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Since its inception in the 1940s, Monin-Obukhov similarity theory (MOST), which relates turbulent
fluxes to mean vertical gradients in the lower atmosphere, has become ubiquitous for predicting surface
fluxes of quantities transported by the flow in numerical weather, climate, and hydrological forecasting
models. Despite its widespread use, MOST does not account for the effects of large coherent structures in
the flow, which modulate the amplitude of turbulent fluctuations, and are responsible for a large fraction of
the total transport. Herein, we demonstrate that the incorporation of the large-scale streamwise velocity
ulðx; tÞ ¼ Gδ⋆uðx; tÞ, where Gδ is a low-pass filtering kernel, into dimensional analysis leads to an
additional dimensionless parameter αðx; tÞ, which captures the modulating influence of these structures on
flux-gradient relationships. Atmospheric observations and large-eddy simulations are used to demonstrate
that observed deviations from MOST can indeed be explained by this new parameter; coherent structures
induce an alternating loading and unloading of the mean velocity gradient near the surface.
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Introduction.—For over seven decades, Monin-Obukhov
similarity theory (MOST), which relates turbulent fluxes to
mean vertical gradients, has served as a unifying theory for
studies of the atmospheric surface layer (ASL) [1,2]. In
MOST, which extends the logarithmic law of the wall for
wall-bounded turbulent shear flows [3] to flows with
thermal stratification, one assumes that four governing
scales are relevant for turbulence statistics in the ASL: wall-
normal distance z, buoyancy parameter g=Θ0 (where g is
gravity and Θ0 is a reference potential temperature),
kinematic surface shear stress −τ0=ρ ¼ u2τ ¼ −u0w0, and
kinematic surface temperature flux H0=ρcp ¼ w0θ0.
Dimensional analysis dictates Π1 ¼ ϕðΠ2Þ, where Π1 is
the dependent variable of interest (e.g., vertical gradient,
variance, or spectral density) normalized by the MO scales,
and Π2 ¼ ζ ¼ z=L is the Monin-Obukhov stability varia-
ble, where L ¼ −u3τΘ0=κgw0θ0 is the Obukhov length and κ
is the von Kármán constant. MO similarity predicts

κz
uτ

dUðzÞ
dz

¼ ϕmðζÞ ð1Þ

for the dimensionless mean velocity gradient whereUðzÞ ¼
huðx; tÞi is the ensemble-mean streamwise velocity for a

horizontally homogeneous ASL. The form of the MOST
functions is not predicted by dimensional analysis; thus
ϕmðζÞ must be determined empirically.
Despite its widespread use [4,5], deviations from MOST

have been widely documented by many investigators
[6–10], undermining the prognostic capabilities of MOST
for turbulent flux closure. Notably, Salesky et al. [9]
demonstrated that deviations of calculated values of
ϕmðζÞ fromMOSTempirical curves could not be explained
by so-called random errors, i.e., insufficient convergence of
the time average to the true ensemble mean [11], indicating
that additional physical processes are responsible for
MOST deviations. Correct selection of additional gov-
erning scales in the dimensional analysis that account for
these processes would lead to additional independent
dimensionless groups, i.e., Π1 ¼ ϕmðΠ2;Π3;…;ΠnÞ,
which would, by definition, eliminate these deviations
from MOST and enable collapse of calculated values of
ϕm to a set of universal curves.
The originators of MOST selected the distance from

the ground, z, as the normalizing lengthscale; this choice
was presumably informed by contemporaneous insights
from A. A. Townsend [12], who established the attached
eddy hypothesis, where the wall itself regulates the spatial
extent of turbulence. However, laboratory experiments and
numerical simulations over the last several decades at high
Reynolds numbers have revealed the existence of so-called
large-scale motions (LSMs) [13–18], and very-large-scale
motions (VLSMs) [19–23], coherent regions of high- and
low-momentum fluid that respectively extend OðδÞ and
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Oð10δÞ in streamwise extent (where δ is the boundary layer
depth). LSMs scale in extent with z, but undergo a
streamwise coalescence to form VLSMs [22]. In addition
to being responsible for a large fraction of the momentum
and kinetic energy transport [20,21,24,25], LSMs, and
VLSMs also modulate the amplitude (AM) and frequency
(FM) of small-scale turbulent fluxes [26–31]; this modu-
lation also occurs in thermally stratified flows, such as the
ASL [31]. However, a similarity framework that captures
the influence of LSMs on flux-gradient relationships has
not been developed to date. We focus on unstable (ζ < 0)
and neutral (ζ ¼ 0) stratification in this Letter, given the
importance of the convective atmospheric boundary layer
(ABL) for evapotranspiration, convective initiation, etc.
Modulated near-wall gradient.—In order to capture

