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ABSTRACT

An error propagation analysis is conducted to estimate random errors in the friction velocity u
*
and the

Monin–Obukhov similarity theory (MOST) stability variable z/L from estimated random errors in the tur-

bulent fluxes. Errors in the dimensionless mean wind shear fm and mean temperature gradient fh are also

estimated. To the authors’ knowledge, this is the first time that errors in calculated values of z/L, fm, and fh

have been systematically analyzed. Random errors in z/L are found to be large for unstable conditions,

reaching values of 40% or greater. It is shown through statistical hypothesis tests that random errors cannot

explain departures of calculated values of fm and fh from theory. The deviation of calculated values of fm

from empirical curves is found to have a strong diurnal variation that increases with height; deviations of fh

from theory are not found to have clear diurnal variation. These results support the findings of previous

studies, which have suggested that additional dimensionless parameters representing additional physical

processes need to be included in the set of governing parameters for surface layer similarity. Implications for

atmospheric surface layer turbulence are also discussed.

1. Introduction

Since the time it was proposed (Obukhov 1946;Monin

and Obukhov 1954), the Monin–Obukhov similarity

theory (MOST) has been a unifying theory for studies of

the atmospheric surface layer (ASL). In MOST, which

was developed for the ASL assuming statistically sta-

tionary conditions over level, horizontally homogeneous

terrain, only four parameters are assumed to be relevant:

height z, buoyancy parameter g/Q0, kinematic surface

stress 2t0/r5u2* 5 (u9w9
2
1 y9w9

2
)1/2, and kinematic

surface temperature flux H0/rcp 5w9u9. Application of

dimensional analysis reveals that any quantity in the

surface layer properly nondimensionalized by these

scales should only be a function of the dimensionless

MOST stability variable z/L, where

L52
u3*Q0

kgw9u9
(1)

is the Obukhov length. Here k is the von Kármán con-

stant. Note that in calculating all quantities, we replace

the temperature u with the virtual temperature uy to ac-

count for the presence of water vapor, where uy 5 u(1 1
0.61q), and where q is the specific humidity.

MOST provides a framework to interpret experi-

mental results; experiments in the ASL have confirmed

that the dimensionless gradients of mean wind fm and

temperaturefh (Businger et al. 1971), and stable spectra

of u, y, w, and u (Kaimal et al. 1972) collapse as a func-

tion of z/L. Furthermore, MOST allows one to estimate

turbulent fluxes of trace species and water vapor based

onmean gradients (e.g., Baldocchi et al. 1988; Moncrieff

et al. 1997; Cline 1997) when the eddy covariance tech-

nique is not feasible or possible. This gradient-based

method is the most reliable approach for obtaining tur-

bulent fluxes of compounds that cannot bemeasured with

high-frequency sensors, such as gaseous mercury (Lee

et al. 2000) and volatile organic compounds (Fuentes

et al. 2000). MOST is also important for numerical

simulations of the atmosphere. It is the basis of param-

eterized surface fluxes in large-scale numerical models

(e.g., Deardorff 1972b; Louis 1979; Beljaars 1995), and

for the lower boundary condition in large-eddy simula-

tions (LESs) of the atmospheric boundary layer (e.g.,

Deardorff 1972a; Moeng 1984). MOST is also the basis

for further generalizations, such as the local scaling

theory for stable boundary layers (Nieuwstadt 1984).
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Although scatter in plots of calculated values of fm

and fh relative to empirical curves is typically assumed

to be due to measurement errors, an open question in

MOST is to what extent this scatter may be caused by

incomplete theory; that is, do fm and fh depend on

additional dimensionless parameters besides z/L alone?

In carefully designed experiments over typical averaging

periods (e.g., 30 min) in the surface layer, random errors

are expected to be larger than other types of errors (e.g.,

systematic or instrument errors). Scatter in plots of fm

and fh is typically assumed to be due to random errors,

which are by definition errors that occur due to in-

sufficient averaging time for the time average to con-

verge to the ensemble mean (e.g., Lumley and Panofsky

1964; Wyngaard 1973; Lenschow et al. 1994; Salesky

et al. 2012). Estimates of the random errors infm andfh

are needed in order to investigate to what extent scatter

in plots offm andfh can be explained by random errors.

Although some authors have placed error bars on mea-

sured MOST functions using bin averaging (e.g., Edson

and Fairall 1998), note that this approach does not dif-

ferentiate between scatter caused by random errors and

scatter caused by additional nondimensional parameters

representing physical processes that are not accounted

for in MOST. Results obtained from LESs (Khanna and

Brasseur 1997) and from ABL experiments (Johansson

et al. 2001) have demonstrated that fm depends strongly

on and fh depends weakly on zi/L under unstable

stratification, where zi is the height of the ABL. How-

ever, these results have been questioned by other au-

thors (Andreas and Hicks 2002), who have argued that

the relative amount of scatter in plots of fm and fh

versus z/L is due to spurious correlations between the

independent and dependent variables, and therefore it is

not possible to demonstrate that zi/L should enter the

scaling. Other authors (Businger 1973; Zilitinkevich

et al. 2006) have shown that the roughness length z0 may

become an important length scale as the atmosphere

approaches a state of free convection (u
*
/ 0), also

leading to departures from MOST. In another recent

article, Wang and Bras (2010) proposed an extremum

solution (ES) to the MOST equations where the mo-

mentum flux takes on the value that minimizes the heat

flux and wind shear under stable conditions and that

minimizes the heat flux and temperature gradient under

unstable conditions; they found this solution corre-

sponds to only three possible values that z/L may take

on in the surface layer. The conclusions of Wang and

Bras (2010) were debated in a comment by van de Wiel

et al. (2011) [see also the reply by Wang and Bras

(2011)], who argued that a preferred stability state in the

stable surface layer is not supported by experimental

evidence. If the predictions ofWang and Bras (2010) are

correct, then calculated values of z/L that differ from

those predicted by the ES must be due to experimental

errors in calculated values of z/L.

To investigate the implications of random errors in

turbulent fluxes for our understanding of MOST, we

perform an error propagation analysis to estimate ran-

dom errors in the MOST scales u
*
and z/L, the mean

wind and temperature gradients ›U/›z and ›Q/›z, and in

the dimensionless MOST functions fm and fh; expres-

sions for these errors are presented in section 2. The Ad-

vection Horizontal Array Turbulence Study (AHATS)

dataset and our analysis procedure are discussed in

section 3. In section 4, we present the results of the es-

timated errors in u
*
, z/L, ›U/›z, ›Q/›z, fm, and fh.

