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Abstract
Due to the scarcity of and errors in observations, direct measurements of errors
in numerical weather prediction (NWP) analyses and forecasts with respect
to nature (i.e. “true” error) are lacking. Peña and Toth (2014) introduced an
inverse method called SAFE-I where true errors are (a) theoretically assumed
to follow exponential error growth, and (b) estimated from the perceived errors
(i.e. forecast minus verifying analysis) that they affect. While decaying or neu-
tral errors, by definition will not have a significant impact on longer-range
forecast errors, they can still accumulate in, and negatively influence NWP
data assimilation–forecast cycles. In a new, generalized version of the inverse
method (SAFE-II), analysis and forecast error variance is decomposed into expo-
nentially growing and decaying components, assuming they are independent
as they comprise vectors from the leading and trailing ends of the Lyapunov
spectrum, respectively. SAFE-II uses the initial variance and decay rate associ-
ated with non-growing perturbations to describe and estimate their behaviour.
The assumptions behind SAFE-II are first validated in a simulated environ-
ment. SAFE-II is then applied to estimate the error variance in both simulated
and operational analyses/forecast environments. Perceived error measurements
are found to be statistically consistent (at the 95% significance level) with the
SAFE-II error behaviour model, which offers a more accurate description of
error variance than SAFE-I that neglects decaying errors. At various levels and
for different variables, decaying errors are found to constitute up to 60% of the
total analysis error variance, much of which decays during the first 12–18 hr of
forecast integrations.
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1 INTRODUCTION

Due to the intermittency of, and errors in, available obser-
vations, the true state of the atmosphere, however alluring

it is, remains unknown. The state of the atmosphere
is estimated using data assimilation (DA, current state,
or analysis) and numerical weather prediction (NWP,
future states or forecasts) tools. Both the assessment and
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improvement1 of the quality of DA and NWP tools and
products depend on reliable estimates of analysis and fore-
cast error variance. In most studies, such errors are esti-
mated with the variance between NWP analysis or forecast
states that are being evaluated and verifying observations
or NWP analysis fields (in the case of forecast verification).
Since errors in some verifying observations or analysis
fields are of comparable magnitude to those in analysis or
short-range forecast fields that are being evaluated, such
an approach is convoluted and yields questionable results.

Peña and Toth (2014, PT14) introduced a method
hereafter called Statistical Analysis and Forecast Error
(SAFE-I) estimation that relates the measured perceived
forecast error variance (forecast minus verifying analysis)
to true error variance (forecast minus reality interpreted
on the model grid). SAFE-I is independent of any assump-
tions used in analysis or forecast systems. The measured
perceived forecast error variance is modelled by several
unknowns. To reduce the number of unknowns in the sta-
tistical estimation process, it uses prior knowledge about
the evolution of errors in analysis–forecast systems. The
unknown parameters are estimated via the minimization
of the difference between the sample mean (e.g. over a sea-
son) of measured and modelled (via the unknown param-
eters) perceived error variance. Feng et al. (2017) extended
the application of SAFE-I from area mean to pointwise
error estimation and quantified the spatial distribution of
analysis and short-range forecast error variance at a 95%
confidence level.

For simplicity, SAFE-I assumes that in short-range (i.e.
out to 2 or 3 days) synoptic-scale forecasts all analysis
errors grow at a close to exponential rate. Analysis errors
are therefore assessed in a “growing equivalent” sense. The
effect of non-growing analysis errors, if any, will implicitly
manifest in modified estimates of the growing error com-
ponent. In the presence of a significant level of decaying
analysis errors, this may lead to an overestimation of ini-
tial growing error variance, and an underestimation of the
growth rate.

Analysis fields are a weighted sum of observations and
NWP first-guess forecast fields. It is generally accepted
that NWP analyses contain both random or decaying,
and dynamically conditioned, growing errors (Toth and
Kalnay, 1993; 1997; Buizza et al., 2005; Houtekamer et al.,
2005; Wei et al., 2008; Peña et al., 2010). The former gen-
erally signifies a lack of dynamical balance in analysis

1For example, the reliable specification of analysis error variances offers
a reference for the rescaling of initial ensemble perturbations (Molteni
et al., 1996; Toth and Kalnay, 1997; Wei et al., 2008). Also, the accurate
quantification of short-range forecast error variances can orient the
tuning of background forecast error covariance in DA (Fisher, 1996;
Whitaker et al., 2008).

fields. These errors are believed to originate from errors in
observations (e.g. Hunt et al., 2007; Stewart et al., 2013), or
statistical DA approximations,2 hence can be considered
random from a model dynamics point of view. There-
fore, these errors project onto the stable (or decaying)
manifold of the system (Toth and Kalnay, 1997; Kalnay,
2003). Growing errors originate from amplifying errors in
first-guess forecasts, projecting onto the unstable (or grow-
ing) subspace (Pires et al., 1996; Toth and Kalnay, 1997;
Kalnay, 2003; Trevisan and Uboldi, 2004; Feng et al., 2018).
As Pires et al. (1996) showed, improved DA techniques
lead to a reduction of the proportion of errors that decay in
the overall analysis error.

When decaying errors are present in the analysis, over
a transient period the overall error may either decay or
exhibit slower than exponential growth due to the rapid
collapse of random errors (e.g. Vannitsem and Nicolis,
1994; Trevisan and Legnani, 1995; Houtekamer et al., 2005;
Palatella et al., 2013). Such a transient period is followed
by exponential error growth,3 characteristic of the system's
dynamics associated with the leading local Lyapunov vec-
tors (Toth and Kalnay, 1997; Kalnay, 2003; Snyder and
Hamill, 2003; Ding and Li, 2007; Li and Ding, 2011; Feng
et al., 2014).

Forecast errors also display a transitional decay-
ing phase in Observing System Simulation Experiments
(OSSEs) where true error is directly measurable (see, e.g.,
Privé and Errico, 2013). When initial perturbations are
dynamically less conditioned (i.e. have significant projec-
tion on the stable manifold due to, e.g., the addition of
simulated observational noise), the ensemble spread may
also exhibit transitional behaviour (e.g. Houtekamer et al.,
2005; Hamill and Whitaker, 2011).

Decaying components of analysis error or perturbation
variance rapidly disappear during the initial phase of fore-
cast integrations (typically in less than a day). But their
accurate estimation can (a) improve the accuracy of the
analysis and short-range forecast error variance estima-
tion, (b) diagnose the effectiveness of DA schemes (in the
spirit of Pires et al., 1996), and (c) provide guidance as to
the appropriate level of growing, dynamically conditioned
perturbations (as opposed to quickly disappearing noise)
in initial ensemble perturbation generation methods. In

2Examples include the use of “covariance localization” in ensemble
Kalman filters (EnKF) for the reduction of spurious long-distance
covariances (Houtekamer and Mitchell, 2001). Such schemes may
introduce an imbalance among different variables (Mitchell et al., 2002;
Lorenc, 2003). The use of incomplete balance constraints may also leave
gravity waves in the analysis that appear as noise to hydrostatic models
(Huang and Lynch, 1993; Kleist et al., 2009).
3In nonlinear systems, as the level of error becomes comparable to the
size of the attractor, nonlinear interactions moderate exponential
growth (Lorenz, 1982; Dalcher et al., 1988).
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particular, the diagnosis of decaying errors is a prereq-
uisite for their reduction and for making analysis fields
dynamically more balanced.

This study is based on the recognition that analysis
errors generally project onto the full spectrum of local
Lyapunov vectors (LLVs: Wolf et al., 1985; Legras and Vau-
tard, 1996), from the fastest growing to the fastest decaying
directions (Toth and Kalnay, 1997; Vannitsem and Nico-
lis, 1997; Hamill et al., 2002; Kalnay, 2003; Ding et al.,
2017; Feng et al., 2018). This is because each analysis
step introduces some noise into the analysis field, ran-
domly projecting onto the full spectrum of directions in
the phase space. The forecast step amplifies dynamically
growing error patterns while dissipating errors in other
directions, thus rotating the overall error toward the grow-
ing subspace. Such potentially complex error behaviour
is approximated here by assuming that the total error
variance is the sum of two orthogonal error components
(SAFE-II). The first component is exponentially grow-
ing, characterized by the leading Lyapunov vector (LV:
Lorenz, 1996; Toth and Kalnay, 1997; Ziehmann et al.,
2000; Kalnay, 2003; Feng et al., 2014), estimated by SAFE-I,
while the other component introduced here is exponen-
tially decaying, considered as a composite of errors across
all the neutral and trailing LVs.

The modelling of the decaying errors in SAFE-II is
introduced in Section 2. Section 3 describes the Global
Forecast System (GFS) that is used operationally at the
National Centers for Environmental Prediction (NCEP), in
which SAFE-II will be tested. The SAFE-II assumptions
are validated in a GFS-based OSSE environment (Cucu-
rull et al., 2017) where “ground truth” is known exactly
(Section 4). Experimental SAFE-II results from both sim-
ulated and operational systems, including a comparison
with SAFE-I output, are presented and analysed in Section
5, followed by preliminary conclusions in Section 6 and
discussion in Section 7.

2 METHODOLOGY

2.1 Statistical Analysis and Forecast
Error estimation algorithm (SAFE-I)

Let F, A and T denote the forecast, analysis, and true state
of reality, all valid at the same time and interpolated onto a
common model grid. The true (xi) and perceived (fi) errors
in an i⋅Δt lead time forecast (where Δt is the length of the
DA cycle) are then defined as:

xi = Fi − Ti, (1)

fi = Fi − Ai. (2)

Since the true state of reality is not known exactly, the
true error is not measurable. For each lead time, PT14
introduces the following relationship between the true
analysis and forecast error variances and the perceived
forecast error variance measurements:

f 2
i = x2

0 + x2
i − 2𝜌i ⋅ x0 ⋅ xi, (3)

where f 2
i , x2

0 and x2
i are the spatial and temporal mean

of error variance corresponding with fi, x0 and xi, and 𝜌i
is the sample mean correlation between x0 and xi. The
unknown parameters are estimated by minimizing the dif-
ference between the measured (f 2

i ) and the modelled (f̂ 2
i )

perceived error variance in Equation like (3).
Note that the number of unknowns in a series of

Equation like (3) exceeds the number of measured quanti-
ties. Here we follow PT14 and use a simplifying set-up as
well as prior knowledge about error growth and DA (in the
form of several assumptions, see Table 1) to dramatically
reduce the number of unknowns in a series of Equation
like (3).