the modulating influence of LSMs and VLSMs on flux-
gradient relationships, we revisit the dimensional analysis
of Monin and Obukhov, but incorporate a velocity
scale that captures the influence of large coherent struc-
tures present in the flow. Specifically, we include the
large-scale fluctuating velocity u0lðx; tÞ ¼ GT ⋆u0ðx; tÞ ¼
GT ⋆½uðx; tÞ −UðzÞ�, where GT is a low-pass filter
kernel at scale T (discussion to follow). Large-scale
content embodied within u0lðx; tÞ modulates surface fluxes
[27,31], with visualization of power spectral density over
elevation and wavelength (spectrogram) confirming that the
energetic content associated with VLSMs resides at a
distinct “outer peak.” Figure 1(a), derived from the neutral

large-eddy simulation (LES) case outlined within Ref. [32],
shows a spectrogram of streamwise velocity fluctuations.
The flow depth (dashed line) is the demarcating scale
between attached eddies and LSMs, which is consistent
with the notion of wall-attached eddies being regulated in
extent by z [12]. Figure 1(b) is the standard deviation of the
large-scale signature, derived via Parseval’s theorem (dis-
cussion to follow); Fig. 1(b) shows correlation in magni-
tude with the spectrogram, marking the signature of LSMs
within the lowest 20% of the domain. Since LSMs are
dynamically relevant, additional generality is needed.
Herein, we argue that a “large-scale” velocity, u0l, can be
readily incorporated, which guides reposing of the problem
in dimensional form with five variables, uτ, w0θ0, g=Θ0, z,
and u0l, yielding Π1 ¼ ϕm;lðΠ2;Π3Þ where Π1 is again the
dimensionless dependent variable of interest (mean vertical
gradient), Π2 ¼ ζ, and

Π3 ¼ αðx; tÞ ¼ u0lðx; tÞ
uτ

¼ ulðx; tÞ −UðzÞ
uτ

ð2Þ

is a new dimensionless parameter that accounts for the
loading and unloading of surface layer flux-gradient
relations imposed by the passage of LSMs and VLSM
aloft. Thus, dimensional analysis predicts:

κz
uτ

∂ulðx; tÞ
∂z ¼ ϕm;l½ζ; αðx; tÞ� ð3Þ

(a)
(c) (d)

(b)

(e)
(f)

(g) (h)

FIG. 1. Statistics from LES of the neutrally stratified ABL and AHATS data [9,47]. (a) Premultiplied spectrogram of streamwise
velocity, πλ−1x u−2τ Ehu0ðx;tÞ2itðλx; zÞ, plotted versus dimensionless wall-normal distance (z=δ) and streamwise wavelength (λx=δ);
(b) vertical profile of the similarity parameter hαðzÞixyt, recovered from integrating the low-wave-number range of the spectrum
[Eq. (11)]. (c),(d) Time-variable nondimensional velocity gradient attributes. Abscissa and ordinate in (c) are αðx; tÞ [Eq. (2)] and
nondimensional velocity gradient variability, respectively [Eq. (4)]; data points shown based on AHATS tower measurement heights
denoted on legend, while linear fit represents the right-hand side of Eq. (4). (d) Results of generalized empirical curves [solid curves;
Eq. (6)], generalized O’KEYPS model [dashed curves; Eq. (7)], and data points from AHATS. (e) Time series of large-scale velocity
gradient (red) and nondimensional parameter, αðx; tÞ (black) from AHATS data; gray panels denote elevated gradient due to αðx; tÞ > 0,
where the correlation coefficient is ρ ¼ 0.71. (f) Vertical profile of large-scale gradient and αðx; tÞ correlation from the AHATS data; red
markers denote mean value and gray bands denote standard deviation. (g),(h) Idealized large-scale velocity and velocity gradient with
respect to ensemble-mean value, respectively, where the influence of unloading and loading is shown.
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for the dimensionless large-scale mean velocity gradient.
While one could formulate the new similarity framework
in terms of the large-scale (not fluctuating) velocity
ulðx; tÞ ¼ GT ⋆uðx; tÞ, u0l is a more convenient choice since
it allows us to define αðx; tÞ ¼ 0 as a case free from LSM
modulation, i.e., when ulðx; tÞ ¼ UðzÞ, αðx; tÞ ¼ 0, and
ϕm;lðζ; 0Þ ¼ ϕmðζÞ, allowing recovery of classical MOST.
If the new dimensional analysis is correct, the deviations of
ϕm;lðζ; αÞ from ϕmðζÞ predicted by MOST should be a
function of α [9], i.e.,

