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ABSTRACT

It has been demonstrated that ensemble mean forecasts, in the context of the sample mean, have higher forecasting skill
than deterministic (or single) forecasts. However, few studies have focused on quantifying the relationship between their
forecast errors, especially in individual prediction cases. Clarification of the characteristics of deterministic and ensemble
mean forecasts from the perspective of attractors of dynamical systems has also rarely been involved. In this paper, two
attractor statistics—namely, the global and local attractor radii (GAR and LAR, respectively)—are applied to reveal the
relationship between deterministic and ensemble mean forecast errors. The practical forecast experiments are implemented
in a perfect model scenario with the Lorenz96 model as the numerical results for verification. The sample mean errors of
deterministic and ensemble mean forecasts can be expressed by GAR and LAR, respectively, and their ratio is found to
approach

√
2 with lead time. Meanwhile, the LAR can provide the expected ratio of the ensemble mean and deterministic

forecast errors in individual cases.
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1. Introduction
The atmospheric model, as a nonlinear chaotic system,

shows sensitivity to initial and model related errors. In other
words, any arbitrarily small errors in initial conditions will
grow with time, finally causing a loss of most forecast infor-
mation (Thompson, 1957; Lorenz, 1963, 1965). The deter-
ministic (or single) forecast, as the most widely used prod-
uct in weather forecasting, can provide useful and informa-
tive prediction within a certain range of predictability limit,
but is unable to give quantitative estimation of the prediction
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reliability. Instead, ensemble forecasting is a feasible ap-
proach to supply quantitative reliability information for fore-
casts in the form of probability (Leith, 1974; Toth and
Kalnay, 1993, 1997; Molteni et al., 1996). Another general
advantage of ensemble forecasting over deterministic fore-
casts is the forecast errors can be efficiently reduced by non-
linear filtering, in which the arithmetic mean of an ensemble
of forecasts is taken (Leith, 1974; Szunyogh and Toth, 2002).

Over the past several decades, numerous studies have
demonstrated the overall higher forecasting skill of the en-
semble mean over that of deterministic forecasts by us-
ing numerical models with different degrees of complexity
(Houtekamer and Derome, 1995; Toth and Kalnay, 1997;
Buizza et al., 1999; Wang and Bishop, 2003; Wei et al.,
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2008; Zheng et al., 2009; Feng et al., 2014; Duan and Huo,
2016). However, quantitative estimations and comparisons of
sample-mean deterministic and ensemble mean forecast er-
rors are subject to sampling errors as a result of limited num-
bers of forecast samples and ensemble members, especially
in complex numerical weather prediction models. It is even
more challenging to compare the deterministic and ensem-
ble mean forecasting skill for specific weather and climate
events, due to the sampling uncertainties from the day-to-
day variation of the underlying flow (Toth and Kalnay, 1997;
Corazza et al., 2003).

The forecasts and the corresponding verifying references
(generally the analysis states) are the evolving states of the
model and reference attractors, respectively. Therefore, the
forecast errors essentially are the distances between states in
attractor space. Li et al. (2018) proposed two statistics, i.e.,
the global and local attractor radii (GAR and LAR, respec-
tively), with regard to the average distances between states on
attractors. GAR measures the average distance between two
randomly selected states on an attractor, while LAR quanti-
fies the average distance of all states on the attractor from a
given state. For complex nonlinear dynamical systems, e.g.,
the atmosphere, GAR and LAR can be estimated simply us-
ing a long time series of their observed states. Moreover,
GAR is found to be a more accurate criterion to measure the
predictability limit than the traditional saturated value of the
sample mean deterministic forecast errors. The latter, due
to model errors, usually overestimates the actual error size
that totally chaotic forecasts should have on average (Li and
Ding, 2015; Li et al., 2018). In our study, GAR and LAR will
be further used to interpret the differences of deterministic
and ensemble mean forecast errors in both sample-mean and
single-case contexts without running the numerical forecasts.
It is expected to supply a reference for the verification and
assessment of the skill of deterministic and ensemble mean
forecasts.

The paper is organized as follows: Section 2 briefly intro-
duces the definitions of GAR and LAR used in this study and
the relevant theories. The experimental setup is presented in
section 3. Section 4 displays and analyzes the roles of the
attractor statistics in interpreting the relationship between de-
terministic and ensemble mean forecast errors. A discussion
and conclusions are provided in section 5.