Simplifying set-up. As in SAFE-I, forecasts are verified
against analysis fields from the same DA-forecast system
that is used for the initialization of the forecasts:

F0 = A0. (4)

We opt to use analysis fields instead of observations
as a proxy for reality as, by design, they have a lower
error. Choosing verifying analysis fields from the same sys-
tem that initializes the forecasts reduces the number of
unknowns, potentially reducing errors in their statistical
estimation.

Assumption 1. Model error. In this study, we focus on
extratropical forecast variables verified against analysis
fields that represent natural processes at the model's
spatio-temporal resolution. For simplicity, under these
conditions we assume that model error is negligible. In
case total forecast error can be explained purely through
the amplification of initial errors, the assumption will be
considered validated. For other (e.g. tropical) variables or
for processes not well resolved by the model (e.g. parame-
ter or truncation errors), the model error can be explicitly
represented as an additional term in Equation 5 below (see,
e.g., PT14, and Vannitsem and Toth (2002), or Nicolis et al.
(2009), respectively).

Assumption 2. Error evolution. Error variance in
short-range forecasts of complex systems evolve expo-
nentially and therefore can be described simply by two
unknown parameters – the initial analysis error size x0,
and the exponential growth rate 𝛼 (Lorenz, 1963):
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T A B L E 1 Summary of Assumptions 1–6 behind the SAFE-II method related to the use of perceived error variance (PEV) and
variance of lagged forecast difference (VLFD) measurements

Subject Estimation area Assumption

Section
introduced/
validated

1. Model error PEV Negligible for studied variables 2.1/4.1

2. Error evolution PEV Exponential growth/decay of initial
error variance

2.1,2.2/4.1

3. Data impact on analysis PEV Power law decorrelation of analysis error
from increasing lead time forecast error

2.1/4.1

4. Relationship between true and per-
ceived error variance

VLFD True and perceived error variances
become similar with longer lead times

2.3/4.2

5. Transient period VLFD Decaying errors diminish in first 24 hr of
integration

2.3/4.1

6. Divergence rate of model trajectories VLFD Divergence rate is similar between
lagged forecasts vs. forecast and truth

2.3/4.1,4.2

x2
i = x2

0 ⋅ ei⋅Δt⋅𝛼. (5)

If necessary, Equation 5 can be augmented to repre-
sent the effect of nonlinear saturation (i.e. replace the
exponential relationship with the logistic function), or
model-related errors (PT14).

Assumption 3. Data impact on analysis. PT14 recog-
nized that the repeated insertion of new observational
information in successive DA-forecast cycles results in the
progressive decorrelation of true error in a freely evolv-
ing forecast from the true error in verifying analyses valid
at the same time. Assuming that a statistically similar
amount of observational information is ingested in each
DA cycle, the error decorrelation follows a power-law rela-
tionship:

𝜌i = 𝜌i
1. (6)

𝜌1 and 𝜌i in Equation 6 indicate the angular extent
to which the error in the latest analysis is rotated from
the error in the first guess (Δt = 6 hr for a typical DA
cycle in global forecast systems) or from earlier initial-
ized longer-range forecasts all valid at the time of the
analysis, respectively, due to one (or multiple) introduc-
tion(s) of observational information. The simplicity of the
data impact relationship in Equation 6 is because the
error that is assumed to be composed of leading LLVs,
whether present in a DA-forecast cycle or in a “free”
longer-range forecast, develops similarly in a quasi-linear
fashion, over the same (or very similar) time-evolving
flow.

With the relationships in Equations 4–6, the number
of unknowns is significantly reduced, and the short-range

perceived error variance can be simulated with only three
unknowns (x0, 𝛼, 𝜌1):

f̂ 2
i = x2

0 + x2
0 ⋅ ei⋅Δt⋅𝛼–2𝜌i

1 ⋅ x2
0 ⋅

√
ei⋅Δt⋅𝛼. (7)

The unknown parameters are then estimated by mini-
mizing the cost function:

J = max(| f 2
i − f̂ 2

i | ⋅ w−1
i ), (8)

where w−1
i is the weight on the fitted perceived error vari-

ance at lead time i⋅Δt, and |•| represents the absolute value.
The minimization is carried out using the limited-memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm
(Byrd et al., 1995). The choice of the L∞ norm (max(•); i.e.
infinite norm) is motivated by a desire to get a good fit over
the entire range of lead times (PT14). Simulated perceived
error values on the right side of Equation 7 are expected
to match their measurement counterparts only within the
sampling uncertainty of the latter which is given by the
standard error of the mean (SEM). For further details on
SEM and w−1

i , see Appendix A.

2.2 Decomposition of analysis
and forecast errors

As mentioned earlier, analysis errors are generally
assumed to project with varying power on the full spec-
trum of LLVs, from the fastest growing to fastest decaying
vectors (Toth and Kalnay, 1997; Vannitsem and Nicolis,
1997; Hamill et al., 2002; Kalnay, 2003; Feng et al., 2018).
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Recognizing that true error variance at longer lead times is
dominated by the fastest growing components of the total
error (since decaying errors diminish early on), SAFE-I
uses a most economical, 1-dimensional model to describe
error evolution constrained in the subspace of the leading
(i.e. fastest growing) LLVs.

Such a model, however, cannot describe the transi-
tional behaviour arising early on in a forecast due to neu-
tral or decaying analysis errors. To assess the behaviour of
decaying errors and to enhance the accuracy of growing
error variance estimates, here we propose a generalization
of the SAFE-I algorithm. While SAFE-I assumes all errors
are confined in the subspace of the leading LLVs and grow
exponentially, the new method called SAFE-II introduces
a second, exponentially decaying component orthogonal
to the growing direction, accounting for all non-growing
errors.

The total analysis error variance in SAFE-II is thus
described as the sum of the growing and decaying compo-
nents:

x2
0 = g2

0 + d2
0, (9)

where g2
0 and d2

0 are the initial growing and decaying error
variances, respectively. In the forecast phase, the grow-
ing component expands exponentially, while the decaying
component shrinks exponentially, yielding the following
sum for the total true forecast error variance (Assumption
2 behind SAFE-II):

x2
i = g2

0 ⋅ ei⋅Δt⋅𝛼 + d2
0 ⋅ ei⋅Δt⋅𝛽 , (10)

where 𝛽 is a negative value representing the exponential
decay rate. The transitional behaviour of the total error
(solid) due to the vanishing decaying errors (dotted) is
illustrated in Figure 1. Following the initial transitional
period during which most of the decaying errors disappear,
the total error follows the evolution of the exponential
component (dashed line in Figure 1). By substituting x2

0
and x2

i in Equation 7 with Equations 9 and 10, the per-
ceived error variance simulated with the two additional
SAFE-II parameters (d0 and 𝛽) can be written as:

f̂ 2
i = g2

0 + d2
0 + g2

0 ⋅ ei⋅Δt⋅𝛼 + d2
0 ⋅ ei⋅Δt⋅𝛽

− 2𝜌i
1 ⋅

√
g2

0 + d2
0 ⋅

√
g2

0 ⋅ ei⋅Δt⋅𝛼 + d2
0 ⋅ ei⋅Δt⋅𝛽 . (11)

2.3 Use of additional measurements

Given the challenge of estimating two extra parameters
compared to SAFE-I, we explored whether additional mea-
surements beyond perceived errors could be used for the

F I G U R E 1 Schematic of the evolution of the true forecast
error variance (solid) and its growing (dashed) and decaying
(dotted) components

Analysis

Reality

Forecast

TA

Fi

…

Fi-1

γ i-1,i ρ i-1,i

Time

F I G U R E 2 A 3D schematic of the relationship between the
correlations of true (TFi−1 and TFi, 𝜌i−1,i) and perceived (AFi−1 and
AFi, 𝛾 i−1,i) errors, all valid at the same time. F, A and T represent
forecast, analysed and true states, respectively [Colour figure can be
viewed at wileyonlinelibrary.com]

reduction of uncertainty in SAFE-II parameter estimation.
Lagged Forecast Differences (i.e. the differences between
two different lead time forecasts valid at the same time,
hereafter LFD) is one such measurable quantity. In
Figure 2, Fi−1 and Fi are two such forecasts (with lead
times of (i–1)⋅Δt and i⋅Δt), while T and A denote the true
and analysed states, respectively, all valid at the same time.
In triangle TFi−1Fi (blue dotted lines), the LFD variance
between Fi−1 and Fi (f2

i−1,i, red solid line) can be expressed
as:

f 2
i−1,i = x2

i−1 + x2
i –2𝜌i−1,i ⋅ xi−1 ⋅ xi, (12)

where 𝜌i−1,i is the correlation between TFi−1 and TFi (blue
dotted lines).

To enable the use of LFD measurements in SAFE-II
without the introduction of 𝜌i−1,i as an additional
unknown parameter, we introduced three additional
assumptions.

Assumption 4. Relationship between true and perceived
error variance. We first note that the correlation 𝛾 i−1,i

http://wileyonlinelibrary.com
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between AFi−1 and AFi (blue solid lines in Figure 2) can be
readily calculated from perceived error measurements. We
further note that while true forecast error variance grows
exponentially as a function of lead time, analysis error vari-
ance x2

0 remains the same. Therefore, at sufficiently long
lead times, the true and perceived errors become similar in
magnitude:

f 2
i−1 ∼ x2

i−1, (13a)

f 2
i ∼ x2

i , (13b)

and therefore correlation 𝜌i−1,i can be well approximated
by the measurable quantity 𝛾 i−1,i. In this study we assume
that the perceived and true forecast error variances become
sufficiently similar at 2.25 (i = 9) and 2.5 days (i = 10) lead
time, assuring that 𝜌9,10 ≈ 𝛾9,10.

