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Data assimilation

Data assimilation (DA) is the process estimating the true state of a system
given observations of the system and a background estimate.

Observations are not evenly spaced:

Ô MUCH greater number of observations at surface than aloft.
Ô Fewer observations over oceans.
Ô Observations, themselves, have error (e.g. instrument error).

In order to predict the future, the current state MUST be known.

Ô Future state = Current state + change in current state

Idea is that better initial conditions (ICs)⇒ better forecast:

Ô Forecast error = Model error + IC error

DA helps constrain the model to better fit observations.

DA is a statistical combination of observations and short-term model
forecasts.



Data assimilation

Observations come from a variety
of places, including surface
stations, satellites, radiosondes,
commercial aircraft, buoys, radar,
mesonet sites, ships, and more.

Observations have varying
degrees of instrument error, as
well as processing error (e.g.
satellite and radar data).

Once observations are obtained,
they are checked through a
quality control process. “Bad”
observations are filtered out
statistically by comparing the
observations value with the
model’s first guess, and using the
known error characteristics of that
particular observation.



Data assimilation

The data assimilation problem can be thought of as determining the
probability density function (PDF) of the current state given all current and
past observations:
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X t
t : Current state

Yt : Current and past observations
Yt−1 : Past observations

The background, or prior, is a first guess of the analysis. Usually, it is
6-hour model forecasts.
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Data assimilation
Notation:

xa : Model analysis
xb : Model background (short-term forecasts)
xo : Observations
x t : “True state”
σ2

b : Background error variance
σ2

o : Observation error variance

A model analysis is made using Linear analysis, or a linear combination of
the observations and the model’s first guess of the atmospheric state:

xa = a1xb + a2xo. (2)

If we assume that there is no mean bias in the observations or background
(but that we know the variance of the background and observational error),
then the weights a1 and a2 can be chosen in a way that minimizes the mean
squared error of xa:
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Data assimilation

Defining a weighting function as

W ≡ σ2
b
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o
,

then
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o

so that the analysis equation (2) becomes

xa = xb + W
“

xo − xb
”
. (4)

Some more terms:

xa − xb = Analysis increment
xo − xb = Innovation (new information)



Data assimilation
W contains the background error covariance. Most data assimilation techniques today differ in how they treat this
background error covariance.

1 Statistical interpolation (SI)

W prescribed by distance from observation.
No error information. Simply the interpolation of
observations onto a grid.

2 Optimum Interpolation (OI)

W ≡ K = BHT
(
R + HBHT

)−1.
B is the error covariance, but it is fixed.
Observation influence is limited to small region near the
observations.

3 3DVAR

B is fixed, so observation impact is isotropic around
observation.
It does not directly solve matrices. This makes it
computationally easy and efficient.

4 EnKF

B is flow-dependent.
Ensemble method—everything is a matrix. This is
computationally expensive.



Data assimilation
W contains the background error covariance. Most data assimilation techniques today differ in how they treat this
background error covariance.

1 Statistical interpolation (SI)

W prescribed by distance from observation.
No error information. Simply the interpolation of
observations onto a grid.

2 Optimum Interpolation (OI)

W ≡ K = BHT
(
R + HBHT

)−1.
B is the error covariance, but it is fixed.
Observation influence is limited to small region near the
observations.

3 3DVAR

B is fixed, so observation impact is isotropic around
observation.
It does not directly solve matrices. This makes it
computationally easy and efficient.

4 EnKF

B is flow-dependent.
Ensemble method—everything is a matrix. This is
computationally expensive.



Data assimilation
W contains the background error covariance. Most data assimilation techniques today differ in how they treat this
background error covariance.

1 Statistical interpolation (SI)

W prescribed by distance from observation.
No error information. Simply the interpolation of
observations onto a grid.

2 Optimum Interpolation (OI)

W ≡ K = BHT
(
R + HBHT

)−1.
B is the error covariance, but it is fixed.
Observation influence is limited to small region near the
observations.

3 3DVAR

B is fixed, so observation impact is isotropic around
observation.
It does not directly solve matrices. This makes it
computationally easy and efficient.

