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Abstract

A Doppler radar emulator was developed to simulate the expected mean returns from 

scanning radar, including pulse-to-pulse variability associated with changes in viewing angle and 

atmospheric structure.  Based on the user’s configuration, the emulator samples the numerical 

simulation output to produce simulated returned power, equivalent radar reflectivity, Doppler 

velocity, and Doppler spectrum width.  The emulator is used to evaluate the impact of azimuthal 

over- and under-sampling, gate spacing, velocity and range aliasing, antenna beamwidth and 

sidelobes, non-standard (anomalous) pulse propagation, and wavelength-dependant Rayleigh 

attenuation on features of interest.

As an example, the emulator is used to evaluate the detection of the circulation 

associated with a tornado simulated within a supercell thunderstorm by the Advanced Regional 

Prediction System (ARPS).  Several metrics for tornado intensity are examined, including peak 

Doppler velocity and axisymmetric vorticity, to determine the degradation of the tornadic 

signature as a function of range and azimuthal sampling intervals.  For the case of a two-degree 

half-power beamwidth radar, like those deployed in the first integrated project of the Center for 

Collaborative Adaptive Sensing of the Atmosphere (CASA), the detection of the cyclonic shear 

associated with this simulated tornado will be difficult beyond 10-km range, if standard metrics 

such as azimuthal gate-to-gate shear from a single radar are used for detection.
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1. Introduction

The design of a weather radar system and its scanning strategy involves tradeoffs based 

upon features to be observed and the cost of building and deploying the radar system. Design 

tradeoffs are often difficult to quantify in terms of their impacts on detecting and tracking 

features of interest.  Moreover, the development of optimal scanning and the refinement of radar-

based algorithms require large datasets to test the full range of environmental conditions and 

radar operating parameters to yield robust results.  Recent advances in numerical modeling have 

made it possible to simulate convective storms at very fine scales over a broad range of 

environmental conditions (e.g., Wicker and Wilhelmson 1995; Lewellen et al. 1997).  Coupling a 

software radar emulator with high-resolution numerical simulations, one can generate large sets 

of simulated radar data that span a wide range of radar operating characteristics.  These 

simulated datasets can be used to quantify the impact of radar design and operational mode on 

the diagnosis of storm features by automated algorithms.

Many approaches have been taken previously in simulating radar data, varying in 

sophistication from simple time series simulation (Zrnic 1975) to reflectivity calculation 

(Chandrasekar and Bringi 1987; Krajewski et al. 1993) to full simulation of radar returns from 

each pulse (Capsoni and D’Amico 1998; Capsoni et al. 2001).  Zrnic (1975) generated simulated 

time series radar data and Doppler spectra using an assumed Gaussian distribution of velocities 

within the resolution volume.  Chandrasekar and Bringi (1987) looked at the variation of 

simulated reflectivity values as a function of raindrop size distribution parameters.  Similarly, 

Krajewski et al. (1993) calculated values of reflectivity factor and differential reflectivity using 

rainfall rates from a numerical model, with an assumed drop size distribution. Neither of these 

studies was concerned with Doppler velocity or the impacts of scanning strategies. Wood and 

Brown (1997) evaluated the effects of WSR-88D (Weather Surveillance Radar-1988 Doppler, 
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Crum and Alberty 1993) radar scanning strategies on the sampling of mesocyclones and 

tornadoes. The effects of the scanning strategy were accounted for by using an effective 

beamwidth for the radar, which was used to scan an analytic vortex with a uniform reflectivity 

field. Capsoni and D'Amico (1998) simulated the pulse-to-pulse time series of radar data by 

combining the simulated returns from individual hydrometeors within a radar volume. This work 

was extended to generate polarimetric signatures by Capsoni et. al (2001).  Due to the 

computational requirements of this approach, the radar data were generated for only a single 

range gate only, and thus many aspects of the scanning radar were not simulated.

This work describes a radar emulator designed to simulate the expected average returns 

from a scanning Doppler radar.  Starting with output from a high-resolution numerical 

simulation, the emulator generates fields of power, equivalent reflectivity factor, Doppler 

velocity, and Doppler spectrum width based on the radar configuration and scanning strategy 

used. Here we show that the emulator is capable of simulating several radar data characteristics 

including: range resolution, azimuthal over- and under-sampling, non-standard (anomalous) 

propagation, Rayleigh attenuation, antenna sidelobes, velocity aliasing, and range aliasing.

As an example of its use for research, the emulator is applied to output from a numerical 

simulation of an F-3 intensity (Fujita 1971) supercell tornado simulated by the Advanced 

Regional Prediction System (ARPS, Xue et al. 2000; 2001) to evaluate the ability of two-degree 

beamwidth radars to directly detect the circulation associated with the tornado.  This application 

is motivated by the first integrated project of the Center for Collaborative Adaptive Sensing of 

the Atmosphere (CASA, Brotzge et al. 2005), which has recently deployed four such radars in 

the Oklahoma test bed.
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2. Radar emulator design

a. Emulator configuration and input

The behavior of the radar emulator is controlled by specifying radar characteristics and 

scanning strategy (Table 1). Note that the antenna beamwidth, gain, and wavelength are treated 

independently to allow for various types of antennas.  The minimum detectable signal is used as 

a threshold to compensate for the lack of incorporation of noise (sub-grid scale turbulence and 

hardware electronic signals) on the quality of the emulated radar measurements.  Hence, regions 

where signal-to-noise ratios would be expected to be low are deleted.  The pulse repetition time 

and pulse length are given independently, but in reality, they are usually constrained by the duty 

cycle of the transmitter.  The antenna pointing angles can be specified for either full or sector 

plan-position indicator (PPI) scans or range-height indicator (RHI) scans.  The emulator allows 

for over-sampling in both azimuth (or elevation for RHI scans) and range.