Assumption 5. Transient period. As further simplifica-
tions, we also assume that any transient error behaviour
subsides within 24 hr.4

Assumption 6. Divergence rate of model trajectories. We
also assume that the model, by reasonably capturing nat-
ural instabilities, reproduces the chaotic divergence of tra-
jectories of the model and nature. Therefore, beyond 24
hr lead time, the three sides of triangle TFi−1Fi grow at
the same pace, corresponding to the dynamically sustain-
able growth rate of the errors between model and reality
(i.e. parameter 𝛼). It follows that correlations 𝜌i−1,i remain
approximately unchanged beyond 24 hr (i ≥ 5) and equal
to 𝜌9,10. Assumptions 1–6 are summarized in Table 1 and
their validity will be investigated in section 4 in an OSSE
environment.

Based on the above assumptions and substituting
x2

i in Equation 12 with Equation 10, the evolution of
LFD between 1 to 2.5 days lead times can be modelled
with only two parameters, g0 and 𝛼, that are also used
in the simulation of perceived forecast error variance
(cf. Equation 11):

f̂ 2
i−1,i = g2

0 ⋅ e(i−1)⋅Δt⋅𝛼 + g2
0 ⋅ ei⋅Δt⋅𝛼 − 2𝛾9,10

⋅ g2
0

√
e(i−1)⋅Δt⋅𝛼 ⋅ ei⋅Δt⋅𝛼, (i = 5, 6, … , 10). (14)

To distinguish between the lead times of perceived
error and LFD measurements and associated weights, the
index i is replaced with j in Equation 14 before an LFD
term is incorporated into the SAFE-II cost function of

4While true forecast error is largely unaffected by decaying errors
beyond 24 hours lead time, the perceived error remains affected by
decaying errors present in the verifying analyses, allowing for the
estimation of decaying parameters in SAFE-II.

Equation 8:

J = max(|f 2
i − f̂ 2

i | ⋅ w−1
i ) + max(|f 2

j−1,j − f̂ 2
j−1,j| ⋅ w−1

j−1,j)

(i = 1, 2, … 10; j = 5, 6, … 10). (15)

Since the simulation of LFD (Equation 14) does not
involve decaying errors, LFD variance measurements, if
desired, can also be incorporated into the cost function of
SAFE-I.

3 DATASETS USED

SAFE-II will be applied to estimate true error variance in
GFS analyses and forecasts, first in a simulated (OSSE),
then in a realistic operational forecast environment at
NCEP. Six, 12, … , 60 hr perceived error measurements
will be calculated over the extratropical Northern Hemi-
sphere (NH; 30◦–90◦N) on a 1◦ × 1◦ regular latitude/lon-
gitude grid. A cosine weight of latitude is used when cal-
culating the area mean error variance so as to avoid undue
weights on data from higher latitudes. The choices of the
spatial domain and lead time range minimize the effects
of nonlinearities (Gilmour et al., 2001) or model-related
errors (Orrell et al., 2001).

3.1 OSSE data

SAFE-II assumptions will be validated (Section 4) and
estimates evaluated (Section 5) using the OSSE set-up5

described in detail by Appendix B and Cucurull et al.,
(2017). The three variables used are zonal wind (U), tem-
perature (T), and geopotential height (GH). For the OSSE
data used in this study, 6 hr analyses are used correspond-
ing with lower boundary conditions between 3 July and
26 August 2005, with 7-day forecasts initialized only at
every 0000 UTC. The SAFE-II cost function (Equation 15)
is therefore modified to use 24-, instead of 6-hr lagged
forecasts:

J = max(|f 2
i − f̂ 2

i | ⋅ w−1
i ) + max(|f 2

j−4,j − f̂ 2
j−4,j| ⋅ w−1

j−4,j),

(i = 1, 2, … 10; j = 8, 9, 10). (16)

3.2 Operational GFS data

In Section 5, SAFE-II will also be used to assess analy-
sis and forecast error variance in the operational, T1534,

5Short of having access to data from OSSE, analysis and forecast errors
could also be simulated with perturbed fields from an ensemble of
analyses and forecasts (Houtekamer et al., 2005; Feng et al., 2017).
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F I G U R E 3 Sample-mean
based estimates of ground truth for
true forecast error variance (open
circles with 95% vertical confidence
intervals as vertical bars) along with
the corresponding fitted values (solid
line) for variables (a) U, (b) T, and (c)
GH, at 500 hPa in the OSSE
environment. For comparison,
perceived error variance
measurements are also shown as
dashed lines

(a) (b)

(c)

64-level resolution GFS system (Yang, 2016). Analysis/-
forecast data are sampled every 6 hr and cover the 1
September–30 November 2015 period.

Note that as mentioned before, the OSSE experiments
introduced in Section 3.1 use an earlier version of the
NCEP NWP system (e.g. without a hybrid DA). Therefore,
SAFE-II error estimates from the OSSE and operational
environments cannot be directly compared.

4 VALIDATION OF SAFE-II
ASSUMPTIONS

An OSSE environment offers an ideal ground for the evalu-
ation of the assumptions behind SAFE-II since not only the
perceived error, but various characteristics of the true fore-
cast error (e.g. error variance and the correlation between
analysis and forecast errors) are also directly measurable.

4.1 Basic assumptions

A key assumption (Assumption 2 in Sections 2.1 and 2.2)
states that the true forecast error variance can be con-
sidered as a sum of exponentially growing and decaying
error components (Equation 10). In an OSSE environment,
we can directly assess the validity of Assumption 2 by fit-
ting the error evolution relationship in Equation 10 to the
time mean of true error variance measurements, through
minimizing the following cost function:

J = max(|x2
i − x̂2

i | ⋅ 𝜔−1
i ), (i = 0, 1, … 10), (17)

where x2
i and x̂2

i are the measured and modelled true
forecast error variances, respectively, and 𝜔−1

i is the
weight related to the SEM-based sampling error (refer to
Appendix A) of the measured true error variances.

Figure 3 shows the sample (time) mean of directly mea-
sured true analysis and forecast error variance, along with
95% confidence intervals reflecting the effect of sampling
errors, and a simulated error variance curve fitted to the
sample mean of the measurements using the error decom-
position of Equation 10, as a function of 0–60 hr lead time,
for three selected variables. All simulated values fall within
the 95% confidence intervals, indicating that Assumption 2
about the decomposition of forecast errors (Section 2.2) is
consistent with the experimental data.

The four estimated parameters with SAFE-II are listed
in Table 2 (the first 4 values in “Fit SAFE-II” rows). These
will be used as a reference for ground truth in the evalua-
tion of SAFE-II estimates in Section 5. The performance of
SAFE-I is also shown in Table 2. As expected, when decay-
ing errors are absent (see variable T in Table 2), the two ver-
sions of SAFE identify the same exponential error growth
(with identical fitted x2

0 and 𝛼 values). In the presence of
decaying analysis errors (variables U and GH), the SAFE-I
error growth model still offers a statistically acceptable
fit except for the estimated total analysis error variance
of GH. The good fitting of exponential growing forecast
error also justifies that Assumption 1 can be considered
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T A B L E 2 Comparison between fitted (fit) and reference (ref) values of error parameters for zonal wind (U),
temperature (T), and geopotential height (GH) at 500 hPa in the observing system simulation experiments (OSSE) using
SAFE-I and SAFE-II, respectively

g2
0 e𝚫t⋅𝜶 d2

0 e𝚫t⋅𝜷 g2
0+d2

0
d2

0

g2
0+d2

0
LFD var growth

U:

Fit: SAFE-I 2.09 1.157 0.0 - 2.09 (8.0%) 0.0 1.146

Fit: SAFE-II 1.96 1.168 0.248 0.221 2.21 (2.6%) 11.2%

Ref / 1.96SEM - - - - 2.27 / 0.265 -

T:

Fit: SAFE-I 0.229 1.174 0.0 - 0.229 (9.0%) 0.0 1.169

Fit: SAFE-II 0.229 1.174 0.0 - 0.229 (9.0%) 0.0

Ref / 1.96SEM - - - - 0.210 / 0.024 -

GH:

Fit: SAFE-I 14.9 1.288 0.0 - 14.9 (12.9%) 0.0 1.278

Fit: SAFE-II 13.1 1.318 4.34 0.368 17.5 (2.2%) 24.8%

Ref / 1.96SEM - - - - 17.1 / 2.10 -

Note∶ g2
0 and d2

0 denote the growing and decaying components, with Δt = 6 hr growth and decay rates of eΔt⋅𝛼 and eΔt⋅𝛽 . The values in
brackets indicate the percentage of estimation error compared to ground truth (reference). Entries with “-” indicate where parameter values
are not available. The rightmost column lists the growth rate of lagged forecast difference (LFD) variance per 6 hr. The units of the error
variances (g2

0 and d2
0) for U, T and GH are (m⋅s−1)2, K2 and m2, respectively.

to be valid. However, with its additional two parameters,
SAFE-II provides a considerably improved simulation of
the analysis error compared to SAFE-I (2–3%, instead of
8–13% deviation from the reference measured true error,
see corresponding numbers in parentheses in Table 2).