ϕm;l½ζ; αðx; tÞ� − ϕmðζÞ
ϕmðζÞ

¼ f½αðx; tÞ�: ð4Þ

In order to comprehensively demonstrate the influence
of LSMs in modulation of near-wall fluxes, we have used
data from the advection horizontal array turbulence study
(AHATS) field campaign [32]. The time-series measure-
ments of streamwise velocity are low-pass filtered at
timescale, T , where T UðzÞ=δ ¼ 1, which is equivalent
(in frequency) to demarcation at λx=δ ¼ 1 [e.g., Fig. 1(a)].
We assumed a boundary layer depth of δ ¼ 1000 m; results
were not significantly sensitive to choice of δ [32]. This
yields a time-dependent flow field wherein only the large-
scale motions (LSM) are preserved: ulðx; tÞ ¼ GT ⋆uðx; tÞ.
Figure 1(e) shows the evolution of ulðx; tÞ and α, where
quantitative values are denoted on the left and right
ordinates, respectively. Figure 1(f) shows the ensemble
mean of the correlation coefficients between ulðx; tÞ and
αðx; tÞ (red markers and gray bands denote average and
standard deviation, respectively). This correlation is physi-
cally interpreted as a systematic loading and unloading, or
modulation, via the passage of LSMs aloft; a graphical
illustration in terms of the streamwise velocity and the
accompanying gradient is presented in Figs. 1(g) and 1(h),
respectively.
Figure 1(c) shows data points from the AHATS cam-

paign, revealing a pronounced linear scaling between the
left- and right-hand sides of Eq. (4), enabling:

f½αðx; tÞ� ¼ C0 þ C1αðx; tÞ and
ϕm;l½ζ; αðx; tÞ� ¼ ϕmðζÞf1þ f½αðx; tÞ�g. ð5Þ

In the absence of large-scale modulation, αðx; tÞ ¼ 0,
and ϕm;l½ζ; αðx; tÞ ¼ 0� → ϕmðζÞ, enforcing the condition
C0 ¼ 0. An empirical fit of Eq. (5) to the AHATS data
yields C1 ¼ 0.10. This result demonstrates that αðx; tÞ
captures large-scale modulation [27,30], which also occurs
for unstable stratification [31]; a recent article has revealed
an ostensible LSM structural invariance for unstable con-
ditions [48], indicating that the underlying conceptual
approach is valid across ζ. For cases where loading or
unloading is negligible [small jαðx; tÞj], the vertical
gradient tends towards the classical MOSTempirical curves
[1,49,50].

Figure 1(d) presents results from the AHATS data of
generalized velocity gradient ϕm;l [Eq. (5)] against stability
parameter ζ (abscissa), grouped based upon the value of
αðx; tÞ. The data points are color coded, for perspective,
and there is a distinct positive and negative vertical shift
for αðx; tÞ > 0 and αðx; tÞ < 0, respectively, consistent
with the aforementioned notion of additional loading and
unloading of the velocity gradient with the passage of
LSMs aloft. The functional form of the empirical ϕm;lðζ; αÞ
curves can be established by noting that Eq. (5) implies
ϕm;lðζ; αÞ ¼ ϕmðζÞ½1þ C1αðx; tÞ�. Using the Businger-
Dyer [49] empirical curves we therefore have

ϕm;lðζ; αÞ ¼ ð1 − 16ζÞ−1=4½1þ C1α�: ð6Þ

In addition, the O’KEYPS closure—an interpolation for-
mula that captures the observed scaling of ϕm under stable,
neutral, and unstable conditions—can be generalized for
large-scale modulation [32], yielding

ϕ4
m;lðζ; αÞ − γζϕ3

m;lðζ; αÞ − ð1þ C1αÞ4 ¼ 0: ð7Þ

Empirical curves corresponding to Eqs. (6) and (7) are
overlaid on Fig. 1(d). In this approach, αðx; tÞ is varied
a priori, but the results agree closely with the field data.
This result demonstrates that generalized application of
MOST is tractable, with modulation by LSMs central in
explaining the data spread that might otherwise be attrib-
uted to scatter.
Prognostic closure.—In this section, we present a