4 EnKF

B is flow-dependent.
Ensemble method—everything is a matrix. This is
computationally expensive.



Data assimilation
W contains the background error covariance. Most data assimilation techniques today differ in how they treat this
background error covariance.

1 Statistical interpolation (SI)

W prescribed by distance from observation.
No error information. Simply the interpolation of
observations onto a grid.

2 Optimum Interpolation (OI)

W ≡ K = BHT
(
R + HBHT

)−1.
B is the error covariance, but it is fixed.
Observation influence is limited to small region near the
observations.

3 3DVAR

B is fixed, so observation impact is isotropic around
observation.
It does not directly solve matrices. This makes it
computationally easy and efficient.

4 EnKF

B is flow-dependent.
Ensemble method—everything is a matrix. This is
computationally expensive.



Data assimilation
Using 3DVAR or 4DVAR, matrices are not solved. Instead, a cost function is
defined to describe the distance between the observations, background, and
‘true’ state, and this cost function is minimized to produce a single analysis.
4DVAR differs from 3DVAR in that different times are taken into account.

Currently, ECMWF uses 4DVAR. GFS used 3DVAR until May 2012, when it
uses a “hybrid” 3DVAR and EnKF.
The Ensemble Kalman Filter (EnKF) utilizes an ensemble of model
forecasts. exa = fxb + K

“fxo − H(fxb)
”

(5)

where theesymbols denotes an array (or ensemble), H(fxb) means it is the
interpolation between the model grid and observation space, and K is called
the Kalman gain matrix:

K = BHT
“

R + HBHT
”−1

. (6)

The background error covariance is B and the observations error covariance
is R.



Data assimilation
With EnKF, the background error covariance matrix depends on the
atmospheric state, since it is simply the model error (B = cov(εb, εb)) where
εb = fxb −gx true. In 3DVAR, B is usually a climatology that does not get
updated.

850 hPa temperature analysis increment
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Data assimilation
Summary of the data assimilation process



Data assimilation

1 Gather observations and make a
short-term model forecast.

2 Compute observation increment.
This is the difference between the
observed data and the
background data after the
background data has been
converted to observation space
(via time and space interpolation).
This must be done in order to
perform quality control checks.

3 Merge observation increments to
model grid and compute analysis
increment K

“fxo − H(fxb)
”

.

4 Compute analysis.
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Schematic xo(t): Observations of x at
time t

xa
0 : Analysis at

time k = 0
xb

1 : Background forecast
at time k = 1



Data assimilation

Schematic xo(t): Observations of x at
time t

xa
0 : Analysis at

time k = 0

xb
1 : Background forecast

at time k = 1



Data assimilation

Schematic xo(t): Observations of x at
time t

xa
0 : Analysis at

time k = 0
xb

1 : Background forecast
at time k = 1



Data assimilation

Schematic xo(t): Observations of x at
time t

xa
0 : Analysis at

time k = 0
xb

1 : Background forecast
at time k = 1

xa
1 = xb

1 + K
“

xo
1 − H(xb

1 )
”

INC1 = xa
1 − xb

1



Data assimilation

Schematic xo(t): Observations of x at
time t

xa
0 : Analysis at

time k = 0
xb

1 : Background forecast
at time k = 1

xa
1 = xb

1 + K
“

xo
1 − H(xb

1 )
”

INC1 = xa
1 − xb

1

or more generally

INCk = xa
k − xb

k



Data assimilation

Schematic xo(t): Observations of x at
time t

xa
0 : Analysis at

time k = 0
xb

1 : Background forecast
at time k = 1

xa
1 = xb

1 + K
“

xo
1 − H(xb

1 )
”

INC1 = xa
1 − xb

1

or more generally

INCk = xa
k − xb

k



Data assimilation
Example: EnKF data assimilation for tropical cyclone prediction

WRF ARW v. 3.1, 36 km
horizontal resolution, 96
ensemble members

DART assimilation system,
based on Ensemble Kalman
Filter (EnKF)

Assimilates surface and
marine stations,
rawindsondes, ACARS,
satellite winds, TC position
and minimum sea level
pressure every 6 hours