When decaying errors are present (variables U and GH)
but not considered, SAFE-I arrives at higher initial grow-
ing error variance and lower growth rate estimates than
SAFE-II (Table 2). SAFE-II finds the largest proportion
of decaying errors in GH (about 24.8% of the total analy-
sis error variance), followed by U (11.2%). As an example,
Figure 4 illustrates the evolution of the estimated growing,
decaying and total error variance for GH by SAFE-II from
0 to 1.5 days. It is analogous to the behaviour of growing
and decaying components of true forecast error variance
in the schematic figure (Figure 1). Variable U has qual-
itatively similar error evolution. It is consistent for the
variables that decay is so fast that within 24 hr the percent-
age of decaying errors drops below 1% of the total forecast
error variance. This validates Assumption 5 in Section 2.3.
The growth rate of LFD variance (the rightmost column
in Table 2) has only up to 3% deviation from that of the
true forecast error variance for all variables (Table 2) which
indicates Assumption 6 is reliable.

Another key assumption (Assumption 3 in Section
2.1) states that the correlation between true analysis and

F I G U R E 4 Estimates of growing (dashed line), decaying
(dotted line) and total (solid line) error variance along with the
corresponding fitted values (hollow circles with 95% confidence
intervals as vertical bars) for GH at 500 hPa in the OSSE environment

forecast errors (𝜌i) exponentially decays with increasing
lead time (Equation 6). In an OSSE environment, “ground
truth” correlation values 𝜌i can be diagnosed from true
and perceived error variance measurements using a trans-
formed version of Equation 3:
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F I G U R E 5 Sample-mean
fitted (solid line) and measured
(circle) 𝜌i for variables (a) U, (b) T,
and (c) GH, at 500 hPa in the OSSE.
Vertical bars represent 95%
confidence intervals

(a) (b)

(c)

𝜌i =
(x2

0 + x2
i − f 2

i )
(2 ⋅ x0 ⋅ xi)

. (18)

To test Assumption 3, we simulate 𝜌i with the expo-
nential decorrelation relationship of Equation 6 and then
fit the simulated curve to the time mean of the diag-
nosed quantities (i.e. ground truth from Equation 18) by
minimizing a cost function analogous to Equation 17.

The results in Figure 5 reveal a reasonable correspon-
dence between sample-based mean and simulated values
of the correlation between analysis and forecast errors.
For the two model prognostic variables (U and T), the
fitted values of 𝜌i are within the 95% sampling error inter-
val of its sample-based mean values throughout the first
2 days. This indicates that the exponential degradation of
𝜌1 (Assumption 3) is consistent with the experimental data.
Returning to Figure 3 we observe that due to the relatively
high correlation between analysis and short-range forecast
errors (Figure 5), perceived errors for the model variables
are significantly lower than the true errors (Figure 3). At
6 hr lead time, for example, the perceived error measure-
ments for U and T provide a 2–3-fold underestimate of the
true error variance. This will be further discussed in the
context of the operational forecast system in Section 5.1.2.

Note that the third variable shown in Figure 5, GH, is
not a directly analysed variable; rather, it is derived from
analysis control variables. Simulated 𝜌 values for GH are
nevertheless consistent with the ground truth, albeit only
at and beyond 12 hr lead time. The deviation of 6 hr 𝜌 is
possibly due to some random noise or bias introduced in

the calculation of GH (e.g. a particular discretization of the
hydrostatic equation: Wee et al., 2012) in the OSSE that
makes the 𝜌 assumption invalid.

4.2 LFD-related assumptions

Recall from Section 2.3 that correlation 𝜌9,10 between
lagged true forecast errors x9 and x10 in cost function
(Equation 14) is specified by the correlation 𝛾9,10 between
lagged perceived errors f9 and f10, valid at the same time.
Since in an OSSE environment both angles are directly
measurable, the accuracy of approximating correlation “𝜌”
with “𝛾” can be tested. Figure 6 displays 𝜌 and 𝛾 as a func-
tion of lead time with forecasts lagged 24 hr apart (since
the OSSE forecasts are available only once, instead of four
times per day) for variables U, T and GH at 500 hPa height.

At 36/60 hr lead time, the correlation between lagged
true and perceived errors differs less than 0.025. This can
be explained by the small differences between true and
perceived error variances at and beyond 36 hr lead time
(Figure 3), validating Assumption 4 (Section 2.3), and thus
𝜌9,10 ≈ 𝛾9,10.

The correlation between lagged true errors in Figure 6
exhibits less than 0.01 variations beyond 24/48 hr lead
time. This indicates that once transient decay subsides, tri-
angles TFi−1Fi are approximately similar. This effectively
validates Assumption 6 about the close similarity of expo-
nential expansion or growth rates in the attractor of a
model and that of a model trajectory diverged from reality.
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(a) (b)

(c)

F I G U R E 6 Comparison
between the correlations of lagged
perceived (circle) and true forecast
(cross) errors with a lag of 24 hr as a
function of lead time for variables (a)
U, (b) T, and (c) GH, at 500 hPa in
the OSSE

5 ASSESSMENT OF ERROR
VARIANCE IN OSSE AND
OPERATIONAL
ANALYSIS/FORECAST SYSTEMS

In this section, the SAFE-II algorithm described in Section
2 will be used to estimate Grid-point Statistical Interpola-
tion (GSI)-GFS true analysis and forecast error variances.
The estimates will be based on measurements of perceived
error and LFD variances, first from an OSSE environment,
then from the operational NCEP system.

5.1 Error variance in selected variables

5.1.1 OSSE environment

In Section 4.1, error decomposition Equation 10 was fitted
directly to the time mean of true error variance measure-
ments from an OSSE experiment. Here we will proceed as
if we did not know reality and use perceived error vari-
ance measurements from the same OSSE analysis/forecast
system to estimate the true error variance. In the error esti-
mation experiments reported here, the truth will be used
only in the evaluation of the results.

The quality of these practical estimates will be assessed
by comparing them with a characterization of true growing
(g2

0) and decaying (d2
0) error variances and their amplifica-

tion and decay rates (𝛼 and 𝛽). As mentioned in Section 4.1,
the fitted parameter values of SAFE-II in Table 2 are used
as reference values for the estimates presented here. Along
with these reference values, Table 3 shows the SAFE-I and
SAFE-II error parameter estimates for 500 hPa analysis

variables U and T for the OSSE experiments. Estimates of
GH are strongly influenced by the deviation of 𝜌 at 6 hr (see
discussion on Figure 5c) and thus are not shown. SAFE-II
estimates of growing error variance and growing rate are
closer to the reference values than the SAFE-I results,
except for T where the results are identical since no decay-
ing component is identified by SAFE-II. SAFE-II estimates
are within 5–10% of the reference values for growing error
variance and within 2% for their amplification rate.

Since decaying errors shrink fast and practically dis-
appear within 24 hr (see Section 4.1), their estimation is
especially challenging: only the first few perceived error
variance measurement points provide meaningful infor-
mation about their behaviour. LFD measurements used
in the cost function (see Equation 14) are no help with
the estimation of decaying parameters as they constrain
only the estimation of the growing parameters. SAFE-II
decaying error variance and decay rate estimates for model
variable U contain relatively large, nearly 25% and 50%
deviation from their reference values, respectively. The
total error variance estimate for U is more accurate wth
SAFE-II than SAFE-I (1% vs. 9% error), though both are
statistically reliable at the 95% confidence level. Their esti-
mates of error correlation are similar.

5.1.2 NCEP operational
analysis/forecast system

The main results of the study are visualized in Figure 7.
The 200 hPa (a) U, (b) T, and (c) GH variables in the NCEP
operational system are chosen for demonstration as decay-
ing errors constitute a sizable portion of analysis error at
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T A B L E 3 SAFE-I and SAFE-II estimates of error evolution parameters for 500 hPa U and T in the OSSE
experiments

g2
0 e𝚫t⋅𝜶 d2

0 e𝚫t⋅𝜷 x2
0 d2

0 / (g2
0+d2

0) 𝝆1

U:

SAFE-I 2.07 1.149 0.0 - 2.07 0.0 0.792

SAFE-II 2.06 1.153 0.19 0.34 2.25 8.4% 0.804

Ref 1.96 1.168 0.25 0.22 2.27 (0.27) 11.2% 0.796 (0.023)

T:

SAFE-I 0.21 1.165 0.0 - 0.21 0.0 0.810

SAFE-II 0.21 1.165 0.0 - 0.21 0.0 0.810

Ref 0.23 1.174 0.0 - 0.21 (0.024) 0.0 0.824 (0.031)

Note: Reference values (Ref) are the SAFE-II fitted parameter values from Table 2. The values in brackets indicate the 95%
sampling uncertainty confidence intervals of Ref.

F I G U R E 7 Temporal
variation of sample-mean actual
(circle) and simulated (black thin
line) perceived error variances and
estimated total (black thick line),
growing (red) and decaying (blue)
true forecast error variances over
Northern Hemisphere for variables
(a) U, (b) T, and (c) GH, at 200 hPa
for GFS-GSI operational forecast
system

(a) (b)

(c)

this level (see Section 5.2). Figure 7 shows the perceived
error variance measurements (black open circles) with a
95% confidence level sampling uncertainty (black verti-
cal bars) as a function of lead time. The corresponding
simulated perceived error variance (thin black curve), and
the estimated total (thick black curve), growing (red) and
decaying (blue) error variance are also shown.

For all variables and at all lead times, the simulated per-
ceived error variance falls within the 95% SEM uncertainty
intervals of the perceived error measurements, indicat-
ing that the SAFE-II error behaviour model is consistent
with the experimental measurement data. The results in

Figure 7 confirm the error behaviour indicated by the
schematic Figure 1. After a relatively short, 12–18 hr tran-
sitional period during which the decaying error compo-
nent vanishes, the total error assumes an exponential
growth.