2. Definitions of GAR and LAR
The definitions of GAR and LAR are based on the

premise that a compact attractor has an invariant probability
density function and marginal density function. Following Li
et al. (2018), consider xxx = (x1, x2, . . . , xn) to be the state vector
on a compact attractor A. RL,i is the LAR of one given state
xxxi on attractor A, defined by

RL,i = RL(xxxi) =

√
E(‖xxxi− xxx‖2), xxxi, xxx ∈ A , (1)

where E(·) represents the mathematical expectation and ‖ · ‖
is the L2 norm of a vector. Geometrically, LAR measures the

average root-mean-square (RMS) distance of all states on the
attractor from a given state. Assuming that A does not vary
with time, for a specific state xxxi, RL,i is an invariant quantity.
Particularly, if xxxi is chosen to be the mean state xxxE of A, RE

is calculated by
√

E(‖xxxE − xxx‖2) and is defined as the attractor
radius. It has the same form as the standard deviation (SD) in
statistics, measuring the variability of a variable.

Theorem 1: Let di and d j denote the RMS distances of
two states xxxi and xxx j on A from the mean state xxxE. Let RL,i
and RL, j represent the LAR of xxxi and xxx j, respectively. Then,
they satisfy the following relationship:

RL,i > RL, j, if di > d j . (2)

This means that the minimum value of LAR is exactly the
attractor radius. The proof of Theorem 1 can be referred to in
the Appendix.

The RMS of LARs over all states on A is defined as the
GAR:

RG =

√
E(R2

L) =

√
E(‖xxx− yyy‖2) , (3)

where xxx and yyy are two randomly selected state vectors from
A. GAR is an estimate of the average RMS distance between
any two states on the same attractor space.

Theorem 2: A constant proportional relationship between
RG and attractor radius RE of a compact attractorA exists as:

RG =
√

2RE . (4)

The two statistics, GAR and LAR, and their relevant the-
orems will be applied to the quantitative estimation of deter-
ministic and ensemble mean forecast errors.

3. Experimental setup
In our experiments, the simple Lorenz96 model (Lorenz,

1996) is used so that a large sample of ensemble and forecasts
can be generated with low computational cost to significantly
reduce the sampling noise of the estimation of forecast errors.
The Lorenz96 model is a 40-variable model and has been
widely used to investigate theorems and methods of ensemble
prediction and data assimilation (e.g., Lorenz and Emanuel,
1998; Ott et al., 2004; Basnarkov and Kocarev, 2012; Feng et
al., 2014). The model is given by:

dxk/dt = (xk+1− xk−2)xk−1− xk + F , (5)

where xk(k = 1,2, . . .,40) represents the state variable and F
is a forcing constant. It assumes that x−1 = x39, x0 = x40 and
x41 = x1. In the case of F = 8, the model has chaotic behavior.
The solutions can be solved by a fourth-order Runge–Kutta
scheme with a time step of 0.05 time units (tu).

After an initial spin-up stage of 1000 tu, the model is nat-
urally run for a sufficiently long time (104 tu, i.e., 2× 105

time steps) to generate the true states used as references for
the forecasts. There are a total of 2×105 cases initiated from
each true state. If the initial true state is denoted by xxxt, the ini-
tial analysis state xxxa is given by superposing analysis errors δδδ
on xxxt:

xxxa = xxxt +δδδ . (6)
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For simplicity, each element of the analysis error δδδ is ar-
bitrarily generated from the Gaussian distribution with ex-
pectation 0 and SD 1. The RMS size of δδδ is then rescaled
to 0.1, which is about 3% of the climatic SD of xxxt (3.63).
Each ensemble perturbation is generated with the same ap-
proach as the analysis error but using different realizations
of noise and the RMS size of each perturbation is rescaled
to 0.1 as well. There are a total of 2.5× 105 ensemble per-
turbations produced in each case and added and subtracted
from the analysis xxxa to generate N = 5× 105 initial ensem-
ble members (2.5× 105 pairs), making their mean still equal
to xxxa. The deterministic and ensemble forecasts in each case
are derived by integrating analysis states and initial ensemble
members for 10 tu using the same model generating the truth
(i.e., perfect model scenario).

Although the analyses in our study are not generated
through generally used data assimilation approaches, the ini-
tial ensemble perturbations have the same probability distri-
bution as the analysis errors and thus are expected to op-
timally sample the analysis errors. Moreover, the ensem-
ble member number (5× 105) is significantly larger than the
model dimension (40). The above two designs eliminate the
possible effects from suboptimal initial ensemble members
and a limited number of ensembles on the ensemble mean
skill.