The input data to the radar emulator are three-dimensional gridded fields that describe the 

state of the atmosphere.  Wind components and mixing ratios of relevant precipitation-sized 

hydrometeors are required fields.  Other water species can be included and used for additional 

scattering or attenuation.  Water vapor, along with temperature and pressure, are needed for 

calculating the atmospheric index of refraction which is used for anomalous propagation.  

Temperature is also used in determining the back-scatter cross-section of hydrometeors.

b. Scattering

For computational efficiency, backscattering and extinction cross-sections per unit 

volume of air are pre-calculated at each model grid point.  Moreover, only Rayleigh scattering by 

liquid hydrometeors is currently included.  According to Battan (1973) and Doviak and Zrnic 

(1993), the Rayleigh approximation implies the following relationships for the backscattering 

cross section, σb, and the extinction cross section, σe, of a sphere of liquid water with diameter 
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where λ is radar wavelength and m is the complex index of refraction for liquid water.  The 

emulator currently assumes a monodisperse distribution of cloud droplets and a Marshall-Palmer 

(1948) distribution of rain drops, which is consistent with the microphysics scheme used in many 

numerical models, including the ARPS. The use of a more general Gamma distribution (Ulbrich 

1983) would be possible.  These assumed distributions permit the calculation of the total 

backscattering and extinction cross sections per unit volume from the cloud water, ρc, and rain 

water, ρr, concentrations (in kg m-3 ) at each grid point:

)48)(!6( 34
7

0
0

2
4

5

cm
ll

r
w

b R
N

NK
V

ρ
πρπρ

ρ
λ
πσ

+= (4)

))(Im(6
crw

l

K
V

e
ρρ

λρ
πσ

−−= (5)

where ρl is the density of liquid water, Rm is the median radius for the cloud droplets, and N0 is 

the Marshall-Palmer distribution intercept parameter.  Rm and N0 are assumed to have values of 

50 µm and 8000 drops m-3 mm-1, respectively.  The Debye formula, shown by Saxton (1946) to 

be applicable for the microwave region, is used to calculate the complex index of refraction 

explicitly.  The Debye formula is:
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where ε1 is the static dielectric constant, ε2 is the optical dielectric constant, λ0 is the transition 

wavelength, and i equals −1 .  Values of λ 0, ε 1, and ε 2 as a function of temperature were taken 

from Kerr (1951) and are based on Ryde and Ryde (1945).  This formulation of m2 allows the 

emulator to capture the temperature and wavelength dependencies of Kw.

It is important to note that the Rayleigh approximation has been assumed for both 

scattering and attenuation.  The range where the Rayleigh approximation is accurate for 

attenuation is much more limited than that for backscatter (Battan 1973).  Therefore, at 

wavelengths shorter than approximately 10cm, the attenuation simulated here will grossly 

underestimate the actual attenuation.  This limitation will be addressed in future work by using 

scattering parameters calculated using Mie theory for spherical scatterers (Mie 1908) and/or the 

T-matrix method for non-spherical scatterers (Waterman 1965).

c. Sampling of input fields

To sample the virtual model atmosphere, the emulator calculates radar variables along the 

path of individual pulses at the interval specified by the pulse repetition time (PRT).  This allows 

the input model fields, as well as the state of the radar (such as antenna pointing angle) to change 

for individual pulses.  While the emulator is currently configured for a mechanically scanning 

antenna, pulse-by-pulse calculation can be used to emulate measurements for phased-array radar 

as well.  The pulse generated within the emulator defines the volume of space that contributes to 

a sample taken along the radar beam.  It is bound in elevation and azimuth by a fixed multiple of 

the half-power beamwidth. This multiple is chosen based on the number of sidelobes that are 

desired for simulation in the antenna pattern.  The pulse is bound in range by the specified pulse 

length.  This volume of space is subdivided into individual pulse elements defined in angular 

coordinates, such that, at the maximum range from the radar, the dimensions of each pulse 

element are ten percent smaller than the model grid spacing at that range. While there is 
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flexibility in how many subdivisions are made in the pulse element, having too many increases 

the computation requirements without changing the results.  Sub-dividing the pulse volume into 

sub-elements that become larger than the grid spacing at the maximum range of the radar will 

result in under-sampling the model input fields and will change the emulator output.

Each pulse element is assigned values of extinction cross-section, backscattering cross 

section, and radial velocity that correspond to the grid point nearest to the element's location in 

space.  Nearest neighbor sampling is chosen over interpolation to improve the computational 

efficiency of the emulator.  Since the pulse elements are generally much smaller than the grid 

cells, this sampling method provides sufficient accuracy.

The radial velocity is calculated by the projection of the total wind velocity vector onto 

the radar beam:

ϕϕθθ sin)(cos)cossin( tr wwvuV +++= (7)

where Vr is the radial velocity, u is the x-component of the wind, v is the y-component of the 

wind, w is the z-component of the wind, wt is the average terminal fall speed for the 

hydrometeors, θ is the azimuth angle measured clockwise from north, and ϕ is the elevation 

angle.  The average hydrometeor terminal fall speed for the grid box is calculated as a 

backscatter cross-section weighted average given by:

dDDNDVDw tbt )()()()( 5.001 ∫−= σ
ρ
ρ

η (8)

where η is the total grid reflectivity, ρ is the air density of the grid box, ρ0 is the reference 

density, N(D) is the drop-size distribution, and Vt(D) is the terminal fallspeed as a function of 

diameter, which is calculated using the fitted relationship of Brandes et al. (2002):

432 002362.007934.09551.0932.41021.0)( DDDDDVt −+−+−= (9)

where Vt is in m s-1 and D is in mm. The weighting by backscatter cross-section makes the 



8

terminal fall speed more representative of the velocity seen by the radar than a simple mass-

weighted average.  

The pulse itself is propagated through the numerical grid using a ray-tracing technique. 