Figure 7 confirms a finding from the OSSE experiments
(Section 4.1) that the conventional measure of forecast per-
formance, perceived error variance, can be a rather poor
estimate of the true short-range forecast error variance. At
6 hr lead time, for example, the perceived error measure-
ments provide a 3–4-fold underestimate of the true error
variance similarly as in the OSSE environment (Figure 3).
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g2
0 e𝚫t⋅𝜶 d2

0 e𝚫t⋅𝜷 g2
0+d2

0 d2
0 / (g2

0+d2
0) 𝝆1

U:

200 hPa 3.74 1.17 1.93 0.37 5.67 34.0% 0.87

500 hPa 3.67 1.16 0.0 - 3.67 0.0 0.83

T:

200 hPa 0.39 1.19 0.049 0.35 0.439 11.2% 0.86

500 hPa 0.25 1.21 0.0 - 0.25 0.0 0.84

GH:

200 hPa 34.60 1.32 39.47 0.14 74.07 53.3% 0.87

500 hPa 24.72 1.32 34.88 0.14 59.60 58.5% 0.87

T A B L E 4 Estimated error
parameters for U, T and GH at
200 and 500 hPa in GFS
operational forecasts using
SAFE-II

The discrepancy is due to the fact that perceived error
measurements do not reflect the presence of error in the
verifying analysis fields that is relatively highly correlated
with the error in the forecasts. It is not until 2 days lead
time that the deviation of simulated or measured perceived
error variance from the true error variance drops below 5%
of the true error variance. The use of perceived error as
an estimate of true forecast error thus leads to an underes-
timation of error variance and an overestimation of error
growth (PT14). The overestimation of error growth when
perceived error variances are used may partially explain
the apparent lack of sufficient spread and perceived defi-
ciency in perturbation growth in most ensemble systems
studied (see, e.g., Buizza et al., 2005), as well as the dif-
ference between “external” (i.e. verified against analyses
of the atmosphere) vs. “internal” (verified against another
model forecast) predictability and error growth noted by
Lorenz (1982) and a series of follow-on studies.

5.1.3 Comparison with results from
OSSE analysis/forecast system

Table 4 summarizes the NCEP operational forecast system
results for 200 hPa height variables displayed in Figure 7.
For an easy comparison with results from the error evo-
lution of an OSSE experiment in Section 4.1, results for
500 hPa height variables are also shown in Table 4. Com-
paring SAFE-II estimates from Table 3 with 500 hPa esti-
mates from Table 4, we first note that both the total and
growing analysis errors appear to be severely underesti-
mated by the OSSE system for U and GH. This may be
the result of tuning OSSE error variances to match oper-
ational perceived error variances that, as noted above, are
significantly lower than true error variances.

Interestingly, error growth rate estimates for the NCEP
operational system verified against operational analyses

for September–November 2015 (Table 4), and against
an ECMWF high-resolution simulation with July–August
lower boundary forcing (OSSE nature run, Table 3) display
less than 3% difference for the two model variables U and
T at the 500 hPa height level. This may be an indication
that when properly assessed, external (model vs. reality)
and internal (model vs. model) error growth, after all, may
be rather similar. These results are also consistent with
Assumption 6 in Section 2.3.

Analysis vs. forecast error correlations are found
slightly (about 0.03) higher in the operational system for
all variables (cf. 𝜌1 in Tables 3 and 4). For U, the OSSE anal-
ysis also contains a larger decaying component. The use of
an improved hybrid DA scheme and increased model res-
olution in the operational vs. the OSSE set-up, as well as
the addition of too much noise in the simulation of obser-
vational error in the OSSE system, may both contribute to
the correlation and decaying error results above.

Table 4 also lists error variance and other estimated
parameters for GH. While the GH analysis vs. forecast
error correlation in Table 4 appears to be similar to or
only slightly higher than those for the other variables,
both the growth rate and the percentage of decaying error
are markedly higher for GH than for the other variables.
The latter result is qualitatively consistent with OSSE
results in Table 2. Note that GH is not a GFS model or
GSI analysis variable but rather is derived from model
prognostic variables including temperature, surface pres-
sure, and humidity (Houtekamer et al., 2005) through the
hydrostatic equation (Grell et al., 1995). When the hydro-
static equation is integrated from the model surface to
the top of the model to calculate GH, independent ran-
dom error present in the prognostic variables may lead to
a higher level of noise (i.e. decaying error) in GH com-
pared with model prognostic variables. As for the GH
growth rate, it corresponds to an error doubling time of
1.26 days, below Simmons et al. (1995)'s 1.5 days estimate
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(a) (b) (c)

F I G U R E 8 Profile of the differences between the absolute fitting errors and the 95% confidence interval of perceived error variances at
1.5 days by SAFE-II (circle) and SAFE-I (cross) for variables (a) U, (b) T, and (c) GH, for GFS-GSI operational forecast system

for 500 hPa height. It is not clear why the GH growth rate
is significantly higher than that for the model variables.

5.2 Vertical profile of analysis error
variance

In this section, SAFE-II is used to estimate the vertical dis-
tribution of error variance from 1,000 to 100 hPa for the
GFS-GSI operational forecast system. SAFE-I estimates are
also given for a comparison.

5.2.1 Fitting error

As described in Section 2.1, a critical part of SAFE-II is the
evaluation of the fit of simulated perceived error curves to
the sample-based (time) mean of perceived error measure-
ments at all lead times considered. A fitting error say 95%
of the time smaller than SEM at the 95% significance level
indicates that experimental measurement data are consis-
tent with the SAFE assumptions and error model. Figure 8
displays the difference between the absolute value of the
fitting error of perceived error variance and the 1.96SEM
confidence interval at the 1.5-day lead time for variables U,
T and GH, for both SAFE-I and SAFE-II as follows:

| fi
2–f̂ 2

i |–1.96SEMi. (19)

The results at other lead times are qualitatively simi-
lar. The fitting error is smaller than 1.96SEM for all vertical
levels for both SAFE-I and SAFE-II, which indicates that
both error models are consistent with the measurements

at the 95% confidence level. The lower negative values
for SAFE-II indicate that the two additional parameters
(the variance and decay rate of decaying errors) introduced
in the present study offer a more complete error evolu-
tion model, attested by a closer fit to the perceived error
measurements.

5.2.2 Total error

Figure 9 displays the growing (red circles), decaying (blue
circles), and total (black circles) analysis error variance
for the three variables investigated: U, T and GH. SAFE-I
estimates of the total error variance (that is all assumed
to be growing) are shown as red crosses for a compari-
son. The 6 hr lead time perceived error variance measured
as the difference between first guess and analysis fields is
also provided (green plus signs) as a possible indicator of
analysis quality.

Looking first at the total error of the two model vari-
ables, U has an absolute maximum around the upper-level
jet (300 hPa), gradually/quickly dropping to lower/much
lower values near the bottom/top of the domain. In con-
trast, T has two peaks, one presumably associated with
the low-level jet (around 925 hPa), and a second one above
the jet level (200 hPa). Interestingly, the ratio between the
maximum and minimum total error variance in the verti-
cal is in the 4–5 range for the two variables U and T. The
vertical profile of GH is less pronounced, with an abso-
lute and secondary maximum at 300 hPa and the surface,
respectively.

As found earlier for selected variables in an OSSE
setting (Section 5.1.1), when no decaying errors are
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(a) (b)

(c)

F I G U R E 9 Same as Figure 8, but for estimated total (black
circle), growing (red circle) and decaying (blue circle) analysis error
variance by SAFE-II. Green and red crosses represent the 6 hr
perceived error variance and the estimated analysis error variance
by SAFE-I, respectively

detected, SAFE-I error estimates (red crosses in Figure 9)
match the total error variance estimates of SAFE-II
(black open circles). In the presence of decaying errors,
SAFE-I still provides growing error estimates similar to
SAFE-II; however, these estimates are lower than the total
error since the decaying analysis errors are not directly
accounted for.

Six-hour perceived error variance directly relates to the
quality of background forecasts (or first guesses) in DA,
and indirectly reflects error variance in the analysis. Pro-
files of 6 hr perceived error variance for the three variables
correlate well (at 0.88 or higher values) with SAFE-II esti-
mates of total analysis error variance profiles (Figure 9).
As found in Section 5.1.2 for variables at 200 hPa height,
perceived error measurements, however, are by a factor of
3–4 lower than estimates of true error through the entire
profile of all variables. Such an underestimation can have
profound impacts in the areas of data assimilation (under-
estimation of first-guess error variance), ensemble initial-
ization (specification of too low initial ensemble spread),
and OSSE system calibration (setting simulated analysis
error variance at too low levels).

We mention that the estimated U and T total error vari-
ances in Figure 9 display similar vertical profiles to those

measured directly by Privé et al. (2013), see the thick solid
lines in their Fig. 5a,d, and Privé and Errico (2013), see the
heavy dashed lines in their Fig. 1a,d, in their OSSE stud-
ies. The actual error variance values from their studies,
however, differ from the operational forecast system error
estimates in Figure 9, just as was the case with the NCEP
OSSE results (see related discussion in Section 5.1.3). Note
that error levels may also differ due to distinctly differ-
ent circulation regimes over the evaluation period of the
operational vs. OSSE DA-forecast system.

5.2.3 Growth rate

Beyond the variance and correlation of errors, SAFE-I and
SAFE-II also provide estimates for the time evolution of
error variance as a function of lead time. The 6 hr amplifi-
cation factors for (a) U, (b) T, and (c) GH are displayed as a
function of height in Figure 10. At all levels, GH has consis-
tently faster error growth rate than the other two variables.
For all variables, error growth peaks near the level of the
midlatitude jet characterized by strong baroclinic instabil-
ities at 300 hPa for U and GH, while around 450 hPa for T.
Variations in growth rate across levels and variables reflect
the instability properties of different dynamical processes,
operating on various spatial scales. The slow error growth
near the model top for the variables relative to other levels
may be explained by the strongly diffusive model dynamics
(Houtekamer et al., 2005).

The model variables U and T also have a weaker maxi-
mum, near the low-level jet and surface, respectively. It is
interesting to point out that for the two model variables,
total analysis error variance has a corresponding maxi-
mum (typically 50 hPa for U and 150 hPa for T) above the
double maxima observed in error growth. With vertically
uniform observational coverage, analysis error maxima are
expected to exactly colocate that of error growth. Given
the density of in situ observations gradually decreases with
altitude, the upward shift of analysis maxima from growth
rate maxima is expected.

