directions of the ENSO dynamical process. 

Fig. 15   Evolution of the Brier 
Score of warm events (a) and 
cold events (b) as a function of 
lead time for the NLLV, BV and 
random schemes
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However, the statistical features of NLLV are insensitive 
to these breeding parameters, because all NLLVs repre-
sent the unstable directions of ENSO and are relative to the 
dynamical process of the background flow. The stability of 
the statistical properties is one of the NLLV advantages, 
which supports the application of NLLVs to the operational 
environment.

We have explored the characteristics of the spatial 
structures and growth rates of different NLLVs in the ZC 
model. Both the spatial structures and the growth rates of 
NLLVs (NLLV1 and the subsequent NLLVs) are related 
to the background ENSO events and seasonal cycle. The 
largest growth rates of NLLV1 and the subsequent first few 
NLLVs occur in boreal summer and fall. The growth rates 
of NLLVs are also strongly dependent on the background 
ENSO phase. The growth rates of the first few NLLVs are 
smallest at the mature stage of an El Niño event, while the 
largest error growth rates emerge during the ENSO neutral 
stages. In some phases of ENSO, the growth rates of other 
NLLVs (NLLV2, NLLV3…) may be larger than that of the 
NLLV1. In fact, the NLLV1 represents the statistically fast-
est growing direction. However, the other NLLVs have some 
probability of growing fastest. The first few NLLVs are also 
related to the background flow on the decadal/interdecadal 
time scale. The growth rates of the different NLLVs manifest 
different structural characteristics of the wavelet. The tem-
poral variation of the NLLVs depends on the background 
flow. The extreme values of the NLLVs tend to be located at 
the temporal and spatial location where the background flow 
changes rapidly. Analyzing the first three EOF structures of 
the first three NLLV (the NLLV1, NLLV2, NLLV3) respec-
tively, we find that the EOF structures from different NLLVs 
have some similarity because the NLLVs are all related to 
the background ENSO flow. The NLLVs have some advan-
tage over BVs in terms of the relationship between the error 
growth subspace and the analysis errors. The NLLVs also 
have higher local dimensionality than the BVs.

We have conducted ensemble forecasting of ENSO using 
NLLVs as the ensemble perturbations in the ZC model. The 
NLLV scheme for ENSO ensemble prediction performs bet-
ter than the BV and random approaches in terms of RMSE 
and PAC of the ensemble mean, the relationship of spread 
and RMSE, and the BS of warm and cold events. This may 
because the development of analysis errors can be effec-
tively sampled by the NLLVs and the diversity of the NLLVs 
as ensemble perturbations are high. Therefore, the NLLV 
scheme is an effective method for generating ensemble per-
turbations to predict ENSO.

This study simply uses the ZC model without model 
error. This deficiency leads to a higher predictability limit 
in this paper than that of the real ENSO prediction. There-
fore, we will apply the NLLVs to predict real ENSO events 
in future work. The ZC model is an intermediate coupled 

model which does not include realistic atmospheric transi-
tions and weather scale variability. Therefore, we need to 
verify the sensitivity of NLLVs to the atmospheric noise in 
complex coupled general circulation models (CGCMs). In 
this paper, we find that the subspace consisting of the NLLV 
perturbations is closely related to the analysis errors. The 
largely explained ratio of the perturbations to the analysis 
errors contributes to the high prediction skill traditionally. 
However, low prediction skill occurs with large correlation 
coefficient in some cases in this experiment. The relation-
ship of the coefficient between the subspace of the perturba-
tions and the analysis errors and prediction skill is complex 
and uncertain. The relationship should be explored further. 
However, in this paper, the NLLVs are directly used as the 
ensemble perturbations. When increasing the member of 
perturbations, the invalid direction from the subsequent 
NLLVs reduce forecast skill. Therefore, we need to choose 
the appropriate number of NLLVs as the perturbations.
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Appendix A

The nonlinear local Lyapunov vector and exponent 
spectrum

The evolution equation for the dynamical system is: 

where x(t) =
(
x1(t), x2(t),… , xn(t)

)T represents the state vec-
tor of the dynamical system F at time t. Considering a small 
perturbation �(t) ∈ ℝd: 

The governing equation for �(t) is: 

Without the tangent linear approximation, the solution of 
the perturbation �(t) is given by: 

where DF(x(t))�(t) are the tangent linear terms, and 
G(x(t), y(t)) are the nonlinear terms of the perturbation 
�(t). This is a high order nonlinear differential equations so 
cannot be solved analytically. However, we can obtain the 

(8)ẋ =
dx

dt
= F(x, t),

(9)
d(x(t) + y(t))

dt
= F(x + �, t).

(10)�(ṫ) = F(x(t) + �(t)) − F(x(t)).