Statistical hypothesis tests are conducted to investigate

whether scatter in plots of fm and fh are due to random

error alone; results are presented in section 5. Implica-

tions of these random errors for our understanding of

the surface layer are given in section 6; a summary of our

findings is presented in section 7.

2. Error propagation analysis

In this section, we derive error propagation formulas to

estimate random errors in theMOST scales u
*
and z/L, in

›U/›z and ›Q/›z, and in fm and fh predicted by MOST.

To estimate random errors in turbulent fluxes, we use the

filtering method of estimating random error, proposed by

Salesky et al. (2012); it has the advantage of not requiring

an a priori estimate of the integral time scale as many

other methods do. Salesky et al. defined local fluxes using

a filter in time of width Dt with the property

w9c95gw9c9 ; (2)

that is, that the time average of the local filtered flux gw9c9
is equivalent to the time-averaged flux w9c9 for any Dt.

Using this property, they found that the relative random

error in w9c9 for averaging period T can be estimated by

�wc5
Cwc

w9c9T1/2
, (3)

where Cwc is a coefficient determined through a power-

law fit of the form sfw9c9(Dt)5CwcD
21/2
t to the standard

deviation of the local flux as a function of filter width

Dt and where the relative error is defined as �wc 5s
w9c9/

jw9c9j. Note that Salesky et al. (2012) found the random

error predicted by the filtering method was similar to

other methods (e.g., Lumley and Panofsky 1964;

Lenschow et al. 1994; Garcia et al. 2006); consequently,

the results given for errors propagated to MOST scales

in section 4 are not unique to the filtering method.

DECEMBER 2012 SALE SKY AND CHAMECK I 3701

Unauthenticated | Downloaded 08/25/23 02:59 AM UTC



Given a variable with a functional dependence on

other variables—that is, c5 f(a, b) with means a, b, and

c, and individual realizations ai, bi, and ci—one can de-

rive an error propagation formula (e.g., Bevington and

Robinson 1969) by expanding an individual measure-

ment around its mean in a Taylor series, only retaining

linear terms as shown:

ci 2 c ’ (ai 2 a)

�
›c

›a

�
1 (bi 2 b)

�
›c

›b

�
. (4)

By using the definition of variance, s2
c 5 (1/N)

�N
i51(ci 2 c)2, we can express the variance of c in terms

of the variances of a and b and their covariance as

s2
c ’ s2

a

�
›c

›a

�2

1s2
b

�
›c

›b

�2

1 2Cov(a, b)
›c

›a

›c

›b
. (5)

The above-mentioned equation is the general error

propagation formula that will be used to estimate errors

in the following sections.

a. Errors in u
*
and z/L

If we apply (5) to estimate the error in the friction

velocity, we have u*5 f (u9w9, y9w9) because u*5
(u9w9

2
1 y9w9

2
)1/4. By (5), the standard deviation of the

friction velocity is approximately

su*
’
"
s
u9w9
2

 
›u*
›u9w9

!2

1s
y9w9
2

 
›u*
›y9w9

!2

1 2Cov(u9w9, y9w9)
›u*
›u9w9

›u*
›y9w9

#1/2
. (6)

In (6), Cov(u9w9, y9w9) represents the covariance be-

tween random errors in u9w9 and in y9w9; in principle it

could be estimated using the filtering method. However,

because it is unclear how one would estimate the error

covariance terms in other expressions (e.g., between

errors in u
*
and ›U/›z), we here make the assumption

that all errors are uncorrelated and henceforth neglect

all the covariance terms that arise from the error prop-

agation equation. Although some of these error co-

variance terms may be significant, it is unclear to us how

one would estimate these terms for each block of data.1

By taking partial derivatives, and neglecting the co-

variance term in (6), we find

�u*
5

su*

ju*j
’ 1

2u4
*

(s2
u9w9

u9w9
2
1s2

y9w9
y9w9

2
)1/2 (7)

as the expression for the relative random error in u
*
.

Note that it is typical procedure to rotate velocity data

into the mean wind so that V 5 0 at each measurement

height. Thus, as Bernardes and Dias (2010) point out, it

is valid to assume that the ensemble mean of hy9w9i is
zero and the samplemean y9w9 is a random variable with

mean zero. One therefore can regard errors in u9w9 and
y9w9 as uncorrelated. A similar argument does not hold,

however, for other error covariance terms.

If we consider z/L, we note that z/L5 f (u*, w9u9).
Errors in the mean temperatureQ0 are small (,0.1% or

on the order of 0.3 K; see Salesky et al. 2012) and can be

neglected. Applying (5), we find

sz/L ’
"
s2
u*

�
›z/L

›u*

�2

1s2
w9u9

 
›z/L

›w9u9

!2#1/2
(8)

as the variance of z/L. Taking derivatives, we find

�z/L5
sz/L

jz/Lj ’
0@9s2

u*

u2
*

1
s
w9u9
2

w9u9
2

1A1/2

(9)

as the expression for the relative error in z/L, where su*
can be estimated from (7).

b. Errors in gradients

We calculated the gradients of mean wind and tem-

perature by fitting a second-order polynomial in ln(z)

(e.g., Högström 1988) to the measured profiles from the

AHATS tower; that is,

U(z)5U01A ln(z)1B[ln(z)]2 , (10)

where U0, A, and B are determined through least

squares. The gradient of mean wind was then obtained

by differentiating (10) as shown:

›U

›z
5

A

z
1

2B ln(z)

z
. (11)

A similar fit to the measured mean temperature profile

Q(z) was used to obtain ›Q/›z. One can apply the gen-

eral error propagation equation (5) to estimate errors in

the gradients, noting that for the polynomial fit given in

(11), the estimate of the gradient is a function of the

fitted parameters A and B; that is, ›U/›z5 f (A,B).

Applying the error propagation equation (5), we find

1 One could estimate the error covariance terms in an ensemble

mean sense, but this would not allow us to estimate error bars for

individual data points.
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s›U/›z5

�
s2
A

�
›(›U/›z)

›A

�2
1s2

B

�
›(›U/›z)

›B

�2
1 2Cov(A, B)

�
›(›U/›z)

›A

��
›(›U/›z)

›B

��1/2

.