5.2.4 Decaying errors

Just as shown for 200 hPa variables (Figure 7 and Table 4),
the decaying errors are most prominent in GH fields
throughout the entire atmosphere (Figure 9). This is even
more visible in Figure 11 that depicts the vertical profile of
the percentage of the decaying component in total analy-
sis error variance (open circles) estimated by SAFE-II. As
discussed in Section 5.1.3, decaying errors in GH may be
accentuated by the formula used in their derivation from
analysed model prognostic variables.
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(a) (b) (c)

F I G U R E 10 Same as Figure 8 but for the estimated growth rate of error variance per 6 hr

(a) (b) (c)

F I G U R E 11 Same as Figure 8 but for estimated percentage of decaying components in total analysis error variance by SAFE-II (circle)
and variance of analysis increment (cross)

In contrast, variable T is least affected by decaying
errors, where they constitute less than 15% of the total
analysis error, and only in the upper half of the atmosphere
(Figures 9 and 11). U is in between, with two maxima sit-
uated around the upper- and lower-level jets, with a spike
near the top of the model. The source of decaying errors in
the analysed variables includes representativeness errors
(especially near diverse topography: Quintana-Seguí et al.,
2008; Jiménez and Dudhia, 2012), approximations in
balance constraints, observational noise, interpolations,
localization, and other statistical and numerical proce-
dures in DA. Interestingly, no decaying errors are found in
the non-divergent mid-troposphere where commonly used
balance constraints in the DA schemes may be most appli-
cable. As noted in Section 5.1.1, due to their nature, decay-
ing errors affect only analyses and short-range forecasts,

therefore their estimates are subject to a higher level of
uncertainty. Further studies into the estimation of decay-
ing errors are therefore warranted.

5.2.5 The decaying component
of analysis increments

An analysis field (Kalnay, 2003) is the sum of a first-guess
forecast that as we saw itself contains decaying errors, and
the analysis increment (AI) which is identical to the 6
hr percieved forecast error. It is well understood that the
introduction of excessive noise into the analysis via the AI
in a cycled DA system can negatively affect the quality of
the analysis (Houtekamer and Mitchell, 2001; Dee, 2005).
Hence the reduction of noise in AI has been a prominent
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but hard-to-achieve goal in DA. As the noise introduced by
the data assimilation step via the AI into the analysis field
contributes to the overall level of decaying errors in the
analysis, the vertical profile of the proportion of decaying
errors in the analysis is expected to be qualitatively similar
to that in the AI.

Since both measurements and simulated values of 6 hr
perceived forecast errors are an integral part of SAFE-II,
a convenient methodology offers itself for the estimation
of noise in the form of decaying errors in AI. The method
is based on the simulation of the variance in 6 hr LFDs
with Equation 10, and then fitting the simulated curves to
the sample mean of different lead time LFD variance mea-
surements. A cost function similar to Equation 17 is used
where x2

i and 𝜔−1
i are replaced by the sample mean of 6 hr

LFD variance and its SEM-based weight, respectively.
Figure 11 shows the proportion of the decaying error

component in the variance in AI and analysis fields as
crosses and open circles, respectively. As expected, the ver-
tical profile of the proportion of the decaying component of
the analysis error is similar to, though 10–30% higher than
the decaying error component in AI for all variables inves-
tigated. Just like in the analysis fields, decaying errors in AI
are more pronounced in the upper and lower parts of the
model domain, roughly as those in analysis errors. Note,
however, that no decaying analysis errors are diagnosed for
low-level temperature, despite their presence in AI.

6 CONCLUSIONS

The evaluation of and improvements to data assimilation,
ensemble forecasting, and observing system simulation
techniques require knowledge of error variance in NWP
analysis and forecast fields. Since reality is unknown, such
error variance (i.e. “true” error variance) is directly not
measurable. As observations are sporadic, most system-
atic studies resort to estimating error variance by com-
paring forecast fields with verifying analysis fields (i.e.
“perceived” error). Such an approach (a) cannot assess
errors in the analysis, and (b) ignores the effect of analysis
error on forecast error estimates.

Peña and Toth (2014) proposed an inverse procedure
called Statistical Analysis and Forecast Error (SAFE-I)
algorithm for the bias-free estimation of true analysis and
forecast error variance. SAFE-I uses perceived error mea-
surements (defined with respect to the verifying analysis),
and models them with a few parameters describing the
evolution of the true error in time: the initial error vari-
ance (g2

0), the dynamical growth rate (𝛼), and the correla-
tion between analysis and background forecast errors (𝜌1).
The unknown parameters are estimated by minimizing
the difference between the measured and modelled (via

the unknown parameters) perceived error at various lead
times. SAFE-I is independent of assumptions and methods
used in observing, DA, or prediction systems.

An important assumption in SAFE-I is that at short
lead times the true forecast error variance (variances
between forecasts and reality at the same time) grows
exponentially. This assumption, however, neglects any
noise that observations or the analysis procedure may
inject into the analysis. Such errors typically project onto
the stable manifold of the system and thus rapidly decay,
manifesting as a transitional behaviour in the evolution
of the total error variance. In this article, we relax the
error evolution assumption in SAFE-I by the introduction
of decaying, in addition to the growing analysis errors.
Specifically, the modified SAFE method (SAFE-II) models
true forecast error variance as the sum of an exponentially
growing, and an orthogonal decaying component, the lat-
ter of which is described by its variance (d2

0) and decay
rate (𝛽). The estimation of the expanded set of parame-
ters in SAFE-II is facilitated by the inclusion of additional
measurements in the form of variances between lagged
forecasts valid at the same time, linked with parameters g2

0
and 𝛼.

When decaying errors are present, the true forecast
error variance may display an initial transitional behav-
ior, during which total error may decay or exhibit slower
than exponential growth while decaying errors diminish.
Only after most decaying errors vanish, does the total error
assume an exponential pattern of growth.

The performance of SAFE-II was evaluated using the
NCEP GFS/GSI system. First, the assumptions behind
SAFE-II were validated in an OSSE environment where
reality is exactly known. Area mean (Northern Hemi-
sphere extratropics) true analysis and forecast error vari-
ance were simulated by the error growth equation used
in SAFE-II, and fitted to sample-based measurements of
these quantities from an OSSE system. Error variance sim-
ulated by SAFE-II was found to be within sampling uncer-
tainty of the sample-based measurements. This, along with
other related results indicate that the assumptions behind
SAFE-II are consistent with the experimental data.

Next, in the same OSSE environment, we pretended
that truth is unknown and used only perceived error mea-
surements and SAFE-I or SAFE-II to produce and validate
against true error variance estimates. In the presence of
decaying errors (variable U), all SAFE-II error parameter
estimates were found to be more accurate than those with
SAFE-I. For the two model variables tested (500 hPa U and
T), SAFE-II estimates of total analysis error variance were
within 1% of the actual measured values, while growth
rate and error correlation values were within 2% of their
reference values. Growing analysis error variance esti-
mates deviated less than 5% from their reference values.
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Decaying errors were found to diminish rapidly. Hence
perceived error measurements are affected only at a few
early lead times, leading to larger (up to 50%) uncertainty
in decaying error variance and decay rate estimates.

In Section 5, SAFE-II was used to estimate the error
variance in operational NCEP analyses and forecasts. U,
T and GH perceived error variances simulated by SAFE-II
were found to be within the sampling uncertainty of
their measurement-based counterparts, indicating that the
assumptions behind SAFE-II are consistent with the NCEP
operational data. The key findings of this part of the study
are as follows:

• The growth rate for the model variables U and T peaks
around the upper-level jet in the areas of strongest baro-
clinic instabilities, with an error variance doubling time
of around 23 hr. A weaker maximum appears around
the lower-level jet. Error variance doubling time near
the surface is around 32 hr. Forecasts for GH exhibit
error growth faster than those for U and T at all levels.

• The maximum of total analysis error variance for U and
GH are near the upper-level jet (250–300 hPa), consis-
tent with the level of their fastest error growth rate.
The maximum of total analysis error variance for T is
near the low-level jet (∼925 hPa). Interestingly, the total
analysis error for the model variables U and T peaks
just above the maxima in growth rate. This may be
explained by a general decrease in the density of in situ
observations with increasing altitude.

• Decaying errors constitute up to 40 and 15% of the
total analysis error variance for wind and tempera-
ture variables in the upper (and for U, also in the
lower) atmosphere, respectively. Decaying errors orig-
inate from observational noise, and approximations
in DA procedures (e.g. improper balance constraints
caused by model-related errors near the model top, and
lack of proper specification of representativeness error
in areas of complex topography). No decaying errors are
observed in the non-divergent mid-tropospheric region.
This may be related to the quasi-nondivergent nature of
dynamics at these layers where balancing the analysis
variables is simpler and more straightforward.

• GH has a higher (50–60%) proportion of decaying errors
than the model variables. This may be due to the accu-
mulation of independent noise from the model variables
as GH is derived from them.

7 DISCUSSION

Due to the limited number of short-lead-time perceived
error measurements influenced by decaying errors, the

uncertainties in decaying parameter estimates are much
higher than those in the estimates of the other parameters.
Efficient approaches to constrain the estimates of decaying
parameters and assess the uncertainty in such estimates
need to be pursued further. The power-law relationship of
the error decorrelation (i.e. Assumption 3) may also need
to be refined as decaying errors may not exhibit the same
exponential-like decorrelation behaviour as the growing
errors.

Possible future applications of SAFE-II may also
include grid-pointwise estimation of analysis error vari-
ance. Geographical localization of excessive noise in anal-
ysis fields (e.g. due to a lack of physical or dynamical
balance) may aid in the diagnosis and correction of weak-
nesses in DA techniques. Solid estimates of analysis uncer-
tainty may also benefit ensemble initialization techniques.