4. Results

4.1. GAR and LAR of the Lorenz96 model

Due to the ergodicity of attractors, the evolving states of
chaotic dynamical systems have stable probability to visit dif-
ferent regions of the attractor in the long run (Farmer et al.,
1983; Eckmann and Ruelle, 1985; Zou et al., 1985; Li and
Chou, 1997). Initially, the probability distribution of the at-
tractor of the Lorenz96 system is given to display the long-
term behavior of the system. Figure 1 shows the probability
distribution of variable x1 (the selection of xi has no effect on
the results, because of their homogeneous properties in the
Lorenz96 model). It is evident that the probability distribu-
tion of variable x1 tends to be invariant with the evolving time
increased to sufficiently long (2.5× 106 tu here). The mean
value and the SD of the attractor are 2.22 and 3.63, respec-
tively.

Figure 2 shows the variation of LAR (red solid line) as a
function of the value of x1 calculated with a 2.5×106 tu time
series. The probability distribution of the system (black solid
line) is also given as a reference. It is found that LAR is de-
pendent on the specific state on the attractor. The states with
longer distances to the mean state have smaller probability
to occur and larger LAR, as in Theorem 1. When x1 moves
to the mean state, the minimal value of LAR—namely, the
attractor radius RE—is exactly reached and equal to the SD
(3.63). Additionally, the RG of variable x1 (5.13), calculated
through the RMS of RL over all given states on the attractor,
is exactly

√
2 times the RE, as revealed by Theorem 2.

Fig. 1. Probability (%) distribution of variable x1 of the
Lorenz96 model over the attractor set with different lengths of
time series (5×102, 2.5×103, 5×103, 2.5×104, 5×104, 5×105,
2.5×106 tu, in order).

Fig. 2. Variation of LAR (red solid line) as a function of the
value of x1 and the probability distribution of variable x1 (black
solid line). The x1 value with the lowest LAR (red dashed line)
is exactly the same as the mean state (black dashed line) 2.22.

4.2. Evolution of ensemble mean and deterministic fore-
cast states

The differences between deterministic and ensemble
mean forecast errors are essentially associated with their dif-
fering forecast states. Therefore, the statistical characteristics
of deterministic and ensemble mean forecast states are ana-
lyzed before comparing their forecast errors. Each panel of
Fig. 3 illustrates the probability distribution of the determinis-
tic (black line) and ensemble mean (blue line) forecast states
over all cases at the same lead time. It shows that the probabil-
ity distribution of deterministic forecasts is always consistent
with that of the reference (red line) from 0.5 to 6 tu, since they
are from the same attractor. In contrast, the probability distri-
bution of ensemble mean states appears to have a narrower
range and a higher peak as time increases. In other words,
the ensemble mean forecasts tend to, on the whole, move to-
ward the climatic mean value (2.22) with lead time because of
the nonlinear smoothing effect of the arithmetic mean of the
forecast ensemble (Toth and Kalnay, 1997). Finally, when all
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Fig. 3. Probability (%) distribution of the ensemble mean (blue line; right-hand scale) and deterministic (black line;
left-hand scale) forecast states and true states (red line; left-hand scale) over all 2× 105 samples as a function of lead
time.

forecast members become chaotic with sufficiently long lead
time, their ensemble mean without exception would equal the
climatic mean in any individual case. It indicates that the en-
semble mean reduces the forecast error compared to deter-
ministic forecasts, but at the expense of losing information
and variability in forecasts. On the other hand, according to

the characteristics of forecast states, it could be expected that
the saturation value of sample mean ensemble mean forecast
errors would be consistent with the attractor radius, while de-
terministic forecast errors will saturate at the level of GAR.
The conclusion is verified through the results of forecast ex-
periments in section 4.3.
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4.3. Sample mean forecast errors
Figure 4 shows the RMS error of x1 for deterministic

and ensemble mean forecasts as a function of lead time aver-
aged over all cases. Within the initial 1 tu, the deterministic
and ensemble mean forecasts have similar errors due to the
offset of the approximate linear growth of the positive and
negative initial ensemble perturbations. After 1 tu, ensemble
mean forecasts retain smaller errors compared to determinis-
tic ones, and their difference continuously increases with lead
time. Finally, deterministic and ensemble mean forecast er-
rors both enter the nonlinear saturation stage and reach 5.13
and 3.63, respectively. The former is the same as the GAR
and the latter equals the attractor radius. Their ratio of the
saturation values is

√
2, as is derived in section 4.2. It is also

consistent with the conclusions in Leith (1974) and Kalnay
(2003).