For each range gate, the height of each pulse element is determined separately by taking into 

account the atmospheric index of refraction experienced by that particular ray element.  This 

allows for differential propagation across the radar beam.  The change in the height above 

ground, ∆h, and change in range from the radar (along the surface of the Earth), ∆r, can be 

calculated from the incremental change in range along the path, ∆s, as
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where a is the radius of the earth, h is the previous height of the element above ground, n is the 

index of refraction at height h, n0 is the index of refraction at the radar, and ϕ is the initial 

elevation angle of the element (Doviak and Zrnic 1993).  The index of refraction is calculated 

from the model temperature, T, water vapor pressure, e, and air pressure, p, using the relation 

provided by Bean and Dutton (1966):
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where Cd, Cw1, Cw2, have values of 0.776 K Pa-1, 0.716 K Pa-1, and 3.7x103 K2 Pa-1, respectively.  

The element’s range from the radar along the surface of the earth is then converted to standard 

two-dimensional Cartesian coordinates, which are used to determine the location of the element 

on the model grid.

The pulse volume is allowed to propagate through the environment as far as twice the 
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unambiguous range, Ra,
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s
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where Ts is the PRT and c is the speed of light.  Allowing the pulse to propagate 2Ra from the 

radar means that after one PRT from the time the radar is started there are two pulses 

propagating through the model field at any given instant.  Thus, when a sample is taken, the 

returns from both pulses are assigned to the gate, producing the effects of range aliasing.  Range 

aliasing can be disabled if desired.

d. The calculation of returned power

The entire pulse volume is stepped forward in range while keeping track of the total 

extinction cross section along the path.  This running total is kept for each pulse element, which 

allows for the calculation of differential attenuation across the pulse.  As the pulse is propagated 

through the model grid of the simulated atmosphere, it is periodically sampled at an interval in 

range dictated by the specified gate spacing.  This allows for the gate and pulse lengths to be 

independent.  When a pulse sample is taken, three values are calculated: power, power-weighted 

average radial velocity, and power-weighted radial velocity variance.  The power-weightings are 

performed over all of the pulse elements as follows:
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where V r is the power-weighted average radial velocity, σvr is the power-weighted variance of 

radial velocities, Pi is the power for a particular pulse element, and Vi is the radial velocity for a 
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particular pulse element. The estimate of variance here, σvr, is not unbiased, but is chosen to 

simplify the computations.  Since values from thousands of pulse elements are used in the 

calculation, the difference between biased and unbiased estimates is negligible.

As given in Doviak and Zrnic (1993), the power, P, for a sample taken at range r0 is 

given by
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and Pt is the transmitted power, g is the system gain, λ is the wavelength, r is range from the 

radar, l is the attenuation factor, f2 is the normalized antenna pattern, η is the reflectivity 

(backscattering cross section per unit volume), θ is the azimuth angle relative to the beam center, 

ϕ is the elevation angle relative to beam center, and W is the range weighting function.  The 

emulator approximates this integral with a sum over the finite elements within the pulse volume,
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where ∆V is the volume of a pulse element, and all quantities subscripted with i are values for a 

particular pulse element.  The emulator assumes a Gaussian range weighting function and a 

normalized antenna pattern with the following form (Doviak and Zrnic 1993) 
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where J2 is the second-order Bessel function of the first kind, θ is the angular offset from 
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boresight and Da is the diameter of the antenna.  Da for (21) above can be calculated from the 

half-power beamwidth, θ1, as

1

27.1
θ

λ
=aD (22)

where λ is the wavelength.  Doviak and Zrnic (1993) state that (21) describes the antenna pattern 

for the first few sidelobes quite well for a parabolic antenna.  However, (21) is limited in that it 

gives sidelobes of a fixed level and location (e.g. Figure 1), prohibiting configuration of 

sidelobes with arbitrary magnitude.

e. Moment calculation

The sampling of model data is repeated for the number of pulses that are to be averaged 

for a radial of data, as specified by the scanning strategy.  Moment data (power, Doppler 

velocity, and Doppler spectrum width) are then generated for at each range gate along the radial.  

Power is calculated as the average of all power samples for the specified number of pulses at that 

range gate.  Note that this is the expected mean power that an actual weather radar would 

produce if random power fluctuations were successfully removed by the pulse averaging and the 

radar system had no noise.

Radial velocity is calculated as the power-weighted average of all velocity samples (one 

per pulse) at that range gate.  To emulate velocity aliasing, this average is restricted to a value 

within the Nyquist interval and is given by
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where Va is the aliased velocity value, Vr is the original (unaliased) radial velocity, VNYQ is the 

Nyquist (or aliasing) velocity, and n, an integer, is the number of Nyquist intervals by which the 

Va differs from Vr.  One advantage of emulated data is that the unaliased Doppler velocity is 

known.  Spectrum width is calculated as the power-weighted average of the variance for each 

sample, which is the variance of all velocity values within the pulse.  Initial attempts at 

emulating spectrum width used only the variance of the individual velocity samples that were 

themselves an average over the entire pulse.  That approach produced unreasonably low 

spectrum width.  By taking into account the variance of all velocity values within all pulses, the 

spectrum width takes into account the effect of antenna rotation and wind shear across the radar 

beam.  However, we have neglected sub-grid scale atmospheric turbulence.  Moreover, since the 

emulator does not generate a true power spectrum at each range gate, the emulated spectrum 

width does not take into account a limited Nyquist interval or the pulse-to-pulse variability 

associated with random phase changes from scatterers moving relative to the transmitted 

wavelength.  In addition to the three moments above, equivalent reflectivity factor (Ze) is 

calculated from the average power, Pr, using
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where τ is the pulse duration. 