(12)

Taking the derivatives in (12), one can show that the

fractional error in the mean wind shear is

�›U/›z 5
s›U/›z

j›U/›zj5
1

zj›U/›zjfs
2
A1 4[ln(z)]2s2

B

1 4 ln(z) Cov(A, B)g1/2 , (13)

where z is height, and s2
A, s

2
B, and Cov(A, B) are the

variances and covariances of the fitted parameters. The

method for calculating s2
A, s

2
B, and Cov(A, B) based on

standard statistical methods is given in detail in the ap-

pendix. Note that an expression similar to (13) may be

used to estimate the error in ›Q/›z. A simplified form of

(13) that only included the s2
A term was used by

Johansson et al. (2001) to estimate errors in ›U/›z.

c. Errors in fm and fh

To determine the implications of random errors for

Monin–Obukhov similarity, we here derive formulas for

the errors in the dimensionless mean wind shear

fm(z/L)5
kz

u*

›U

›z
(14)

and mean temperature gradient

fh(z/L)5
2kzu*
w9u9

›Q

›z
. (15)

Applying the error propagation equation to fm 5
f (u*, ›U/›z), one can show the expression for the rela-

tive error in fm is

�f
m
5

sf
m

jfmj
’
24s2

u*

u2
*

1
s2
›U/›z

(›U/›z)2

351/2 (16)

where we have neglected the error covariance term.

An equation for the relative error infh can be derived

by applying the error propagation formula to fh 5
f (u*,w9u9, ›Q/›z). By applying (5), taking derivatives,

and neglecting the error covariance terms, one can show

that the expression for the relative error in fh is

�f
h
5

sf
h

jfhj
’
24s2

u*

u2
*

1
s
w9u9
2

w9u9
2
1

s2
›Q/›z

(›Q/›z)2

351/2 . (17)

3. Dataset and analysis procedure

ASL data used in this study came from AHATS,

collected near Kettleman City, California, during the

period from 25 July to 16 August 2008. The terrain

surrounding the field site was covered by short grass

stubble and was predominantly level and horizontally

homogeneous over wind directions of jaj# 458 included
in the data analysis. The field site was crossed by check

dams of 20–25 cm in height and spaced approximately

60 m apart. The closest check dam was approximately

35 m upwind of the AHATS profile tower. We believe

the presence of the check dams had no influence on our

results, and are confident that the requirements of level

and horizontally homogeneous terrain for MOST are

satisfied in the AHATS dataset. We used data from the

AHATS profile tower, consisting of six Campbell Sci-

entific CSAT-3 triaxial sonic anemometers at heights of

z 5 1.51, 3.30, 4.24, 5.53, 7.08, and 8.05 m during the

period of 25 June–17 July, sampling u, y, w, and u at

60 Hz.Mean temperature data were collected at 1 Hz at

all heights using Sensirion SHT 75 transducers, which

were calibrated prior to the field experiment and re-

checked after the field campaign. The velocity data for

each run were rotated so that V 5 0 for each height. For

details of the data selection and processing, see Salesky

et al. (2012). The heat flux was calculated using the sonic

anemometer data downsampled to 20 Hz; the mean

temperature gradient was calculated using the 1-Hz data.

We investigated the possibility of bias in measured

values of U from the CSAT-3 sonic anemometer data.

To determine whether one or more of the anemometers

had a bias in meanU, we assumed that the log law holds

for near-neutral (20.02 # z/L # 0.02) conditions, and

compared the average dimensionless mean velocity

profile (i.e., U/u*) from 22 near-neutral runs to the log

law. We found that the fourth and fifth sonic from the

profile tower had a positive bias relative to the log law,

and assumed that this was due to instrument bias. From

fitting a function linear in ln(z) to the mean di-

mensionless velocity profile from the remaining heights,

we estimated that u had a bias of 10.148 m s21 at z4 5
5.53 m and a bias of10.121 m s21 at z55 7.08 m. These

biases were removed from the raw data for all runs

during preprocessing. We also estimated values of the

von Kármán constant and the roughness length from the

near-neutral velocity profiles (using the sonics at heights

1–3 and 6 that were free from apparent bias error). We

estimated z0 5 0.0237 m and k 5 0.355 for our data.
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Note that although this is on the lower end of reported

values of k in the atmospheric literature, it is comparable

with what has been found in some other experiments.

Businger et al. (1971) reported a value of k5 0.35 for the

Kansas data; Oncley et al. (1996) obtained k 5 0.365 6
0.015. We also investigated the possibility of bias in the

mean temperature measurements by examining plots of

[Q(z) 2 Q0]/Q0 and found that the dimensionless mean

temperature profiles for near-neutral conditions fol-

lowed the log law closely. We therefore are confident

that the 1-Hz mean temperature data are free from in-

strument bias.

The filtering method of estimating random errors

(Salesky et al. 2012) was applied to the time series of the

instantaneous fluxes (e.g., u9w9) by downsampling the

60-Hz data to 20 Hz, giving us blocks of 32 768 points, or

27.3 min. We used 50 filter widths spaced evenly on a

logarithmic scale, betweenDmin5 10tf, andDmax5T/10,

where tf is the integral time scale of the flux that was

estimated by numerically integrating the autocorrela-

tion function r(t) of the flux up to its first crossing on the

time axis.

The gradients of mean wind and temperature were

estimated following Högström (1988), where a second-

order polynomial in ln(z) [see (10)] was fit to the mea-

sured mean wind profile; this polynomial fit was then

differentiated to obtain an approximation to the gradi-

ent in (11).We found that for the top five sonics from the

AHATS profile, u
*
and L did not change with height.

When fm and fh were calculated, we used the values of

u
*
and z/L calculated at the height of interest. We used

the criteria of Högström (1988), where fm was only

calculated for u
*
. 0.1 m s21 andfhwas only calculated

for runs where u
*
. 0.1 m s21 and jH j 5 jrcpw9u9 j .

10Wm22. We found several runs (16 out of 237) with an

apparent countergradient heat flux at both heights (z 5
4.24, 8.05 m) where we calculated fh(z/L); that is, we

found fh(z/L) , 0 for these cases. The mean tempera-

ture profiles and time series of all variables were in-

spected, and although the cause for these apparent

countergradient fluxes is currently unclear, we found

they are not due to bad data. We excluded these runs

from the x2 tests that are presented in section 5 because

they would clearly bias the outcome of the x2 tests.

4. Results

a. Characterization of fm and fh

The behavior of the dimensionless mean wind shear

fm(z/L) is displayed in Fig. 1, with all stabilities shown

in Fig. 1a and the near-neutral cases presented in Fig. 1b.

Each data point is plotted for fm(z/L) calculated from

one 27.3-min block of data. The empirical functions

proposed by Businger and Dyer (Dyer 1974) and

Högström (1988) are also shown for comparison. Al-

though the scatter in fm is larger than what has been

found in some experiments (e.g., Businger et al. 1971;

Högström 1974, 1988), it is similar to what has been

found in many other ASL studies, such as the results of

Johansson et al. (2001) and Li et al. (2008). Notice that

the scatter in fm increases with height; it is larger for

measurements at z 5 8.05 m than for z 5 4.24 m. Also

note that calculated values of fm plotted in Fig. 1 are

plotted using k 5 0.355, which was fit from the near-

neutral velocity profiles.