4.4. Forecast errors in individual cases
In comparison with the sample mean forecasts, the fore-

casts of a specific weather or climate event is strongly in-
fluenced by the evolving dynamics (Ziehmann et al., 2000;
Corazza et al., 2003), and it is thus difficult to estimate the ex-
pected values of both deterministic and ensemble mean fore-
cast errors. LAR is a feasible statistic to estimate the expected
value of deterministic and ensemble mean forecast errors in
individual cases without running practical forecasts. As the
nonlinearity in forecasts intensifies, the ensemble mean ap-
proaches the mean state (see Fig. 3), while the deterministic
forecast tends to be a random state on the attractor. Referring
to the definition of LAR in Eq. (1), the ratio r of the expected
values of deterministic and ensemble mean forecast errors for
a specific predicted state xxxi can be expressed by:

r =
RL,i

‖xi−xE‖
=

√
‖xi−xE‖2 + R2

E

‖xi−xE‖
. (7)

Fig. 4. RMS error averaged over 2×105 samples for the deter-
ministic (black solid line) and ensemble mean (red solid line)
forecasts as a function of time. The dashed lines are the satura-
tion values, 5.13 and 3.63, of deterministic and ensemble mean
forecasts errors, respectively.

Figure 5 shows the variation of r as a function the true
state x1. It can be seen that the ensemble mean has the max-
imum advantage over the deterministic forecast if the truth
(or the observed state) is close to the climatic mean state.
When the truth gradually deviates from the mean state, the
superiority of the ensemble mean over deterministic forecasts
diminishes fast. For an event within 1 to 2 SD, r ranges ap-
proximately from 0.7 to 0.9. Once the event is out of 2 SD,
r is almost 0.95, which means the ensemble mean and de-
terministic forecasts perform very similarly. This indicates
that the ensemble mean has no advantage over determinis-
tic forecasts in predicting the variabilities of extreme events,
and the overall better performance of the former (see Fig. 4)
originates from its higher skill for neutral events. With a long-
term series of a variable, its distribution of r can be estimated
in advance and used as a reference for deterministic and en-
semble mean forecast skill in individual cases, especially for
long-range forecasts.

To verify the above result, the practical errors of de-
terministic and ensemble mean forecasts are compared. The
forecast skills are assessed against the truth divided into three
categories—namely, the neutral (within 1 climatic SD), weak
extreme (within 1–2 SD), and strong extreme (beyond 2 SD)
events. Figure 6 compares the deterministic and ensemble
mean forecast errors for the three groups of events at lead
times of 1, 2, 3 and 4 tu. It can be seen that at 1 tu the deter-
ministic and ensemble mean forecast errors are within similar
ranges; at later times, the range of the ensemble mean errors,
due to the nonlinear filtering, is evidently smaller than that of
the deterministic forecast errors. After 1 tu, for both the de-
terministic and ensemble mean forecasts, the forecast errors
of an extreme event are overall larger than those of a neutral

Fig. 5. Ratio between the expected values of the ensemble mean
(e EM) and deterministic (e Det) forecast errors of x1 as a func-
tion of the observed value of x1. The red dashed line represents
the mean state and the black dashed lines are 1 and 2 SD, re-
spectively.
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Fig. 6. RMS error of the ensemble mean and the deterministic forecasts for neutral events within one SD at time (a) 1
tu, (d) 2 tu, (g) 3 tu and (j) 4 tu. The second and third columns are same as the first, but for weak extreme states within
1–2 SD and strong extreme states out of 3 SD, respectively.

event at the same lead time, as shown in Table 1, which is es-
sentially related to the distribution of LAR on an attractor. At
long lead time (4 tu), the ratios between the average ensemble

mean and deterministic forecast errors are 0.54 (1.69 vs 3.11),
0.87 (4.19 vs 4.79) and 0.99 (7.23 vs 7.33) for neutral, weak
and strong extreme events, respectively, which are within the



MARCH 2019 FENG ET AL. 277

Table 1. Average RMS errors of ensemble mean (E EM) and deter-
ministic (E Det) forecasts and their ratio for different categories of
events (neutral, < 1 SD; weak extreme, 1–2 SD; strong extreme, > 2
SD) at different lead times.