A recurring observation in this study is that the com-
monly used perceived error variance gives a rather poor
estimate of the true error variance (e.g. 3–4-fold underes-
timation at 6 hr lead time) and a related overestimation
of the error growth rate within the first 2 days due to
the neglect of (a) analysis errors, and (b) the correlation
between error fields in the analyses and forecasts. The use
of perceived error as an estimator of true error can have
significant consequences in a number of areas:

Data Assimilation. In DA, background error variances
will be underestimated. As DA performance depends only
on the ratio (but not the absolute value) of errors in the
background field vs. the observations, the tuning of DA
schemes may lead to an underestimation of observational
(including representativeness) errors as well.

Observing System Simulation Experiments. If true error
variance is assumed to be as low as perceived error vari-
ance measured in operational forecast systems, OSSE sys-
tems may be tuned to exhibit too low true error variance.
This problem may be evidenced in NOAA's OSSE system
(cf. column 7 in Tables 2 and 4).

Predictability. When the growth of perturbations such
as lagged forecast differences (LFD) is compared with
the growth of perceived error, the latter, since at short
lead times perceived errors have unrealistically low val-
ues, appears to be significantly faster than the former.
This situation has been widely interpreted in the litera-
ture as a sign that external predictability is shorter than
internal predictability (i.e. the divergence of trajectories in
nature is faster than in its numerical models, e.g. Simmons
et al., 1995). True error, however, amplifies much slower
than perceived error (see, e.g., Figures 3 and 7), possibly
eliminating the need for such hypothetical explanations.
Implications may include a longer than currently thought
limit on predictability.

Ensemble Forecasting. If the size of initial perturba-
tions is set so that 6 hr ensemble variance matches 6 hr
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perceived error variance, the ensemble, though it may
appear reasonable when its spread is checked against per-
ceived error, actually will start out under-dispersive. Irre-
spective of initial perturbation generation methods, the
under-dispersiveness readily manifests itself at later lead
times (e.g. Buizza et al., 2005), however, when analysis
error variance becomes negligible compared to forecast
error variance. Conventionally, the situation is explained
as insufficient perturbation growth due to model imper-
fection presumedly related to the numerical models being
more predictable than the atmosphere (i.e. too high inter-
nal predictability). The notion and an array of stochastic
model perturbation methods (Buizza et al., 1999; Shutts,
2005) have been proposed to hasten perturbation growth
with the aim of remedying a problem that may not exist.
Future studies can further explore the validity of the Statis-
tical Analysis and Forecast Error (SAFE) estimation-based
interpretations advanced above.

ACKNOWLEDGEMENTS
Lidia Cucurull, Ruifang Li and Tanya Peevey kindly pro-
vided the Observational System Simulation Experiment
data and the corresponding references. Discussions with
Krishna Kumar (NCEP), Jordan Alpert (NCEP), Fanglin
Yang (NCEP), Si Shen (NCAR), and Roman Krzysztofow-
icz (University of Virginia) are gratefully acknowledged.
We acknowledge the encouragement and support of Kevin
Kelleher, former Director of GSD.

ORCID
Jie Feng https://orcid.org/0000-0002-2480-2003

REFERENCES
Andersson, E. and Matsutani, M. (2010) Collaboration on observing

system simulation experiments (joint OSSE). ECMWF Newsletter,
123, 14–16.

Atlas, R. (1997) Atmospheric observations and experiments to assess
their usefulness in data assimilation. Journal of the Meteorological
Society of Japan, 75, 1–20.

Buizza, R., Houtekamer, P.L., Toth, Z., Pellerin, G., Zhu, Y.J. and
Wei, M.Z. (2005) A comparison of the ECMWF, MSC, and NCEP
global ensemble prediction systems. Monthly Weather Review,
133, 1067–1097.

Buizza, R., Miller, M. and Palmer, T.N. (1999) Stochastic representa-
tion of model uncertainties in the ECMWF Ensemble Prediction
System. Quarterly Journal of the Royal Meteorological Society, 125,
2887–2908.

Byrd, R.H., Lu, P., Nocedal, J. and Zhu, C. (1995) A limited memory
algorithm for bound constrained optimization. SIAM Journal on
Scientific and Statistical Computing, 16(5), 1190–1208.

Cucurull, L., Li, R. and Peevey, T.R. (2017) Assessment of radio occul-
tation observations from the COSMIC-2 mission with a simplified
observing system simulation experiment configuration. Monthly
Weather Review, 145, 3581–3597.

Dalcher, A., Kalnay, E. and Hoffman, R.N. (1988) Medium range
lagged average forecasts. Monthly Weather Review, 116, 402–416.

Dee, D. (2005) Bias and data assimilation. Quarterly Journal of the
Royal Meteorological Society, 131, 3323–3343.

Ding, R.Q., Li, J. and Li, B.S. (2017) Determining the spectrum
of the nonlinear local Lyapunov exponents in a multidimen-
sional chaotic system. Advances in Atmospheric Sciences, 34(9),
1027–1034.

Ding, R.Q. and Li, J.P. (2007) Nonlinear finite-time Lyapunov expo-
nent and predictability. Physics Letters, 364A, 396–400.

Feng, J., Ding, R.Q., Liu, D.Q. and Li, J.P. (2014) The application
of nonlinear local Lyapunov vectors to ensemble predictions in
the Lorenz systems. Journal of the Atmospheric Sciences, 71(9),
3554–3567.

Feng, J., Li, J., Ding, R. and Toth, Z. (2018) Comparison of nonlinear
local Lyapunov vectors and bred vectors in estimating the spatial
distribution of error growth. Journal of the Atmospheric Sciences,
75(4), 1073–1087.

Feng, J., Toth, Z. and Peña, M. (2017) Spatially extended estimates
of analysis and short-range forecast error variances. Tellus, 69A,
1325301. https://doi.org/10.1080/16000870.2017.1325301.

Fisher, M. (1996) The specification of background error variances in
the ECMWF variational analysis system. In: Proceedings ECMWF
Seminar on Data Assimilation, 2–6 September 1996. Reading:
ECMWF, pp. 645–652.

Gilmour, I., Smith, L.A. and Buizza, R. (2001) Linear regime dura-
tion: is 24 hours a long time in synoptic weather forecasting?
Journal of the Atmospheric Sciences, 58, 3525–3539.

Grell, G.A., Dudhia, J. and Stauffer, D. (1995) A description of
the fifth-generation PENN State/NCAR Mesoscale Model (MM5).
NCAR Technical Note NCAR/TN-398+STR, 10 pp.

Hamill, T., Snyder, M.C. and Morss, R.E. (2002) Analysis-error statis-
tics of a quasigeostrophic model using three-dimensional varia-
tional assimilation. Monthly Weather Review, 130, 2777–2791.

Hamill, T.M. and Whitaker, J.S. (2011) What constrains spread
growth in forecasts initialized from ensemble Kalman filters?
Monthly Weather Review, 139, 117–131.

Houtekamer, P.L. and Mitchell, H.L. (2001) A sequential ensemble
Kalman filter for atmospheric data assimilation. Monthly Weather
Review, 129, 123–137.

Houtekamer, P.L., Mitchell, H.L., Pellerin, G., Buehner, M., Char-
ron, M., Spacek, L. and Hansen, B. (2005) Atmospheric data
assimilation with an ensemble Kalman filter: results with real
observations. Monthly Weather Review, 133, 604–620.

Huang, X.-Y. and Lynch, P. (1993) Diabatic digital-filtering initializa-
tion: application to the HIRLAM model. Monthly Weather Review,
121, 589–603.

Hunt, B., Kostelich, E. and Szunyogh, I. (2007) Efficient data assim-
ilation for spatiotemporal chaos: a local ensemble transform
Kalman filter. Physica D, 230, 112–126.

Jiménez, P.A. and Dudhia, J. (2012) Improving the representation of
resolved and unresolved topographic effects on surface wind in
the WRF model. Journal of Applied Meteorology and Climatology,
51, 300–316.

Kalnay, E. (2003) Atmospheric Modeling, Data Assimilation and Pre-
dictability. Cambridge: Cambridge University Press.

https://orcid.org/0000-0002-2480-2003
https://orcid.org/0000-0002-2480-2003
https://doi.org/10.1080/16000870.2017.1325301


1320 FENG et al.

Kleist, D.T., Parrish, D.F., Derber, J.C., Treadon, R., Errico, R.M.
and Yang, R. (2009) Improving incremental balance in the
GSI 3DVAR analysis system. Monthly Weather Review, 137,
1046–1060.

Legras, B. and Vautard, R. (1996) A guide to Lyapunov vectors. In:
Palmer, T (Ed.) Proceedings of ECMWF Seminar on Predictability,
Vol. 1. Reading: ECMWF, pp. 143–156. [Available from ECMWF,
Shinfield Park, Reading, RG2 9AX, United Kingdom.].

Li, J.P. and Ding, R.Q. (2011) Temporal–spatial distribution of
atmospheric predictability limit by local dynamical analogues.
Monthly Weather Review, 139, 3265–3283.

Lorenc, A.C. (2003) The potential of the ensemble Kalman filter for
NWP – a comparison with 4D-Var. Quarterly Journal of the Royal
Meteorological Society, 129, 3183–3203.

Lorenz, E.N. (1963) Deterministic nonperiodic flow. Journal of the
Atmospheric Sciences, 20, 130–141.

Lorenz, E.N. (1982) Atmospheric predictability experiments with a
large numerical model. Tellus, 34, 505–513.

Lorenz, E.N. (1996) Predictability: a problem partly solved. In:
Palmer, T. and Hagedorn, R. (Eds.) Proceedings of ECMWF Sem-
inar on Predictability, Vol. I. Reading: ECMWF, pp. 1–18.

Masutani, M., Woollen, J.S., Lord, S.J., Kleespies, T.J., Emmitt, G.D.,
Sun, H.B., Wood, S.A., Greco, S., Terry, J., Treadon, R. and Cam-
pana, K.A. (2006) Observing System Simulation Experiments at
NCEP. College Park, MA: National Centers for Environmental
Prediction. Office Note 451.