prognostic closure for the large-scale velocity profile as
a function of the MOST stability parameter ζ and the modu-
lation parameter αðx; tÞ. Figure 2(a) shows a time-height
contour [51] of streamwise velocity from neutrally strati-
fied LES, with thick black lines superimposed to highlight
LSM inclination. Figure 3(a) shows vertical profiles of
conditionally sampled velocity, hũ=uτjαðx; tÞixyt (where
h� � �ia denotes averaging over dimension a), with the
sampling thresholds indicated on the panel. The signature
of loading and unloading of the surface-layer gradient
[Figs. 1(g) and 1(h)] is abundantly clear in Fig. 3(a). It is
appropriate to pose these results in the context of contem-
porary findings on uniform momentum zones (UMZ) [52],
which encompass both high- and low-momentum regions.
These structures are spatially bound by interfacial layers
of elevated gradients [53]. We have used the fuzzy
clustering method [54] to identify UMZs in the LES data
[light black lines in Fig. 2(a)]. At three arbitrary times the
vertical profiles of streamwise velocity are shown on
Fig. 2(b), which confirm the “staircaselike” velocity dis-
tribution that is the signature of UMZs (for example,
tuτδ−1 ¼ 0.5 and z=δ ≈ 0.18 and 0.45). Non-MOST values
of the near-wall gradient can be explained via excursions in
the large-scale velocity—consistent with related findings
on the dynamics of UMZs.
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Given the reported linear scaling between αðx; tÞ
[Eq. (2)] and the nondimensional gradient [Eq. (5)], one
may develop a prognostic model for a priori prediction of
the large-scale content, ulðz; tÞ. By equating Eqs. (3) and
(5) we have the following:

κz
uτ

∂ulðx; tÞ
∂z ¼ ϕmðζÞ½C0 þ C1αðx; tÞ�: ð8Þ

For a horizontally homogeneous atmospheric boundary
layer under neutral or unstable stratification (ζ ≤ 0), a
series of modest algebraic developments yields this:

∂ulðz; tÞ
∂z ¼ uτ

κz
ϕmðζÞ½1þ C1αðz; tÞ�: ð9Þ

Equation (9) can be integrated, yielding [32]

ulðz; tÞ ¼
uτ
κ

�
ln

z
z0

−ΨmðζÞ
�
þ C1uτ

κ

Z
z−1ϕmðζÞαðz; tÞdz:

ð10Þ

The first term on the right hand side of (10) is the
“base state” given by the classical MO similarity where
z0 is an aerodynamic roughness length, and ΨmðζÞ ¼R ζ
z0=L

½1 − ϕmðξÞ�dξ is the integrated stability correction
function. The second term on the rhs of Eq. (10) encap-
sulates the modulating influence of LSMs. In order to
proceed, the wall-normal and temporal dependence of
αðz; tÞ must be specified. Because the signature of LSMs
appear as a distinct “outer peak” in Ehu0ðx;tÞ2itðλx; zÞ in the
range, 100 ≲ λx=δ≲ Lx=δ and 10−1 ≲ z=δ≲ 3 × 10−1,
where Lx is the integral length associated with VLSMs
[22], Parseval’s theorem can be used to recover the general
form for αðzÞ:

½α̂ðzÞ�2 ¼ u−2τ

Z
Lx

δ
Ehu0ðx;tÞ2itðλx; zÞdλx: ð11Þ

Figure 1(a) shows a spectrogram of Ehu0ðx;tÞ2itðλx; zÞ, for
the neutral LES reviewed in Ref. [32]. For reference, a
dashed black line at λx=δ ¼ 10° has been superimposed on
Fig. 1(a), highlighting the separation wavelength between
attached eddies and VLSMs; as per Eq. (11), jαðz; tÞj is
recovered via Parseval’s theorem, which is shown on
Figure 1(b). (Profiles of α for other δ=L values cases
can be found in [32]). The panel shows that jαðz; tÞj is
largest at z=δ ≈ 10−1, which coincides with the center of the
outer peak.
Informed by these insights from the spectrograms, we

introduce the ansatz

αðz; t; δ=LÞ ¼ SðωtÞ
X
n

anðδ=LÞgnðz=δÞ; ð12Þ

where α is projected onto polynomial basis functions
gnðz=δÞ ¼ ðz=δÞn with coefficients anðδ=LÞ. Time depend-
ence is introduced through a sawtooth function SðωtÞ,
which is helpful for capturing the loading and unloading
of the near-wall gradient due to the passage of large-
scale motions aloft [30,51,55]. Here ω ¼ U0=λ

op
x is the

(a) (b) (c) (d)