3. Demonstration of emulator capabilities

Emulated data were generated for different radar characteristics to illustrate the 

emulator’s capabilities and to demonstrate the impact of radar design on data quality. The input 

is from a numerical simulation of a supercell thunderstorm produced using the Advanced 
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Regional Prediction System (ARPS, Xue et al. 2000; 2001).  The ARPS is a fully compressible 

and nonhydrostatic prediction model and its prognostic state variables include wind components

u, v, w, potential temperature θ, pressure p, the mixing ratios for water vapor qv, cloud water qc, 

rainwater qr, cloud ice qi, snow qs and hail qh, plus the turbulent kinetic energy used by the 1.5-

order subgrid-scale turbulent closure scheme.

For the current simulation, only liquid-phase, Kessler (1969) microphysics is used.  The 

simulation had a horizontal grid spacing of 50 m over a 48 km by 48 km domain and a vertically 

stretched grid that goes from the surface to 16 km.  The stretching is specified by a hyperbolic 

tangent function, having a minimum spacing of 20 m at the surface, 380 m spacing at the top of 

the model, and a mean spacing of 200 m (Xue et al. 1995).  The model thunderstorm was 

initiated by a thermal bubble in a horizontally homogeneous environment defined by the 20 May 

1977 Del City, Oklahoma supercell sounding reported in Ray et al. (1981).  Detailed analysis of 

the simulated storm is unimportant here as the simulation serves only as input to the emulator.  

Furthermore, only a single time step taken during the most intense portion of the tornadic stage 

of the simulated storm is used.  The impact of storm evolution on radar-derived storm structure 

will be the subject of future studies.

Figure 2 shows the rain water mixing ratio and storm-relative velocity at the surface at 

13500 seconds into the simulation, the time used to produce the emulated data.  An intense 

supercell thunderstorm with characteristic v-notch and hook (Lemon and Doswell 1979) in the 

rain water field is evident.  The simulated tornado vortex is about 200 m in diameter, with 

maximum winds of about 75 m s-1.

Table 2 lists the parameters used to define the radar and scanning strategy in each of the 

experiments discussed below.
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a. Control experiment for S-band radar with 1o beamwidth

The control experiment (CNTL), against which other radar configurations are compared, 

assumes characteristics similar to those of the United States National Weather Service WSR-88D 

(Crum and Alberty 1993) operational weather radars.  The WSR-88Ds operate at a nominal 

wavelength of 10 cm with a peak power of 750 kW and have a nominal half-power beamwidth 

of one degree.  The current operational scanning strategy uses a one-degree azimuthal sampling 

interval (which is close to the beamwidth), with range gates spaced 250 m apart.  For these 

experiments, the radar is located 20 km north of the southern edge of the model domain and 31 

km east of the western edge of the domain, or about 10km northeast of the center of the tornadic 

circulation.  Except where noted, the antenna has no sidelobes but is restricted to the area 

between the first nulls in the antenna pattern, keeping the full mainlobe of the antenna.  The 

width of this region for a one degree half-power beamwidth antenna is approximately three 

degrees.  Plan Position Indicators (PPIs) of emulated power, equivalent reflectivity factor (Ze), 

Doppler radial velocity, and spectrum width (Figure 3) for this experiment show the familiar 

reflectivity structure (Figure 3b) of a supercell thunderstorm, with a pronounced hook echo 

(magnified in Figure 4).  A pronounced mesocyclone circulation (Figure 3c, Figure 4c), with a 

small region of high gate-to-gate shear corresponding to the tornado, was found at the tip of the 

hook echo.  The spectrum width (Figure 3d, Figure 4d) was relatively low, 1-3 m s-1, for most of 

the storm. However, the spectrum width was higher (> 4 m s-1) in the region of the mesocyclone, 

reaching a maximum of ~20 m s-1 around the tornado.  It should also be noted that the Doppler 

velocity field for this experiment exhibits almost no aliasing, except for a single velocity gate, 

due to the high Nyquist velocity (37.5 m s-1) of the CNTL run.  Even at this range, the 75 m s-1

flow in the simulated tornado was significantly reduced by averaging across the one-degree half-

power beamwidth.  Similar reduction in vortex strength by beam averaging was noted by Wood 
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and Brown (1997).

b. Oversampling in azimuth

Experiment EXP2 (Table 2) is identical to CNTL, except fewer pulses (50 instead of 75) 

are used to generate a radial, and the antenna is rotated at 15 instead of 20 degrees per second, 

yielding data that are azimuthally oversampled relative to the beamwidth. This difference in 

azimuthal sampling resulted in differences in the observed structure of the storm, especially in 

the tornadic region (Figure 5).  Overall, azimuthal over-sampling yielded finer-scale structure of 

the storm (c.f. Figure 4). Of particular interest are the velocity measurements around the tornado; 

the oversampled data produce higher inbound and outbound velocities than the beam-matched 

CNTL case.  These increases in velocity values, though minimal, are due to the decreased region 

that is averaged, which allows the peak velocity values in the tornado to contribute more to the 

sampled Doppler velocity value.  Wood et al. (2001) and Brown et al. (2002) report a similar 

result for an idealized Rankine vortex flow and a simpler radar emulator.  Using time-series data 

taken from a WSR-88D during a tornadic supercell, Wood et al. (2001) demonstrated that over-

sampling by a factor of two increased observed mesocyclone strength by 10-50% relative to 

standard azimuthal sampling for one-third of the mesocyclones detected.

c. Effects of gate length

Experiment EXP3 (Figure 6) differs from CNTL by using a smaller gate length, 125 m 

instead of 250 m, and a correspondingly smaller pulse length, 0.75 µs instead of 1.5 µs, resulting 

in a higher range resolution.  As in experiment EXP2, the shorter sampling interval in the radial 

direction results in the elucidation of finer scale flow, especially in the region of the tornado.  