The dimensionless mean temperature gradient is dis-

played in Fig. 2, with stabilities from 22 # z/L # 1

displayed in Fig. 2a and near-neutral (20.1# z/L# 0.1)

data shown in Fig. 2b. The empirical Businger–Dyer

(Dyer 1974) and Högström (1988) curves are also dis-

played for comparison. We find much less scatter in

calculated values of fh for unstable conditions than for

fm, and by inspection of Fig. 2a, one would likely con-

clude that the data are in very good agreement with both

sets of empirical curves for unstable conditions. For

stable conditions, there is much more scatter in fh, and

there is also a negative bias in calculated values of fh

relative to both the Högström and Businger–Dyer

curves. Note that for near-neutral conditions, displayed

FIG. 1. Dimensionless mean wind shear as a function of MOST

stability variable: (a) 22 # z/L # 1 and (b) 20.1 # z/L # 0.1.
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in Fig. 2b, most calculated values of fh are less than one

and smaller than the empirical predictions. Our results

in Figs. 1, 2 therefore suggest that a turbulent Prandtl

number (Prt5 fh/fm) of less than one is appropriate for

near-neutral conditions in the atmospheric surface layer.

b. Errors in z/L and u
*

The errors in u9w9, y9w9, and w9u9 were calculated

using the filtering method at the top five levels from the

AHATS profile tower and propagated to u
*
and z/L

using (7) and (9). The relative error in u
*
is plotted in

Fig. 3a as a function of z/L; the relative error in z/L is

shown in Fig. 3b. Neither errors in u
*
or in z/L were

found to have an apparent height dependence. In Fig.

3a, errors in u
*
are approximately constant and small for

stable conditions, with typical values around 3%–5%.

Errors in u
*
increase with increasing atmospheric in-

stability; they may become as large as 10%–20% for

unstable conditions. The errors in u
*
are primarily due

to random errors in u9w9; we found the second term in

(7) was typically less than 10% themagnitude of the first

term. Note also that the error in u
*
increases with in-

creasing instability both because u
*
/ 0 in the free

convective limit and because s
u9w9 increases with in-

creasing instability.

Errors in z/L, shown in Fig. 3b, are smallest for stable

stratification, with values ranging from 10% to 20%.

However, errors in z/L can become large with increasing

instability, reaching values of 50% or greater. Note that

the relative error in z/L is proportional to 1/u3* and

therefore increases rapidly with increasingly negative

values of z/L, since u
*
/ 0 in the free convective limit.

The errors in both u
*
and z/L exhibit more scatter for

the unstable cases in Fig. 3. This is due to the large

errors in z/L for unstable conditions, which prevent

a more clear collapse of the data points when plotted

against z/L.

c. Errors in gradients

Errors in ›U/›z were estimated based on (13); errors

in ›Q/›z were estimated based on a similar expression.

The estimated errors in the gradients are displayed in

Fig. 4a for ›U/›z and in Fig. 4b for ›Q/›z. Errors in the

mean velocity gradient, given in Fig. 4a, are typically on

the order of 20% or less for stable stratification. For

unstable stratification, however, errors in ›U/›z are

highly variable for any given stability; errors here can be

negligible or as large as 50% or greater. The large errors

FIG. 2. Dimensionless mean temperature gradient as a function of

MOST stability variable: (a)22# z/L# 1 and (b)20.1# z/L# 0.1.

FIG. 3. Relative random error in (a) the friction velocity and

(b) the MOST stability variable from the filtering method for the

top five heights from theAHATS profile tower as a function of z/L.
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in ›U/›z that can be seen in Fig. 4a occur when the

polynomial fit in ln(z) to the measured mean velocity

profile is poor. However, these large errors are likely an

overestimate of the true random error, since the true

›U/›z is not necessarily a second-order polynomial in

ln(z), even in the absence of any random error. Errors in

the mean temperature gradient, displayed in Fig. 4b, are

typically on the order of 15% or less for stable condi-

tions and 30% or less for unstable conditions. For near-

neutral stratification, relative errors in ›Q/›z become

large because j›Q/›zj/0 as z/L / 0.

d. Errors in fm and fh

Errors in fm(z/L) predicted byMOST are displayed in

Fig. 5. Each data point represents the value of fm(z/L)

calculated for one 27.3-min block of data; error bars,

plotted for one standard deviation, are calculated from

(16) for fm and from (9) for z/L. The empirical functions

of Businger and Dyer (Dyer 1974) and Högström (1988)

are also displayed for comparison. In Figs. 5a,b, fm(z/L)

is plotted for measurements calculated at a height of z5
4.24 m; Figs. 5c,d are for measurements at z 5 8.05 m.

Note that z/L is plotted on a logarithmic scale. For many

of the unstable points in Fig. 5a,c, the vertical error bars

on fm(z/L) are outside of both sets of empirical curves.

Although the horizontal error bars are also large for the

unstable cases, the empirical functions vary slowly with z/

L, so even these large random errors in z/L do not appear

to be large enough to explain the departures in calculated

values of fm(z/L) from the empirical functions. Stable

cases, displayed in Figs. 5b,d, have a similar behavior; the

empirical curves are not contained within the error bars

for many of the data points. From Fig. 5, we make the

qualitative observation that random errors in both fm

and z/L do not appear to be able to explain the scatter in

fm(z/L) relative to the empirical functions; it suggests

that mechanisms in addition to random error are re-

sponsible for the scatter observed in fm(z/L). The dif-

ferences between calculated values of fm(z/L) and the

empirical functions will be analyzed quantitatively

through a x2 test in section 5b.

A plot of fh(z/L) is displayed in Fig. 6. Once again,

Figs. 6a,b are for measurements taken at z5 4.24 m and

Figs. 6c,d formeasurements at z5 8.05 m. Error bars for

z/L are plotted based on (9); error bars forfh are plotted

using (17). The empirical Businger–Dyer and Högström

curves are also displayed in Fig. 6. Note that in general,

calculated values offh(z/L) have a negative bias relative

to both sets of empirical curves displayed in Fig. 6. Much

less scatter is found for unstable fh (Figs. 6a,c) relative

to the empirical functions than what was observed for

fm, but the vertical error bars are also smaller. For the

stable cases (Figs. 6b,d), fh once again has a negative

bias, which is not in as good agreement with either the

Businger–Dyer or the Högström functions as for the

unstable cases. However, calculated values offh do vary

systematically with z/L for stable cases, even though

they are not in agreement with the existing empirical

functions we considered here.