FIG. 2. Contours of dimensionless streamwise velocity (ũ=uτ) as a function of dimensionless time tuτδ−1 and height z=δ from
(a) neutrally stratified LES and (c) PDE solution. Heavy black lines indicate inclination angles, θ ¼ tan−1½−U0u−1τ tanðγÞ�, where
γ ¼ 17° is the spatial inclination angle for LSMs and U0 is the advection velocity; thin black lines in (a) denote interfaces between
uniform momentum zones (UMZ). A dimensionless frequency of ω̂ ¼ ðU0δÞðuτλxÞ−1 is used when computing the PDE solution in (c),
with an LSM wavelength of λx ¼ πδ. Vertical lines on (a) and (c) denote sampling times, with the corresponding profiles superimposed
on (b) and (d), respectively; the LES profiles reveal the “staircaselike” pattern associated with UMZs [52,53].

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 3. (a)–(d) Conditionally sampled mean velocity profiles,
i.e., hũ=uτjαðx; tÞixyt from neutrally stratified LES. (e)–(h)
Velocity profiles U=uτ from PDE solution for a range of S
values. (a),(e) −δ=L ¼ 0; (b),(f) −δ=L ¼ 3.16; (c),(g)
−δ=L ¼ 17.7; (d),(h) −δ=L ¼ 80.3
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characteristic frequency of LSMs, whereU0 is an advective
velocity scale, and λopx is the streamwise wavelength of
LSMs corresponding to the outer peak in spectrograms
[Fig. 1(a)], which varies with δ=L [31]. While a projection
onto sixth-order polynomials yields αðzÞ profiles in good
agreement with those calculated from LES, we find that
including only the a0 term (i.e., constant α with height)
yields velocity profiles in good agreement with the full
sixth-order polynomial [32]. Upon substituting (12) into
(10) and carrying out the integration, we arrive at

ulðz; tÞ ¼
uτ
κ

�
ln

z
z0

−ΨmðζÞ
�
½1þ C1a0ðδ=LÞSðωtÞ�; ð13Þ

which holds for ζ ≤ 0; for neutral conditions (ζ ¼ 0), (13)
reduces to

ulðz; tÞ ¼
uτ
κ
ln

z
z0
½1þ C1a0ð0ÞSðωtÞ�: ð14Þ

Figure 2(c) shows time-height contour predictions from
Eq. (13). The contours lack the extensive range of dynami-
cal scales evident in Fig. 2(a), but possess the salient
features of the passage of LSMs. Given the lack of physical
scales present, UMZs and associated interfacial shear layers
are not predicted by the PDE solution, which is apparent
from consultation of Figs. 2(c) and 2(d); Fig. 2(d) does,
however, provide clear illustration of the aforementioned
surface-layer loading and unloading, which is responsible
for deviation from ensemble-mean MOST predictions
[Figs. 1(g) and 1(h)]. LES flow fields were conditionally
sampled based on the value of αðx; tÞ for simulations
spanning several values of −δ=L, with results displayed
in Figs. 3(a)–3(d). Modulated velocity profiles from the
prognostic model [Eq. (13)] are displayed in Figs. 3(e)–3(h)
for several values of the sawtooth function S. The profiles
from the prognostic model demonstrate good agreement
with LES results, and indicate the existence of a family of
velocity profiles (for a given stability ζ) increasing with
αðx; tÞ. Thus, it is clear that the modeling approach,
generalized for LSMs, captures realistic features of the
resultant velocity profile.
Conclusion.—In an ensemble-mean sense, Monin-

Obukhov similarity theory predicts nondimensionalized
vertical gradients of quantities of interest (momentum,
heat, water vapor, etc.). Numerical weather prediction
requires a closure for wall fluxes, which has seen
MOST used in a time-local sense, precluding agreement
between the instantaneous and ensemble-mean gradients;
this is commonly attributed to “scatter,” when inclusion of
salient independent parameters would yield additional
dimensionless groups that collapse the data. One candidate
parameter is a large-scale velocity associated with LSMs
meandering within the flow. Support for this choice is
derived from findings over the last decade that LSMs
distinctly modulate the amplitude and frequency of inner-

layer processes [27,28,30,31]. Data from a comprehensive
field campaign [32] were used to demonstrate efficacy of
large-scale velocity as an additional independent parameter,
and to develop a prognostic model for the effect of large-
scale modulation upon the near-surface gradient. A gen-
eralized model for the near-wall gradient and a prognostic
model for the large-scale velocity streamwise velocity were
found to agree closely with field data and results from
large-eddy simulation.

This work was supported by the National Science
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