Due to the smaller region sampled (and averaged) in range, higher inbound and outbound 

velocity values are obtained, though not as high as the azimuthally oversampling case.  The latter 

is expected because azimuthal oversampling is more effective in capturing the extreme values of 
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inbound and outbound velocities in quasi-axisymmetric flow.  This fact was also the motivation 

of the work of Xue et al. (2006b).

d. Effects of sidelobes

Experiment 4 repeated the CNTL experiment with the pulse expanded to six degrees in 

azimuth, which included the first two antenna sidelobes.  For the antenna pattern used here, the 

first sidelobe had a one-way gain that was 28 dB less than the peak of the main lobe.  Since 

ground clutter was not included, this experiment exhibited only minor differences from CNTL 

(Figure 7 and Figure 8).  Regions with the strongest reflectivity gradients exhibited a few tenths 

of a decibel change in returned power and a few tenths of a meter per second difference in wind 

speed.  The area around the tornado had almost no change in diagnosed velocity, suggesting that 

the WSR-88D velocity measurements in such storms are not strongly affected by sidelobes in the 

absence of ground clutter.

While the increase in volume contributing to returned power in EXP4 should have led to 

consistently higher values, there are a few places where less power was found.  The lower power 

results from slight changes in the antenna gain weighting assigned to individual grid elements 

illuminated by the radar beam between the two runs.  In essence, the center of the beam is not 

located in exactly the same place due to truncation in the numerical calculations of the beam 

projection through the model grid.  These small errors led to places in which the sidelobes run 

had lower power than the CNTL run without sidelobes.  We speculate that once ground clutter is 

included the enhanced return from the ground will overwhelm this numerical artifact and result 

in higher reflectivity uniformly across the radar domain at small elevation angles.

e. Experiment with PRF and effects on velocity aliasing

In experiment EXP5, the pulse repetition frequency (PRF) was set to 1000 Hz instead of 

the 1500 Hz in CNTL, and 50 pulses were used for each radial instead of 75, to keep the 
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azimuthal sampling interval the same (one degree).  This changes the Nyquist velocity from 37.5 

m s-1 for CNTL to 25 m s-1 for EXP5.  Figure 9c shows a PPI of the Doppler velocity for this 

case.  The reduced Nyquist velocity causes more velocity aliasing, especially in the mesocyclone 

and tornado region.  There are also subtle differences in the Ze (Figure 9b) and spectrum width 

(Figure 9d) fields, which are caused by the change to a lower PRF and using fewer samples to 

generate a radial of data.  This experiment illustrates the advantage of using high PRFs to reduce 

velocity aliasing.  This becomes particularly important at shorter wavelengths, since the Nyquist 

velocity scales linearly with the transmitted wavelength.

f. Experiment with beamwidth

In EXP6 the half-power beamwidth was increased from one to two degrees (effectively 

halving the diameter of the dish) while keeping the azimuthal sampling interval the same.  This 

effectively yields azimuthally oversampled data, since the one-degree azimuthal sampling 

interval is smaller than the antenna’s half-power beamwidth (Figure 10).  Comparing the data 

with those CNTL (Figure 4), it is clear that the broader beam decreases the peak velocities 

retrieved by the emulator within the tornado (Figure 10c).  Specifically, the maximum outbound 

velocity is decreased from 38 to 31 m s-1.  Changing the half-power beamwidth also increases the 

spectrum width in the entire region of mesocyclone, which is a consequence of the larger 

sampling volumes.

g. Second trip echoes and range aliasing

The purpose of EXP7 was to demonstrate the emulator’s ability to simulate range 

aliasing. In this case, the radar is located approximately 100 km from the storm’s mesocyclone.  

Otherwise the scanning strategy is the same as CNTL, which had an unambiguous range of 100 

km.  With this scanning strategy, part of the storm is located beyond the unambiguous range, 

resulting in second trip echoes from 0 to 35 km range (Figure 11).  These echoes look very 
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narrow as a result of the fixed angular resolution of the data, which causes distortion since the 

data are assigned to a much closer range than their actual location.  It is important to note that 

currently the velocities from the second trip echoes are determined by assuming a fixed-phase 

transmitter, like a klystron, which makes the Doppler velocities and spectrum widths of the 

second trip echoes coherent.  Emulation of a random phase transmitter, like a magnetron, could 

be accomplished by assigning a random value of velocity for each sample of the radar pulse for 

the second trip echo.

h. Radar wavelength and effects on attenuation and velocity aliasing

EXP8 was identical to CNTL, except that the transmitted wavelength of the radar was 

changed from 10 cm (S-band) to 3 cm (X-band).  Comparing the returned power in EXP8 

(Figure 12a) to that in CNTL (Figure 3a) reveals the effects of Rayleigh attenuation at X-band.  

On the radar side of the storm, the X-band returned power is approximately 10 dB greater than S-

band (Figure 13), as expected from the dependence of returned power on the transmitted 

wavelength (Eq. 16). On the opposite side of the storm from the radar, this difference decreases 

to ~3 dB, corresponding to ~7 dB decrease in the returned power at X-band due to Rayleigh 

attenuation. As previously mentioned, the Rayleigh approximation underestimates attenuation at 

shorter wavelengths, so the actual attenuation at X-band for such a storm would be much greater.  

Here we are merely demonstrating the ability of the emulator to properly handle the propagation 

effects.  The current algorithm could easily incorporate extinction cross-sections from Mie 

(1908) or T-matrix (Waterman 1965) calculations.  In addition to non-Rayleigh attenuation, the 

model does not include ice microphysics.  Hence, wet hail, a strong attenuator (Battan 1971), is 

not included.

Another significant difference between S-band and X-band is the amount of velocity 

aliasing (Figure 12c).  At X-band, the Nyquist velocity for a given PRF is 30 percent of that at S-
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band; in EXP8, the Nyquist velocity is 11.25 m s-1.  Consequently, the EXP8 Doppler velocity 

field shows a large amount of aliasing, with some regions, such as the storm’s mesocyclone, 

exhibiting aliasing by more than one Nyquist interval.