5. Implications for MOST

a. MO extremum solution

One of the implications of the extremum solution of

Wang and Bras (2010) is that the MOST stability pa-

rameter must take on one of the discrete values z/LES 5
20.2, 0.0, 0.1. The conclusions of Wang and Bras (2010)

were disputed by van de Wiel et al. (2011), who argued

that experimental results do not support a favored sta-

bility state in the stable surface layer. In reply to the

comments of van de Wiel et al. (2011), Wang and Bras

(2011) presented a bimodal frequency distribution of

z/L with peaks for one stable and one unstable value of

z/L. If the extremum hypothesis ofWang andBras (2010)

is correct, then any observed deviations from z/L5 z/LES

must be due to measurement error (either systematic or

random) when z/L is calculated from data for conditions

FIG. 4. Relative random error in (a) the gradient of mean wind and

(b) the mean temperature gradient.
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under which MOST holds. The error propagation anal-

ysis presented in section 2 allows us to estimate sz/L and

therefore test the prediction of the extremum solu-

tion that z/L must take on one of the discrete values

z/LES 5 20.2, 0.0, 0.1.

We test this prediction of the ES by performing a x2

test of the null hypothesis that z/L5 z/LES. Here the test

statistic

X25 �
N

 
z/LES 2 z/L

sz/L

!2

(18)

is compared to a x2 distribution with N degrees of

freedom, where z/LES is the value of z/L given by the

extremum solution and z/L and sz/L are the measured

value and standard deviation of z/L from the AHATS

data, respectively. Here the calculated value of z/L was

compared to the closest value of z/LES 5 20.2, 0.0, 0.1.

We obtain the value ofX2(N5 277)5 1975.4, (p, 0.01)

for the test statistic, where p is the probability of falsely

rejecting the null hypothesis. Hence, the x2 test indicates

that we can reject the null hypothesis at a high (99.9%)

confidence level in favor of the alternative, namely, that

the values of z/L predicted by the extremum solution of

Wang and Bras (2010) are not in agreement with ob-

served values from the AHATS dataset.

b. Do fm and fh depend on z/L alone?

According to the classical formulation of MOST,

quantities in the surface layer suitably nondimen-

sionalized by the relevant scales should be quantities of

the dimensionless stability parameter z/L alone. How-

ever, it is well known (Kaimal et al. 1972) that the

spectra of u and y in the unstable regime do not collapse

as a function of z/L; their variances therefore also fail to

follow MOST. Panofsky et al. (1977) and Banta (1985)

provided evidence that the horizontal velocity variances

s2
u and s2

y have a dependence on zi/L. Khanna and

Brasseur (1997) investigated the departure of other

surface layer quantities from MOST scaling in the un-

stable surface layer using LES. They found that fm ;
O(1) for the values of zi/L that they considered, which

indicated that MOST scales were appropriate for non-

dimensionalization; however, systematic variation was

observed for the various zi/L values, suggesting that

fm 5 f(z/L, zi/L). The dimensionless temperature gra-

dientfhwas found to be in good agreement withMOST,

collapsing neatly for different zi/L values. Johansson

FIG. 5. The dimensionless velocity gradient shown as a function of the MO stability variable with error bars for both

terms: (a) z 5 4.24 m, unstable; (b) z 5 4.24 m, stable; (c) z 5 8.05 m, unstable; and (d) z 5 8.05 m, stable.

DECEMBER 2012 SALE SKY AND CHAMECK I 3707

Unauthenticated | Downloaded 08/25/23 02:59 AM UTC



et al. (2001) examined departures from MOST for fm

and fh using ASL data together with estimates of zi
obtained from aircraft data. They also found a system-

atic variation in fm with zi/L in addition to the expected

z/L dependence. In contrast to Khanna and Brasseur

(1997), they found that fh did have an evident de-

pendence on zi/L, although it was weaker than what was

observed for fm. Andreas and Hicks (2002) argued that

this difference between the scatter in fm and fh relative

to the empirical curves is due to spurious correlations,

since u
*
appears in both the independent and dependent

variable in plots of fm or fh against z/L. They assumed

a 10% error in u
*
and showed that it would move a point

away from the z/L 2 fm curve but along the z/L 2 fh

curve, and concluded that the difference in scatter that

Johansson et al. (2001) found between fm and fh could

not be clearly attributed to zi/L dependence. In their

reply, Johansson et al. (2002) pointed out that Andreas

and Hicks (2002) neglected the possibility of random

errors inw9u9 and showed that the combination of errors

in u
*
andw9u9 could have a complex influence on a point

in the z/L 2 fm or z/L 2 fh plane. However, they as-

sumed values of errors in u
*
and w9u9 instead of esti-

mating them directly from the data.

The error propagation analysis presented above al-

lows us to quantify random errors in both the in-

dependent and dependent variables in plots of fm and

fh as a function of z/L. We therefore are able to directly

test whether the observed scatter in calculated values of

fm and fh relative to the empirical functions can be

explained solely by random error. We perform a x2 test

of the null hypothesis that calculated values of the

MOST f functions from AHATS that are in agreement

with the empirical Businger–Dyer curves (Dyer 1974).

We perform the test with regard to variability in z/L and

fm or fh separately; that is, for fm we first test the hy-

pothesis using the test statistic

X2
f
m
5 �

N

 
femp
m 2fmeas

m

sf
m

!2

, (19)

where femp
m is the value of fm(z/L) from the empirical

function, fmeas
m is the measured value from the AHATS

data, and sfm
is the standard deviation of fm calculated

from the AHATS data, estimated using (16). We then

test the hypothesis with regard to variability in z/L, that

is, using the test statistic

FIG. 6. The dimensionless temperature gradient shown as a function of the MO stability variable with error bars for

both terms: (a) z 5 4.24 m, unstable; (b) z 5 4.24 m, stable; (c) z 5 8.05 m, unstable; and (d) z 5 8.05 m, stable.
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X2
z/L 5 �

N

 
z/Lemp2 z/Lmeas

sz/L

!2

, (20)

where z/Lemp is the empirical value of z/L from the

Businger–Dyer function for a given value of fm, z/L
meas

is the value of z/L from the AHATS data, and sz/L is its

standard deviation estimated from (9). We perform

these two hypothesis tests separating the two heights

from the AHATS profile tower for which we plot

fm(z/L) in Fig. 5 and considering stable and unstable

cases separately. We limited the stabilities considered to

22 # z/L # 1, since this is the typical range over which

the empirical MOST functions are defined (e.g., Foken

2006).

Results of the x2 hypothesis test comparing calculated

values of fm to the empirical Businger–Dyer function

(Dyer 1974) are displayed in Table 1. For stable and

unstable stratification at both heights, we obtain p values

of p , 0.01 both when the x2 test is conducted with re-

gard to variability in fm and with regard to variability in

z/L. From the results given in Table 1, we are able to

reject the null hypothesis at a high level (99%) of con-

fidence in favor of the alternative, that is, that fm(z/L)

does not agreewith the empirical Businger–Dyer function.