Mitchell, H.L., Houtekamer, P.L. and Pellerin, G. (2002) Ensemble
size, balance, and model-error representation in an ensemble
Kalman filter. Monthly Weather Review, 130, 2791–2808.

Molteni, F., Buizza, R., Palmer, T.N. and Petroliagis, T. (1996) The
new ECMWF Ensemble Prediction System: methodology and val-
idation. Quarterly Journal of the Royal Meteorological Society, 122,
73–119.

Nicolis, C., Perdigao, R. and Vannitsem, S. (2009) Dynamics of pre-
diction errors under the combined effect of initial condition and
model errors. Journal of the Atmospheric Sciences, 66, 766–778.

Orrell, D., Smith, L., Barkmeijer, J. and Palmer, T.N. (2001) Model
error in weather forecasting. Nonlinear Processes in Geophysics, 8,
357–371.

Palatella, L., Carrassi, A. and Trevisan, A. (2013) Lyapunov vectors
and assimilation in the unstable subspace: theory and applica-
tions. Journal of Physics A: Mathematical and Theoretical, 46,
254020. https://doi.org/10.1088/1751-8113/46/25/254020.

Peña, M. and Toth, Z. (2014) Estimation of analysis and forecast error
variances. Tellus, 66A, 21767. https://doi.org/10.3402/tellusa.v66.
21767.

Peña, M., Toth, Z. and Wei, M. (2010) Controlling noise in ensem-
ble data assimilation schemes. Monthly Weather Review, 138,
1502–1512.

Pires, C., Vautard, R. and Talagrand, O. (1996) On extending the lim-
its of variational assimilation in nonlinear chaotic systems. Tellus,
48A, 96–121.

Privé, N. and Errico, R.M. (2013) The role of model and initial con-
dition error in numerical weather forecasting investigated with

an observing system simulation experiment. Tellus A, 65, 21740.
https://doi.org/10.3402/tellusa.v65i0.21740.

Privé, N.C., Errico, R.M. and Tai, K.-S. (2013) The influence of obser-
vation errors on analysis error and forecast skill investigated with
an observing system simulation experiment. Journal of Geophys-
ical Research – Atmospheres, 118, 5332–5346.

Quintana-Seguí, P., Le Moigne, P., Durand, Y., Martin, E., Habets, F.,
Baillon, M., Canellas, C., Franchisteguy, L. and Morel, S. (2008)
Analysis of near-surface atmospheric variables: validation of the
SAFRAN analysis over France. Journal of Applied Meteorology
and Climatology, 47, 92–107.

Shutts, G.J. (2005) A kinetic energy backscatter algorithm for use
in ensemble prediction systems. Quarterly Journal of the Royal
Meteorological Society, 131, 3079–3102.

Simmons, A.J., Mureau, R. and Petroliagis, T. (1995) Error growth
estimates of predictability from the ECMWF forecasting sys-
tem. Quarterly Journal of the Royal Meteorological Society, 121,
1739–1771.

Snyder, C. and Hamill, T.M. (2003) Leading Lyapunov vectors of a
turbulent baroclinic jet in a quasigeostrophic model. Journal of
the Atmospheric Sciences, 60, 683–688.

Stewart, L.M., Dance, S.L. and Nichols, N.K. (2013) Data assimila-
tion with correlated observation errors: experiments with a 1-D
shallow water model. Tellus, 65A, 19546. https://doi.org/10.3402/
tellusa.v65i0.19546.

Toth, Z. and Kalnay, E. (1993) Ensemble forecasting at NMC: the gen-
eration of perturbations. Bulletin of the American Meteorological
Society, 74, 2317–2330.

Toth, Z. and Kalnay, E. (1997) Ensemble forecasting at NCEP: the
breeding method. Monthly Weather Review, 125, 3297–3318.

Trevisan, A. and Legnani, R. (1995) Transient error growth and local
predictability: a study in the Lorenz system. Tellus, 47A, 103–117.

Trevisan, A. and Uboldi, F. (2004) Assimilation of standard and
targeted observations within the unstable subspace of the
observation–analysis–forecast cycle system. Journal of the Atmo-
spheric Sciences, 61, 103–113.

Vannitsem, S. and Nicolis, C. (1994) Predictability experiments on
a simplified thermal convection model: the role of spatial scales.
Journal of Geophysical Research, 99(D5), 10377–10385.

Vannitsem, S. and Nicolis, C. (1997) Lyapunov vectors and error
growth patterns in a T21L3 quasigeostrophic model. Journal of
the Atmospheric Sciences, 54, 347–361.

Vannitsem, S. and Toth, Z. (2002) Short-term dynamics of model
errors. Journal of the Atmospheric Sciences, 59, 2594–2604.

Wee, T.-K., Kuo, Y.-H., Lee, D.-K., Liu, Z., Wang, W. and Chen, S.-Y.
(2012) Two overlooked biases of the Advanced Research WRF
(ARW) model in geopotential height and temperature. Monthly
Weather Review, 140, 3907–3918.

Wei, M., Toth, Z., Wobus, R. and Zhu, Y. (2008) Initial perturbations
based on the ensemble transform (ET) technique in the NCEP
global operational forecast system. Tellus, 60A, 62–79.

Whitaker, J.S., Hamill, T.M., Wei, X., Song, Y. and Toth, Z. (2008)
Ensemble data assimilation with the NCEP Global Forecast Sys-
tem. Monthly Weather Review, 136, 463–482.

https://doi.org/10.1088/1751-8113/46/25/254020
https://doi.org/10.3402/tellusa.v66.21767
https://doi.org/10.3402/tellusa.v66.21767
https://doi.org/10.3402/tellusa.v65i0.21740
https://doi.org/10.3402/tellusa.v65i0.19546
https://doi.org/10.3402/tellusa.v65i0.19546


FENG et al. 1321

Wolf, A., Swift, J.B., Swinney, H.L. and Vastano, J.A. (1985) Deter-
mining Lyapunov exponents from a time series. Physica D, 16,
285–317.

Yang, F. (2016) Evaluation of hurricane forecast skills of NCEP GFS
retrospective experiments for the FY2016 implementation. In:
32nd Conference on Hurricanes and Tropical Meteorology, 2016,
San Juan, Puerto Rico. Available at: https://ams.confex.com/ams/
32Hurr/webprogram/Paper293991.html.

Ziehmann, C., Smith, L.A. and Kurths, J. (2000) Localized Lyapunov
exponents and the prediction of predictability. Physics Letters,
271A, 237–251.

How to cite this article: Feng J, Toth Z, Peña M,
Zhang J. Partition of analysis and forecast error
variance into growing and decaying components. Q J
R Meteorol Soc. 2020;146:1302–1321. https://doi.org/
10.1002/qj.3738

APPENDIX A

A Sampling uncertainty

Just as SAFE-I (Peña and Toth, 2014), SAFE-II estimates
the unknown parameters of true analysis and forecast
error variance by fitting perceived error variance modelled
with the unknown parameters to sample-based measure-
ments of perceived error variance. The expected error in
finite sample-based estimates of the expected value of nor-
mally distributed variables is given by the Standard Error
of the Mean (or Measurement, SEM):

SEMi = sdi ⋅ f∕
√

N, (A1)

where sdi represents the sample standard deviation in
the sample at lead time i, N is the sample size, and f =√
(1 + r1)(1 − r1)−1 is an adjustment coefficient account-

ing for serial correlation (r1) in the sample.
As the standard deviation of a finite sample-based

mean tends to grow with lead time, observed quantities at
longer time ranges will need to be given smaller weight in
the minimization procedure. The standardized weights wi
in Equation 8 are defined as:

wi = SEMi∕
∑

i
SEMi. (A2)

Note that the definition of SEMi and wi can be gener-
alized to other finite sample-based estimates of expected

value, like the lagged forecast difference and true forecast
error variance et al. used in this study.

Since SEM values quantify the uncertainty in sample
mean values, they can also be considered as confidence
intervals when SAFE estimates are compared with the
mean of measurements. Assuming that the finite-sample
mean of perceived error variance follows a Gaussian dis-
tribution, the 95% confidence interval can be defined by
adding and subtracting 1.96 times the SEMi value to/from
the perceived error variance measurements.

B OSSE set-up

In OSSEs, analyses and forecasts are generated the same
way as in an operational NWP system, except the role of
real observations is taken by simulated observations. A
long integration with a fine-resolution model other than
that used in the NWP DA-forecast system is usually con-
sidered as truth (or nature), from which simulated obser-
vations are generated with the addition of noise meant to
represent different sources of observational and represen-
tativeness errors (e.g. Atlas, 1997). Since truth is exactly
known, when carefully designed, OSSEs offer a unique
and fully controlled environment in which to evaluate the
quality of NWP techniques.

Nature used in this OSSE system was created by the
European Centre for Medium-range Weather Forecasts
(ECMWF) operational model version c31r1 at T511 (about
40 km) horizontal and 91-level vertical resolution, with
boundary forcing data from 1 May 2005 to 31 May 2006
(Masutani et al., 2006; Andersson and Matsutani, 2010).
The NWP modelling (GFS) and DA system (Gridpoint Sta-
tistical Interpolation analysis, GSI) are based on an earlier
and reduced resolution (T382, about 52 km, and 64-level)
version of NCEP's operational suite with a non-hybrid
DA scheme. The observations assimilated include con-
ventional, satellite, and COSMIC-2 (“Constellation for
Observing System for Meteorology, Ionosphere, and Cli-
mate”) data generated from the nature run. Representa-
tiveness errors are inherent in the simulated observations
due to a difference in resolution between the nature run
and the NWP system. No systematic or random errors were
otherwise added to nature for the simulated observations,
except for satellite radiances. All observations are assim-
ilated using a± 1 hr window centred at nominal analysis
times.
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