4. Application to tornado detection

To illustrate the research and operational value of the radar emulator, the detectability of 

tornadic signatures is examined as a function of the radar range from the tornado and the 

azimuthal sampling interval.  The emulated radar characteristics (Table 3) follow those of the 

Integrated Project 1 (IP1) radars deployed by the Collaborative Adaptive Sensing of the 

Atmosphere (CASA) Engineering Research Center (Brotzge et al. 2005).  To keep cost low, 

these radars have a broad beam (2o half-power beamwidth), use relatively low power (25 kW), 

and operate at X-band.  One of the goals of CASA is to improve the detection of low-level 

hazardous weather, such as tornadoes, by placing the radars close to each other and by 

performing collaborative adaptive sampling of the lowest 3 km of the atmosphere.  The average 

radar spacing of the IP1 network is about 30 km.

Using the known location and intensity of the tornado in the model as a baseline, this 

study examines the values of several tornado intensity metrics, including maximum velocity 

(Vmax), maximum radial velocity difference (∆V), diameter (D), and axisymmetric vorticity (ζa), 

as determined directly from the emulated radial velocity data. They are examined as functions of 

range (3, 10, 30, and 50 km) from the tornado, using both azimuthally matched sampling (two 

degree intervals) and oversampling (at one degree intervals).  The axisymmetric vorticity is 

defined as the vorticity for an axisymmetric vortex having the same ∆V and diameter as the 

tornado, and is given by

D
V

a
∆

=
2ζ . (25)
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The intensity parameters are used to quantify the range dependency of tornado detection by two-

degree-beam X-band radars.  To eliminate the impact of dealiasing algorithms, this quantitative 

analysis assumes perfectly dealiased Doppler velocities, and hence represents the best-case 

scenario.  Furthermore, the known location of the tornado is used to choose the gates for the 

calculation of the parameters, as opposed to choosing a location based on the position of the 

velocity maxima in the data.  The values of these parameters for all cases, with different range 

and azimuthal sampling combinations, are listed in 
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Table 4.  It should also be noted that the viewing angle chosen here (from northeast) minimizes 

the impact of attenuation at X-band.

At 3-km range, the tornado can be clearly identified in both the matched and over-

sampled moment data (Figure 14 and 15).  The tornado resides in the tip of a well defined hook 

echo in a region of enhanced spectrum width.  At this range, the strong flow within the tornado 

can be diagnosed even in the aliased Doppler radial velocity field, especially when the storm is 

azimuthally oversampled by the radar beam.  Indeed, the over-sampled unaliased velocity field 

(Figure 15d) shows separated inbound and outbound velocity maxima in the tornado vortex.  

Separation between maximum radial velocities is a useful criterion for resolving a tornadic 

circulation.  Even at this close range, however, the peak Doppler velocity of the tornado 

measured by the radar (
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Table 4) is greatly decreased from the true value of 78 m s-1.  The distance between peak 

Doppler velocities, 216 m, agrees well with the ~200m distance between velocity maxima in the 

model field.  Axisymmetric vorticities of 0.864 s-1 and 1.024 s-1 for the matched and 

oversampled cases, respectively, further indicate that the tornadic circulation is well resolved by 

the two-degree half-power beamwidth radar at 3-km range.

Moving the radar to 10 km away from the tornado resulted in degradation of the radar 

derived structure as the geometric width of the beam increased (Figure 16 and Figure 17). While 

the hook echo and maxima in spectrum width were still fairly well resolved in the matched 

sampling case, the peak Doppler velocities associated with the tornado were located much 

further apart (705 m), with the peak velocity down to 35.2 m s-1.  Consequently, the estimated 

vorticity decreased to 0.163 s-1, or 20 percent of the value obtained at 3-km range.  It should be 

noted that the peak inbound velocity measured with the tornado was only 22.4 m s-1, less than the 

24.1 m s-1 inbound velocity associated with the mesocyclone.  It is only when the storm was 

azimuthally oversampled that the tornadic circulation was resolved at 10-km range with the 

current radar system.  With one-degree azimuthal sampling (Figure 17), the distance between the 

velocity maxima decreased to 529 m, which was the main factor for the increase in the 

axisymmetric vorticity to 0.237 s-1.

At 30-km range with matched sampling, the structure of the hook echo and spectrum 

width field is so degraded that the location of the tornado is no longer well-diagnosed by the 

radar parameters (Figure 18).  Even the non-aliased velocity field no longer shows separate 

velocity maxima for the tornado and mesocyclone.  Instead, a single maximum is located several 

gates away from the known location of the tornado.  The tornado-scale flow is no longer 

resolved because the half-power beamwidth is over 1 km wide at this range, roughly five times 

the diameter of the tornado.  Also at this range, the poor resolution of the data makes 
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distinguishing storm shear from regions of aliased velocity a challenge (Figure 18c).  Using the 

known location of the tornado, a vorticity estimate of 0.064 s-1 is calculated for this circulation.  

Such a low vorticity estimate would likely not be associated with a strong tornadic mesocyclone.  

It should be noted that the inbound velocity measured and used in the calculation is only 1.6 m s-

1.  Even when oversampling is performed (Figure 19) the tornadic circulation is still not resolved 

by a two-degree beamwidth radar when it is located 30km away.  While the separation between 

the maximum inbound and outbound velocities in the mesocyclone and a region of enhanced 

spectrum width exists, there is no indication of a tornado vortex signature (Brown et al. 1978).  

Furthermore, dealiasing the X-band radial velocity field becomes challenging as the beam 

containing the tornado appears to be embedded in a broad-scale region of aliased inbound 

velocities. In reality, the minimum in radial velocity associated with the tornado separates aliased 

inbound velocities from the true receding flow.

At 50-km range, the half-power beamwidth is 1.7 km across, reducing even the 

mesocyclone-scale circulation to gate-to-gate shear and completely obscuring the tornado-scale 

flow (Figure 20).  It would be very difficult to detect reliably a tornado with the size and 

intensity as in the simulation using only the moment data at this range.