Observations assimilated

850-200 hPa wind

00 UTC 10 Nov. 2009



Data assimilation
Example: EnKF data assimilation for tropical cyclone prediction

WRF ARW v. 3.1, 36 km
horizontal resolution, 96
ensemble members

DART assimilation system,
based on Ensemble Kalman
Filter (EnKF)

Assimilates surface and
marine stations,
rawindsondes, ACARS,
satellite winds, TC position
and minimum sea level
pressure every 6 hours

Observations assimilated

850-200 hPa wind

00 UTC 10 Nov. 2009



Data assimilation

WRF ARW v. 3.1, 36 km
horizontal resolution, 96
ensemble members

DART assimilation system,
Ensemble Kalman Filter
(EnKF)

Assimilates surface and
marine stations,
rawindsondes, ACARS,
satellite winds, TC position
and minimum sea level
pressure every 6 hours



Data assimilation

Cycled continuously from
August 10, 2009 -
November 10, 2009

If NHC declares a tropical
depression or stronger, a
12-km nest is created

Initial condition for high
resolution forecast from
the ensemble member
closest to observation



Advanced Hurricane WRF (AHW) forecasts

Based on WRF v. 3.1,
initial conditions from
WRF-DART

12-km parent domain,
Kain-Fritsch cumulus
scheme

4-km, 1.33-km nests, no
cumulus parameterization,
following storm

RRTM longwave, Dudhia
shortwave, WSM-5
microphysics, YSU
boundary layer

36 vertical levels, 1-D
Ocean



Data assimilation

Reduce forecast errors with:
Ô High resolution

forecasts

Ô Resolve details of
storms, such as
eyewall structure,
bands

Improved initial conditions
Ô Asymmetries, vertical tilt
Ô Vortex not pre-defined,

minimal model spin-up

Hurricane Bill (2009)
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Data assimilation

AHW forecast verification

AHW comparable to
HWRF, GFDL, GFS, and
others.

Cyclone track error is large
in short-term forecasts, but
better at long-term
forecasts.

Intensity error smaller than
HWRF or GFDL forecasts.



Data assimilation

Key aspects of data assimilation (DA):

DA is how the weighting between observations and short-term forecasts
(background) is performed to create an analysis.

The weighting depends on accurate knowledge of the error that is
associated with the background forecasts (background error
covariance) and observations (observation error covariance).

Top methods:

Ô 3DVAR: Used for GFS until May 2012. Assumes constant error
statistics (Fixed background error covariances).

Ô 4DVAR: Currently used by ECMWF. Similar to 3DVAR, except
observations from different times are incorporated.

Ô EnKF: Uses an ensemble to provide flow-dependent background
error covariances. Ensemble also provides probabilistic
representation of the initial state and forecasts. However, this is
computationally expensive.

Hybrid EnKF: Currently used to create GFS analyses.
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Data assimilation

The Hybrid EnKF uses EnKF to create an ensemble of short-term forecasts
that provides flow-dependent covariances.



Data assimilation

The GFS data assimilation
system (GDAS)
Hybrid-EnKF upgrade was
implemented in May 2012.

GFS forecasts have
improved, as seen by the
500 hPa height anomaly
correlation skill score and in
tropical cyclone forecast
tracks.

Single 850 hPa T observation:
Analysis increment



Data assimilation
The GFS data assimilation
system (GDAS)
Hybrid-EnKF upgrade was
implemented in May 2012.

GFS forecasts have
improved, as seen by the
500 hPa height anomaly
correlation skill score and in
tropical cyclone forecast
tracks.

500 hPa anomaly correlation:
(Red = Hybrid, Black = Old GDAS)



Important points and questions for review

What are 3 ways that model error can be introduced into a forecast?

What is the analysis equation? What is an analysis increment and
innovation?

What is a background error covariance?

What is the primary difference in how data assimilation systems differ?

Until May 2012, GFS used the 3DVAR data assimilation method.
However, EnKF has been shown to have lower analysis and forecast
error. What are the differences between 3DVAR and EnKF? Why do
you think a hybrid EnKF was implemented in May 2012 instead of a full
EnKF?