Note that the scatter in Fig. 5 (in particular, Figs. 5a,b) and

in Fig. 1 are typical of ASL experimental data. Visual

inspection of Fig. 5 without error bars or Fig. 1 alone

would likely lead one to the conclusion that both em-

pirical curves displayed in the figures are a good fit to the

data. The x2 hypothesis tests were also conducted using

the empirical curve of Högström (1988), and an empir-

ical curve that was fit to the AHATS dataset. In both

cases, although the values of the test statistics were

slightly different, the p values remained unchanged,

which give us confidence that our conclusions are robust.

These x2 tests indicate that random errors are not able

to fully account for the variability in fm(z/L) either for

unstable or stable conditions and suggest that fm may

also be a function of some dimensionless parameter that

describes physical processes that are neglected in

MOST, in addition to z/L. Potential candidates for this

additional parameter in the convective boundary layer

include z/z0 and z/zi. The variability in fm for stable

conditions also cannot be fully explained by random

error. This once again may indicate that fm depends on

dimensionless parameters besides z/L alone, or that

other processes in the stable boundary layer contribute

to departures from MOST (e.g., Cheng et al. 2005).

Calculated values of the test statistics for the x2 test

for fh are displayed in Table 2. Here we find very small

(,0.01) p values for the test with regard to variability in

z/L for all cases tested. When the test was conducted

with regard to variability in fh, we again found small

(,0.01) p values for unstable and stable cases at both

heights. Note that the outliers evident in Fig. 6 that

would clearly skew the results (e.g., points where z/L ,
0.2 and fh . 2.5 in Fig. 6b) were excluded from the x2

test. Because the data points in Fig. 6 have a negative

bias relative to the empirical curves of both Högström

(1988) and Businger–Dyer (Dyer 1974), we also per-

formed the x2 tests using an empirical curve that is the

best fit to measured values of fh from AHATS. How-

ever, although the values of the test statistics were

slightly different in this case, we still obtain small

(,0.01) p values for all of the x2 tests.

For fh, as with fm, the results of the x2 tests indicate

that random error does not fully explain the amount of

scatter in plots of fh(z/L), even though there is much

less scatter in unstable fh than for fm. These results

suggest that it may be possible to find additional non-

dimensional parameters describing additional physical

processes that should be accounted for in fh.

c. Possible cause of deviations from MOST

From the error analysis presented above, and the x2

tests that were used to quantify agreement between

calculated values of the dimensionless gradients and the

TABLE 1. Results from x2 test of agreement between fm(z/L)

and the empirical Businger–Dyer function (Dyer 1974). P3 denotes

measurements at z 5 4.24 m from the profile, P6 denotes mea-

surements at z 5 8.05 m, N is the number of degrees of freedom,

X2
fm

is the test statistic using variability in fm, X
2
z/L is the test sta-

tistic using variability in z/L, and pfm
and pz/L are the p values for

each of the two tests respectively, i.e., the probability of falsely

rejecting the null hypothesis.

Sonic N X2
fm

pfm
X2

z/L pz/L

P3, unstable 161 374.3 ,0.01 3.30 3 104 ,0.01

P3, stable 115 255.4 ,0.01 1.36 3 103 ,0.01

P6, unstable 157 296.9 ,0.01 7.69 3 1016 ,0.01

P6, stable 116 161.8 ,0.01 1.01 3 105 ,0.01

TABLE 2. Results from x2 test of agreement betweenfh(z/L) and

the empirical Businger–Dyer function (Dyer 1974). P3 denotes

measurements at z 5 4.24 m from the profile, P6 denotes mea-

surements at z 5 8.05 m, N is the number of degrees of freedom,

X2
fh

is the test statistic using variability infh,X
2
z/L is the test statistic

using variability in z/L, and pfh
and pz/L are the p values for each of

the two tests respectively, i.e., the probability of falsely rejecting

the null hypothesis.

Sonic N X2
fh

pfh
X2

z/L pz/L

P3, unstable 136 2517 ,0.01 6.58 3 105 ,0.01

P3, stable 82 703.2 ,0.01 5.23 3 103 ,0.01

P6, unstable 132 402.7 ,0.01 7.55 3 106 ,0.01

P6, stable 80 279.4 ,0.01 2.95 3 103 ,0.01

DECEMBER 2012 SALE SKY AND CHAMECK I 3709

Unauthenticated | Downloaded 08/25/23 02:59 AM UTC



empirical functions, it is evident that random errors are

not able to explain the deviations from MOST that are

observed. Because the observed scatter in fm and fh

cannot be explained by random errors, these deviations

from MOST must be due to either the violation of as-

sumptions required for MOST (i.e., a level surface,

stationarity, horizontal homogeneity) or the de-

pendence of fm and fh on additional dimensionless

parameters besides z/L that are related to the physical

processes that lead to these deviations from MOST.

Because we excluded nonstationary periods from our

analysis [using the criteria of Vickers andMahrt (1997)],

it is unlikely that we are violating the stationarity as-

sumption. Based on the level topography and short veg-

etation present at the AHATS field site, it is also unlikely

that a sloping surface or horizontal inhomogeneities

contributed to the observed deviations of calculated

values of unstable fm from MOST. We plotted the nor-

malized deviation offm from the empirical function [e.g.,

(femp
m 2fmeas

m )/femp
m , where femp

m is the empirical form

and fmeas
m is the calculated value from AHATS] against

wind angle. We found that the normalized deviation of

fm fromMOST did not have any evident dependence on

wind angle, so the requirements of horizontal homoge-

neity and a level surface do indeed appear to be satisfied.

The same was found to hold true for fh.

The observed deviations of fm and fh from MOST

therefore appear to be due to physical processes that are

not accounted for in MOST. We find that the deviations

of fm from MOST have diurnal variation. Results from

AHATS are displayed in Fig. 7, where in Figs. 7a,b the

normalized deviation of fm from MOST [i.e.,

(femp
m 2fmeas

m )/femp
m , where the Businger–Dyer empiri-

cal curve is used] is plotted as a function of local time

[Pacific daylight time (PDT)] with different symbols

used for the stable and unstable points. The black points

showing the diurnal trend are calculated from 90-min

bin averages, where the error bars indicate the standard

deviation within each bin. Average times of sunrise and

sunset during the course of the AHATS experiment are

shown with vertical lines. We observe that the normal-

ized deviation of fm from MOST for the stable points is

distributed around zero. However, the deviation from

MOST varies systematically with time of day for the

unstable points. In general, the deviation of calculated

values of fm from MOST is negative (femp
m ,fmeas

m ) in

the first several hours in the morning after sunrise; it

becomes positive (femp
m .fmeas

m ) in the early afternoon

and then decreases to around zero before sunset. The

deviations fromMOST are larger at z5 8.05 m (Fig. 7b)

than for z 5 4.24 m (Fig. 7a). The deviations of calcu-

lated values from the empirical functions for measure-

ments at z 5 8.05 m may be as large as 50% during the

daytime for the bin-averaged values (deviations for in-

dividual data points may be 100% or greater). Although

the error bars for the bin-averaged values may be large

for some of the unstable points, a clear diurnal trend is

still evident, especially for z 5 8.05 m as displayed in

Fig. 7b.