5. Conclusions

A Doppler radar emulator based on Rayleigh scattering has been developed that simulates 

a wide range of radar operating characteristics, including range and azimuthal oversampling, 

velocity and range aliasing, Rayleigh attenuation, second trip echoes, antenna sidelobes, and 

anomalous propagation.  The emulator calculates returned power, equivalent radar reflectivity 

factor, Doppler velocity, and Doppler spectrum width from cloud model output containing fields 

of wind, temperature, moisture, and hydrometeor species.  The capabilities of the emulator are 

demonstrated using a high spatial resolution simulation of a tornado embedded within a supercell 
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thunderstorm. It is shown that the emulator is a useful tool for evaluating the capabilities and 

tradeoffs in the design, deployment, and operation of radar systems.  Given that the emulator can 

produce numerous synthetic data sets for a wide range of storm types and radar characteristics, 

we believe that such a tool can be a significant aid in the development of radar algorithms.  Such 

realistically emulated data can also be used in observing system simulation experiments (OSSEs) 

such as those of Xue et al (2006a) for examining the potential impact of radar data on 

thunderstorm analysis and prediction. 

Using the output from a 50-m horizontal-resolution simulation of a supercell storm that 

explicitly resolves an F-3 intensity tornado of about 200 m in diameter, the basic capabilities of 

the emulator are first tested in a set of experiments that examines the effects of radar wavelength, 

beamwidth, azimuthal oversampling, gate length, sidelobes, pulse repetition frequency, and the 

effects of velocity and range aliasing. Results consistent with theory are observed from the 

simulated data.

As an example of the emulator’s many potential applications, the detection of the 

simulated tornado described above by a two-degree half-power beamwidth X-band radar is 

examined.  The emulated data shows that the strength of the diagnosed tornado circulation 

decreases rapidly with range, with the tornado-scale flow becoming unresolved at and beyond 30 

km. Azimuthal oversampling improves the ability to diagnose the tornado vortex, especially 

from the 10-km to 30-km ranges.  At shorter ranges, the two-degree beam-matched azimuthal 

sampling is sufficient.  It is important to note that the simulated tornado examined here 

represents the top 10% of tornadoes occurring in nature in terms of intensity. The much more 

prevalent weaker and/or smaller tornadoes will be even harder to detect.

A significant problem demonstrated by the emulator is the impact of velocity aliasing at 

X-band on the potential diagnosis of the circulations.  Correct dealiasing is crucial to tornado 
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detection when the detection algorithm mainly relies on the radial velocity data (e.g., Burgess et 

al. 1993; Liu et al. 2006).  Any method that can increase the effective Nyquist velocity, such as 

the use of staggered-PRT (Gray et al. 1989), would likely be helpful.

Future studies will include more radar operating parameters as well as the use of 

objective algorithms to evaluate tornado detection for broad-beam X-band radars.  This work is 

motivated by the Integrated Project I (IP1) of the Collaborative Adaptive Sensing of the 

Atmosphere (CASA; Brotzge et al. 2005) Engineering Research Center that has recently 

deployed four two-degree half-power beamwidth X-band radars in central Oklahoma. One of the 

goals of such inexpensive networks is tornado detection, based on the promise of being able to 

observe at low altitudes (0 to 3 km) and at short ranges (less than 30 km), and do so in a 

collaborative and adaptive manner. In the future, the radar emulator will be further enhanced to 

include Mie scattering, as well as scattering from ice-phase hydrometeors, and the antenna 

routine will be modified to allow for emulation (using many model time steps) of electronically 

steered phased-array radars that can point the beam in arbitrary directions on a pulse-to-pulse 

basis.  This will enable applied research in the Phased Array Radar (Forsyth et al. 2005) program 

and further enhance the educational utility of the radar emulator.
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List of figures

Figure 1. Emulator antenna pattern for a one-degree half-power beamwidth radar.

Figure 2. Model rain water mixing ratio (qr) and vector velocity fields at 13500s into the 

simulation and 20 m height. The black dots represent radar locations at ranges of 3 km and 10 

km.  The inverted triangle represents the location of the tornado.

Figure 3. PPIs of (a) returned power (dB relative to 1 W), (b) equivalent reflectivity factor (Ze), 

(c) Doppler velocity, and (d) spectrum width for control experiment CNTL.  The box denotes the 

region shown in Figure 4, where the simulated tornado is found.

Figure 4. As in Figure 3, but magnified in to show more details in the region of mesocyclone and 

tornado.

Figure 5. As in Figure 4, but for experiment EXP2, showing the effects of azimuthal 

oversampling.

Figure 6. As in Figure 4, but for experiment EXP3, showing differences due to a shorter gate 

spacing and shorter pulse duration.

Figure 7.  PPI of returned power difference between CNTL and EXP4 (CNTL subtracted from 

EXP4), showing overall minimal differences due to sidelobes.  Areas where EXP4 has less

returned power are due to numeric instability in the computations.

Figure 8. As in Figure 7 but for Doppler velocity difference, showing the small impact of 

sidelobes on measured Doppler velocity.

Figure 9. As in Figure 3, but for experiment EXP5, showing the impacts of reducing the PRF.

Figure 10.  As in Figure 4, but for experiment EXP6, showing the impacts of changing the half-

power beamwidth.

Figure 11. As in Figure 3, but for experiment EXP7, showing second trip echoes.  The scale has 
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been changed to allow both first and second trip echoes to be shown.

Figure 12.  As in Figure 3, but for experiment EXP8, highlighting the storm structure observed at 

X-band.

Figure 13.  PPI of returned power difference between CNTL and EXP8, showing clearly the 

range propagation effect of Rayleigh attenuation at X-band.

Figure 14.  PPIs of (a) equivalent reflectivity factor, (b) spectrum width, (c) aliased Doppler 

velocity, and (d) non-aliased Doppler velocity for a radar located 3 km from the tornado using 

matched sampling.  The black circle indicates the location and size of the tornado in the model.