(11)�(ṫ2) = DF(x(t1))�(t1) + G(x(t1), �(t1)),
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solution by numerically integrating the equation along the 
reference solution from t = t1 to t2: 

where �(x(t1), �
(
t1
)
, t2 − t1) is defined as the nonlinear 

propagator (Ding and Li 2007), which propagates the initial 
perturbation forward to t = t2. This nonlinear propagator 
depends on the initial perturbation �(t1). In order to obtain 
the growth rates of the perturbations corresponding to a cer-
tain size and a certain initial position, we need to find the 
growth directions in phase space and numerically compute 
the dynamical system with the perturbations. As mentioned 
above, the error vectors at a certain size tend to fall along the 
fastest growing directions as perturbations evolve over time 
in the dynamical system. In order to obtain the growth direc-
tions, we first breed the initial random perturbation ��(t0), 
and after sufficient time �, ��(t0 + �) will capture the fastest 
growing direction. We take the direction of ��(t0 + �) as the 
initial error �1(t0). The first (largest) nonlinear local Lyapu-
nov exponent (NLLE) along the growing direction �1(t0) can 
be approximately defined as: 

 where �1
(
x(t0), �1(t0), �

)
 depends on the initial state in phase 

space x(t0), the initial perturbation �1(t0) and evolution time 
�. Time-dependent Lyapunov exponents are obtained under 
the tangent linear equations so they do not depend on the 
perturbation size in the numerical calculation. A relation-
ship exists between the first NLLE and the time-dependent 
Lyapunov exponent �1(t). In the limit as �1(t1) → 0 the first 
NLLE corresponds to the time-dependent Lyapunov expo-
nent �1(t). When �1(t1) → 0, � → ∞, the first NLLE con-
verges to the largest Lyapunov exponent �1. The first NLLE 
has been used extensively to research the predictability of 
weather and climate (Ding et al. 2010, 2011, 2016; Li and 
Ding 2011, 2013).

As stated above, the n largest Lyapunov exponents char-
acterize the growth rate of an n-dimensional volume of 
small perturbations. Continuing this inherent characteristic 
of the Lyapunov exponents, the first n largest NLLEs should 
describe the growth rate of a set of orthogonal perturba-
tions. We define �1(t0), �2(t0),… , �n(t0) as the nonlinear 
local Lyapunov vectors (NLLVs), which are orthogonal and 
correspond to the directions of the NLLEs. Through the 
evolution of the nonlinear system, �1(t0), �2(t0),… , �n(t0) 
evolve into the vectors ��

1
(t0 + �), ��

2
(t0 + �),… , ��

n
(t0 + �) 

through the breeding process. The ith NLLE �i(x(t0), �(t0), �) 
can be determined directly from the growth rate of vector 
�i(t0) (Feng et al. 2016, 2014; Li and Wang 2008): 

(12)�(t2) = �(x(t1), �(t1), t2 − t1)�(t1),

(13)�1
(
x(t0), �1(t0), �

)
=

1

�
ln

�1(t0 + �)

�1(t0)
,

(14)

�i
[
x(t0), �i(t0), �

]
=

1

�
log

‖‖�i(t0 + �)‖‖
‖‖�i(t0)‖‖

(i = 1, 2,… ,m).

The NLLVs �1(t0), �2(t0),… , �m(t0) can be derived 
through a periodic reorthogonalization by the GSR process 
and rescaled (Feng et al. 2014; Li and Wang 2008). This pro-
cess (as shown in Fig. 1) is similar to the breeding method 
(Toth and Kalnay 1997) but with the addition of periodical 
orthogonalization. Therefore, we also call the process of 
solving for NLLVs a breeding process. The breeding pro-
cess is composed of multiple breeding cycles. In the GSR 
procedure, the direction of the first NLLV is never affected, 
which corresponds to the first NLLE, and the next fastest 
growing NLLV is orthogonalized with the first few NLLVs.

Appendix B

The ensemble Kalman filter

We first integrate the ZC model to acquire the long-term 
model state as the true state that is denoted by xtrue. The 
simulated observations y are generated from the true state 
using 

 where H is a function mapping from the model space to the 
observation space, and � represents independent realizations 
of the noise with a Gaussian distribution. The ensemble of 
forecast states is adopted as a set of background states. The 
ensemble is then defined as 

x̄f  represents the mean of the ensemble. Then, an ensemble 
perturbation matrix can be written as: 

The covariance matrix of the ensemble Xf is: 

The background forecast ensemble will be updated by the 
observations. The observations are assimilated to generate a 
new analysis of the state: 

where K is the Kalman gain. It is calculated by: 

where R is the observational error covariance matrix. K is 
actually a weight measuring the ratio of the forecast and 
observational error covariance.

The ensemble has 200 members, which is much smaller 
than the model dimension. Filtering divergence occurs in 
the EnKF assimilation process because of undersampling. 

(15)y = Hxtrue + �,

(16)Xf = (xf,1, xf,2, ..., xf,N).

(17)X�

f
= (xf,1 − x̄f, xf,2 − x̄f,… , xf,N − x̄f).

(18)Pf =
1

N − 1
X�

f
X�T
f
.

(19)xa,i = xf ,i + K
(
y −Hxf ,i

)
, i = 1, 2,… ,N,

(20)K = PfH
T
(
HPfH

T
+ R

)−1
,
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To overcome this problem, a 5% variance inflation factor is 
applied to X′

f
 in this ZC model. Moreover, the localization 

technique is applied to the matrix Pf to prevent spurious 
correlations at large distances. This is realized by the fifth-
order function of Gaspari and Cohn (1999) with the dis-
tance of zero correlation equal to four grid lengths (almost 
1000 km). The assimilation cycles are repeated for 1 month 
in each case to generate the analysis states. The mean x̄a of 
the analysis ensemble xa,i (i = 1, 2..., N) is regarded as the 
initial state when performing the prediction.
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