In Fig. 7c, the bin-averaged deviations of fm from

empirical curves are plotted for the top five heights from

the AHATS profile tower. The bin-averaged devia-

tions of calculated values of fm are found to vary di-

urnally, and these deviations increase systematically

with height. In Fig. 7d, a similar plot is presented for the

bin-averaged deviations offh from the empirical curves.

Here the deviations of fh from MOST show no clear

diurnal variation as with fm and very little dependence

on measurement height. Recall that in Figs. 2, 6, the

calculated values of fh had a systematic negative bias

relative to the empirical curves; this fact is also evident

in Fig. 7d. The lack of clear diurnal variation in the de-

viations of fh from MOST suggest that, although ran-

dom error cannot fully explain the deviations of fh from

theory, fh does not appear to depend on some di-

mensionless quantity that varies diurnally. However, fh

does have a clear positive deviation near sunset, which

suggests that processes related to the collapse of the

convective boundary layer may lead to large deviations

of fh from theory.

From Fig. 7, it is evident that the deviations of fm

from MOST under unstable stratification depend sys-

tematically on some quantity that varies diurnally. Po-

tential candidates for this additional parameter include

water vapor mixing ratio, mean temperature, the surface

heat flux, the presence of clouds, and the boundary layer

depth. Another possible candidate is z0, which may be-

come an important length scale under free convective

conditions (u
*
/ 0). However, because the deviations

of fm from MOST increase with height as shown in

Fig. 7c, we believe it is unlikely that the deviations in fm

from theory that we observe depend on z/z0. While one

plausible candidate that is consistent with previous

studies (Khanna and Brasseur 1997; Johansson et al.

2001) is zi, we cannot conclusively determine what the

missing scale is from our present data; we hope to in-

vestigate it in a future study.

6. Discussion

The large random errors that are found for unstable z/L

(displayed in Fig. 3a) are significant for any study where

MOST scaling is used and the dependent dimensionless

variable is plotted as a function of z/L. For example, one

can see that for z/L 5 21, the relative random error

(defined as �z/L 5 sz/L/jz/Lj) in z/L is 40%; thus, if one
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calculates z/L 5 21 based on time-averaged fluxes,

there is a 68% probability that the true ensemble mean

value of z/L lies between z/L521.4 and20.6. Thus, for

unstable stratification, the true value of z/L is difficult to

determine accurately for typical averaging periods in the

ASL (recall we are calculating time averages over blocks

of T 5 27.3 min in length). However, note that for un-

stable stratification, the random errors in z/L do not

affect agreement with the empirical functions greatly

for fm and fh, because the empirical functions vary

slowly with z/L for unstable stratification (see Figs. 5a,c,

6a,c). Random errors in z/L are less of an issue for stable

stratification, where they are typically on the order of

10%.

These large random errors found in z/L for unstable

conditions may also explain in part why the empirical

curves for the spectra of u, y, w, and u proposed by

Kaimal et al. (1972) fail to collapse for unstable condi-

tions. For example, the nondimensional w spectrum

collapses as a function of z/L for 20.3 # z/L # 2.0, but

for z/L , 20.3 the w spectrum does not collapse but

rather is ordered randomly within a shaded region for

any given period of data. It is possible that the w spec-

trum does have systematic behavior with z/L for un-

stable conditions, but this fact is obscured by the random

errors in z/L, which make the true ensemble mean value

of z/L difficult to determine accurately. This also could

be the cause of the shaded region in the w spectrum.

However, the spectra may also fail to collapse due to

other factors, such as the presence ofmesoscalemotions,

or the potential influence of zi. Random errors in z/L

may also contribute to the shaded regions in the u and y

spectra, although this conclusion should be viewed with

some caution because it is known that s2
u and s2

y (and

therefore the u and y spectra) scale with zi (Panofsky

et al. 1977; Banta 1985). The shaded regions for the u

and y spectra therefore may be due to a combination of

random errors in z/L, scaling with zi, and other factors.

FIG. 7. Diurnal variation of normalized deviations offm andfh from the empirical Businger–Dyer functions (Dyer

1974). (a),(b) Gray points indicate the normalized deviation from the empirical fm function for each 27.3-min block

of data; black points are the bin-averaged deviations. Vertical dashed lines indicate the average times of sunrise and

sunset during the course of the AHATS experiment. (a) fm, z5 4.24 m; (b) fm, z5 8.05 m. (c) Bin-averaged fm for

top five sonics from AHATS profile tower. (d) Bin-averaged fh. Note that the scale on the ordinate is different for

(c),(d) than for (a),(b).
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Our results suggest that the true value offm (based on

time averages) is a function of both z/L and some ad-

ditional parameter a, for example, ftrue
m 5ftrue

m (z/L,a).

The relationship between this true value of fm and the

calculated value of fm from experimental data is

fcalc
m (z/L)5

ð
ftrue
m (z/L,a)P(a) da , (21)

where P(a) is the probability density function of the

parameter a for a given dataset. Thus, if one has a biased

sample of a, then this could lead to a bias in the calcu-

lated value of fm(z/L). This could explain the differ-

ences between empirical curves that have been fit to

calculated values of fm(z/L) from different datasets.

This may also explain why the scatter infm andfh from

the Kansas experiment (Businger et al. 1971) and from

Högström (1974) was found to be smaller than in many

other studies. For both the Kansas experiment and

Högström (1974), data collection was limited to sum-

mer afternoon periods due to logistical constraints

(Johansson et al. 2002).

A number of articles (e.g., Andreas and Hicks 2002;

Klipp and Mahrt 2004; Baas et al. 2006) have discussed

the role of self-correlation in the relative amounts of

scatter in plots of fm(z/L) and fh(z/L). Self-correlation

occurs when there is error in a common variable that is

used to normalize both the independent and dependent

variable, that is, u
*
in plots of fm(z/L) or fh(z/L) and

w9u9 in plots of fh(z/L). Andreas and Hicks (2002)

showed that for unstable stratification, an error in u
*

would move a point in the fm 2 z/L plane along em-

pirical curves (because fm } 1/u
*
), and would move

a point in the fh 2 z/L plane away from empirical

curves (because fh } u
*
). Baas et al. (2006) examined

the more general case of combinations of errors in

u
*
and w9u9, and concluded that, in general, errors

in u
*
and w9u9would lead to inherently more scatter in

unstable fm and stable fh and less scatter in unstable

fh and stable fm.