Figure 15.  As in Figure 14, but for the radar azimuthally oversampling by a factor of two.

Figure 16.  As in Figure 14, but for a radar located 10 km from the tornado.

Figure 17.  As in Figure 16, but for a radar azimuthally oversampling by a factor of two.

Figure 18.  As in Figure 14, but for a radar located 30 km from the tornado.

Figure 19.  As in Figure 18, but for a radar azimuthally oversampling by a factor of two.

Figure 20.  As in Figure 14, but for a radar located 50 km from the tornado.

Figure 21.  As in Figure 20, but for a radar azimuthally oversampling by a factor of two.
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Figure 1. Emulator antenna pattern for a one-degree half-power beamwidth radar.
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Figure 2. Model rain water mixing ratio (qr) and vector velocity fields at 13500s into the 
simulation and 20 m height. The black dots represent radar locations at ranges of 3 km and 10 
km.  The inverted triangle represents the location of the tornado.
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Figure 3. PPIs of (a) returned power (dB relative to 1 W), (b) equivalent reflectivity factor (Ze), 
(c) Doppler velocity, and (d) spectrum width for control experiment CNTL.  The box denotes the 
region shown in Figure 4, where the simulated tornado is found.
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Figure 4. As in Figure 3, but magnified in to show more details in the region of mesocyclone and 
tornado.
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Figure 5. As in Figure 4, but for experiment EXP2, showing the effects of azimuthal 
oversampling.
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Figure 6. As in Figure 4, but for experiment EXP3, showing differences due to a shorter gate 
spacing and shorter pulse duration.
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Figure 7.  PPI of returned power difference between CNTL and EXP4 (CNTL subtracted from 
EXP4), showing overall minimal differences due to sidelobes.  Areas where EXP4 has less 
returned power are due to numeric instability in the computations.
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Figure 8. As in Figure 7 but for Doppler velocity difference, showing the small impact of 
sidelobes on measured Doppler velocity.
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Figure 9. As in Figure 3, but for experiment EXP5, showing the impacts of reducing the PRF.
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Figure 10.  As in Figure 4, but for experiment EXP6, showing the impacts of changing the half-
power beamwidth.
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Figure 11. As in Figure 3, but for experiment EXP7, showing second trip echoes.  The scale has 
been changed to allow both first and second trip echoes to be shown.
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Figure 12.  As in Figure 3, but for experiment EXP8, highlighting the storm structure observed at 
X-band.
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Figure 13.  PPI of returned power difference between CNTL and EXP8, showing clearly the 
range propagation effect of Rayleigh attenuation at X-band.
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Figure 14.  PPIs of (a) equivalent reflectivity factor, (b) spectrum width, (c) aliased Doppler 
velocity, and (d) non-aliased Doppler velocity for a radar located 3 km from the tornado using 
matched sampling.  The black circle indicates the location and size of the tornado in the model.
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Figure 15.  As in Figure 14, but for the radar azimuthally oversampling by a factor of two.
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Figure 16.  As in Figure 14, but for a radar located 10 km from the tornado.
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Figure 17.  As in Figure 16, but for a radar azimuthally oversampling by a factor of two.
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Figure 18.  As in Figure 14, but for a radar located 30 km from the tornado.
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Figure 19.  As in Figure 18, but for a radar azimuthally oversampling by a factor of two.
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Figure 20.  As in Figure 14, but for a radar located 50 km from the tornado.
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Figure 21.  As in Figure 20, but for a radar azimuthally oversampling by a factor of two.
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Table 1. Emulator control parameters.

Radar Parameters Scanning Strategy Parameters

Location Pulse repetition time (PRT)

Antenna beamwidth Pulse length

Antenna gain (including sidelobes) Antenna rotation rate

Wavelength Number of pulses per radial

Transmit power Radar gate spacing

Range to first gate Scan fixed angle

Minimum detectable signal Scan start and end angles
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Table 2. Configuration parameters for each experiment.

Exp. λ  

(cm)

Beam-

width 

(deg)

PRF

(Hz)

Pulse 

Length

(µs)

Rot. 

Rate

(deg s-1)

Pulses 

Per 

Rad.

Gate 

Length

(m)

∆Az

(deg)

VNYQ

(m s-1)

Ra

(km)

CNTL 10 1 1500 1.5 20 75 250 1.0 37.50 100

EXP2 10 1 1500 1.5 15 50 250 0.5 37.50 100

EXP 3 10 1 1500 .75 20 75 125 1.0 37.50 100

EXP 4 10 1 1500 1.5 20 75 250 1.0 37.50 100

EXP 5 10 1 1000 1.5 20 50 250 1.0 25.00 150

EXP 6 10 2 1500 1.5 20 75 250 1.0 37.50 100

EXP 7 10 1 1500 1.5 20 75 250 1.0 37.50 100

EXP 8 3 1 1500 1.5 20 75 250 1.0 11.25 100
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Table 3. Configuration parameters for CASA radars.

Radar Parameter Matched Sampling Oversampled

λ (cm) 3 3

Beamwidth (deg) 2 2

PRF (Hz) 2000 2000

Rot. Rate (deg s-1) 40 40

Pulses Per Rad. 100 50

Pulse Length (µs) .5 .5

Gate Length (m) 100 100

∆Az (deg) 2 1
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Table 4. Calculated tornado parameters for emulated CASA radars.

Experiment

(radar range and oversampling)

Vmax (m s-1) ∆V (m s-1) D (m) 2 ∆V/D (s-1)

3km, Matched 49.1 93.3 216 0.864

3km, Oversampled 55.7 110.6 216 1.024

10km, Matched 35.2 57.6 705 0.163

10km, Oversampled 36.3 62.7 529 0.237

30km, Matched 31.8 33.4 1047 0.064

30km, Oversampled 32.3 42.7 1047 0.082

50km, Matched 27.5 29.5 1749 0.034

50km, Oversampled 28.5 38.6 1749 0.044