< 1 SD 1–2 SD > 2 SD

E EM/E Det Ratio

1 tu 0.47/0.48 0.47/0.46 0.59/0.50
0.98 1.02 1.18

2 tu 1.24/1.61 1.89/1.89 3.43/2.89
0.77 1.0 1.19

3 tu 1.62/2.66 3.51/3.67 6.23/5.72
0.61 0.96 1.09

4 tu 1.69/3.11 4.19/4.79 7.23/7.33
0.54 0.87 0.99

range of the expected ratio in Fig. 5. At shorter lead times, the
errors of deterministic and ensemble mean forecasts become
closer for neutral and weak extreme events, but the ensemble
mean performs much worse (about a 20% error increase at 1
and 2 tu) for strong extreme events. For more extreme events
at a given lead time, the ensemble mean forecasts are less
likely to have small RMS errors, especially for longer lead
times (see Figs. 6c, f, i and l).

5. Discussion and conclusions

In this study we investigate the quantitative relationship
between the forecast errors of deterministic and ensemble
mean forecasts using the Lorenz96 model as an example. In-
stead of evaluating the results from a large number of forecast
samples as most studies do, the skills of deterministic and en-
semble mean forecasts are compared by using two statistics
defined on attractors, namely the global and local attractor
radii (GAR and LAR, respectively). GAR and LAR quanti-
tatively describe the average distances among states on the
same attractors, which are found closely related to forecast
errors. The sample mean saturated errors of deterministic and
ensemble mean forecasts with a perfect model can be approx-
imately estimated by the GAR and attractor radius, respec-
tively, and their ratio equals

√
2. Moreover, the expected ratio

between deterministic and ensemble mean forecast errors in
individual cases can be quantified by the LAR-related statis-
tics. The results indicate that the superiority of the ensemble
mean over deterministic forecasts significantly reduces from
predicting neutral to strong extreme events.

GAR and LAR can be applied to practical weather and
climate predictions. Since GAR and LAR are independent
of specific forecast models, but derived from the attractor of
observed states, they can provide objective and accurate cri-
teria for quantifying the predictability of sample mean fore-
casts and individual cases in operations, respectively. The
deviations of GAR and LAR between observed and practical
model states may indicate the level of model deficiencies and
give guidance on the development of model performance.

The relative performance of deterministic and ensemble

mean forecasts revealed by GAR and LAR will not change
for practical weather and climate forecasts with model er-
rors. However, GAR and LAR calculated based on the ob-
served states may introduce bias when used to estimate the
expected errors of deterministic and ensemble mean forecasts
in imperfect prediction models. It may be more appropriate
to use the other two statistics on attractors introduced by Li
et al. (2018)—namely, the global and local average distances
(GAD and LAD, respectively), which are similar to GAR and
LAR, respectively, but estimate the average distance of states
on two different attractors. The application of GAD and LAD
to practical deterministic and ensemble mean forecasts will
be further studied in the future.

Since the occurrence of neutral events carries large prob-
ability, the ensemble mean can still provide a valuable ref-
erence for most of the time. However, the filtering effect of
the ensemble mean algorithm results in its inherent disadvan-
tage for predicting extreme events, which cannot be easily
overcome. In operations, each ensemble forecast usually has
not only the amplitude but also the positional errors when
predicting specific flow patterns, e.g., a trough. Therefore,
the ensemble mean may have stronger smoothing effects than
our theoretical results in a simple model, and thus becomes
more incapable of capturing extreme flow features. To iden-
tify extreme weather, the model performance of deterministic
forecasts needs further improvement toward a higher spatial
resolution and more accurate model physics and parameteri-
zation. Additionally, more efficient post-processing methods
for ensemble forecast members need to be developed to ex-
tract more accurate probability forecast information.

Acknowledgements. The authors acknowledge funding from
the National Natural Science Foundation of China (Grant Nos.
41375110 and 41522502).

APPENDIX

This appendix shows the processes to prove Theorem 1.
RL,i and RL, j are the local attractor radii of the compact attrac-
torA at state xxxi and xxx j, respectively. xxxE and RE are the mean
state and attractor radii ofA. Based on Eq. (1), the expression
of RL,i can be derived as follows:

R2
L,i = E(‖xxxi− xxx‖2) , xxxi, xxx ∈ A ,

= E(xxx2−2xxxxxxi + xxx2
i ) ,

= E(xxx2)−2xxxiE(xxx) + xxx2
i ,

= xxx2
i −2xxxExxxi + (xxx2

E + R2
E) ,

= (xxxi− xxxE)2 + R2
E .

RL,i reaches the minimal value RE, i.e., the attractor ra-
dius, when xxxi = xxxE; and if di > d j, RL,i > RL, j, where di and
d j denote the RMS distances of xxxi and xxx j from the mean state
xxxE.
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