The results of Baas et al. (2006) have several im-

plications for the present article. First, because self-

correlation decreases the scatter in unstablefh and stable

fm, and because these cases still do not pass our x2 tests,

we believe that our conclusions for unstablefh and stable

fm are robust. If the effects of self-correlation were re-

moved, then the observed scatter would increase, and

these cases still would not pass the x2 tests. For unstable

fm, it is possible that self-correlation is one factor

leading to the large amount of scatter that is observed.

However, we still believe that random error cannot fully

explain the scatter for unstable fm because we observe

a clear diurnal trend in deviations of fm from theory,

which suggests that fm depends on some physical

quantity that varies diurnally, which is not accounted for

in MOST (see Fig. 7c). For stable fh, self-correlation

may be causing additional scatter, and as a result, it is

possible that the x2 tests for stablefh are producing false

negatives. Note, however, that it still may be possible to

determine whether scatter in stable fh can be explained

by random errors through the use of a multivariate sta-

tistical hypothesis test.

Second, note that the conclusions of Baas et al.

(2006) hold regardless of the cause of the perturbations

in the common quantities that appear in both the in-

dependent and the dependent variable (i.e., u
*
and

w9u9). Thus, if physical processes in the ABL were to

lead to different values of u
*
or w9u9 (for fixed gradi-

ents) than what would be predicted by MOST, the

scatter caused by these physical processes would be

easier to detect in unstable fm and stable fh, in which

they would lead to more scatter, than in stable fm and

unstable fh, in which much of this scatter would be

suppressed by self-correlation.

7. Conclusions

Below is a summary of the main conclusions of this

article.

d Flux–gradient relationships from AHATS dataset

were found to have many similarities to results from

the Kansas experiment (Businger et al. 1971). We

obtained a value of k 5 0.355 from fits to the near-

neutral velocity profiles. Our results suggest that the

turbulent Prandtl number (Prt 5 fh/fm) is less than

one for near-neutral conditions. Furthermore, the

best-fit curves to fm and fh from our data were found

to be close to the empirical fits of Businger et al. (1971)

and Businger–Dyer (Dyer 1974).
d Random errors in u

*
, z/L, ›U/›z, ›Q/›z, fm, and fh

were estimated by propagating errors in the turbulent

fluxes.
d For the unstable surface layer, random errors in u

*
were found to be on the order of 10% and errors in z/L

were found to be on the order of 40% or greater.
d The x2 tests show that random errors are not able to

explain scatter in calculated values offm orfh relative

to empirical curves, which suggests that fm and fh

depend on nondimensional parameters besides z/L

that describe physical processes that are neglected in

Monin–Obukhov similarity theory.
d It is observed that the normalized deviations of

calculated values of fm from theory have diurnal

variation and increase in magnitude with height;

this suggests that fm depends on some quantity that
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varies diurnally. Although one potential candidate

for this additional dimensionless parameter is z/zi,

which would be consistent with previous studies

(e.g., Khanna and Brasseur 1997; Johansson et al.

2001), we cannot conclusively determine from our

present dataset what this additional dimensionless

parameter is.
d In contrast to fm, the deviations of fh from theory are

not found to have a significant diurnal trend and have

only a weak height dependence. The deviations of fh

become large near sunset, which suggests that pro-

cesses related to the collapse of the convective bound-

ary layer may lead to deviations from MOST.
d Because random errors in z/L are large for unstable

stratification (e.g., on the order of 50% for z/L 5
21), the true value of z/L is difficult to determine

accurately for unstable conditions. This may be one

explanation for the existence of the shaded regions

in the empirical curves for the w and u spectra

proposed by Kaimal et al. (1972), where the spectra

fail to collapse to a single curve for unstable

conditions.

The traditional view in micrometeorology is that

a large amount of scatter in measurements is unavoid-

able because of insufficient averaging times, which in-

troduce random errors into the measurements. Scatter

in plots offm(z/L), for example, is typically attributed to

random error. The AHATS experiment was conducted

at a field site with predominantly level and horizontally

homogeneous terrain, making it a good location to test

MOST. The scatter that we observed in plots of fm(z/L)

relative to the empirical curves was typical of many

previous ASL experiments. If no error bars were plotted

for z/L and fm, then one would likely conclude that the

data were in good agreement with the empirical curves

(see Fig. 5). However, our results indicate that the

observed scatter in both fm and fh cannot be explained

solely due to random error; the rest must be due to

other factors, such as the dependence of fm and fh on

additional nondimensional parameters that describe

physical processes that are neglected in MOST. Per-

haps future studies of the atmospheric surface layer

should not so easily attribute scatter in measurements

to random errors, but rather seek to differentiate be-

tween these errors and other physical processes that

lead to departures from Monin–Obukhov similarity

theory.
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APPENDIX

Errors in Fitted Parameters

The errors in the fitted parameters for the polynomial

fit in (10) to the measured velocity and temperature

profiles can be estimated by standard statistical methods

(e.g., Press et al. 1986, 665–668). The uncertainties in the

fitted parameters A and B are given by

s2
A 5

s2

D

����������
N �

N

k51

[ln(zk)]
2

�
N

k51

[ln(zk)]
2 �

N

k51

[ln(zk)]
4

����������
(A1)

s2
B5

s2

D

����������
N �

N

k51

[ln(zk)]

�
N

k51

[ln(zk)] �
N

k51

[ln(zk)]
2

����������
, (A2)

where j�j denotes the matrix determinant. Similarly, the

covariance of A and B is given by

Cov(A,B)5
s2

D

����������
�
N

k51

[ln(zk)] N

�
N

k51

[ln(zk)]
3 �

N

k51

[ln(zk)]
2

����������
, (A3)
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D5

���������������
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N
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�
N
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[ln(zk)] �
N

k51

[ln(zk)]
2 �

N

k51
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3

�
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[ln(zk)]
2 �

N

k51

[ln(zk)]
3 �

N

k51

[ln(zk)]
4

���������������
,

(A4)

N is the number of points in the profile (N 5 6 for the

AHATS profile tower), and s2 is the mean square error

for the fit; that is,

s25
1

N2 3
�
N

k51

fU(zk)2U02A ln(zk)2B[ln(zk)]
2g2

(A5)

for the velocity gradient.
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