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From Snyder and Zhang 2003 

How the EnKF Method �Works� 
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This Dummies� Guide to Ensemble 
Kalman Filtering… 

•   Least squares  

•   Kalman Filter 

•   Extended Kalman Filter (not going to talk about this…) 

•   Ensemble Kalman Filter 
 

Refs:  Talagrand (J. Met. Soc. Japan, 1997), Maybeck (1979), Hansen and Smith (Tellus, 2001) 

Similar, if not identical 
to variational 
approaches 



Start with a simple example… 
Consider measuring a scalar, xt , such as temperature with 
two different instruments (e.g., a mercury thermometer and 
a thermograph).  Two measurements are made, zi, and 
associated with each measurement is some error �i. 

The errors properties e are unbiased and that their variance 
is known: 

and to keep things simple, the correlation between the 
errors is zero.!

� 

z1 = xt +ε1
z2 = xt +ε2
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How do we get the best �analysis�, 
xa? Lets assume that a linear combination of the two 
measurements can give the best answer, i.e., !

� 

xa = a1z1 + a2z2

We need two constraints….. 

� 

a1 + a2 =1

Var xa − xt( )2⎡
⎣

⎤
⎦ = σ

2

Unbiased estimate 

Minimize the variance 

Adapted from: Talarand, 1997, �Assimilation of Observations, an Introduction 



Working through this a bit… 
Var a1z1 + a2z2 − x

t( )2⎡
⎣

⎤
⎦ = σ 2
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With some further algebra… 

� 

a1 = σ2
2

σ1
2 +σ2

2

a2 = σ1
2

σ1
2 +σ2

2

1
σ 2 = 1

σ1
2 + 1

σ2
2

The physical interpretation is that the less accurate one  
observation is relative to another, more weight is given to the 
other observation. 



The same problem can be written 
as a variational problem… 

� 

J(x) = (x− z1)
2

σ1
2 + (x− z2 )

2

σ2
2

By determining the minimum of the cost function J(x), we 
find where the analysis value x=xa satisfies the two 
previously defined constraints.  
 
Interestingly we can convert either of these approaches, 
for the given assumptions, into a sequential estimator.  
 
This sequential algorithm is the Kalman filter. 
!



The Kalman Filter…. 

Since the observational errors are uncorrelated, one can 
process the observations sequentially. 
 
For our problem, the first estimate of 
the analysis temperature and  
its variance are: 

x1
a = z1
σ1
2 = σ1

2

Our first estimate is simply the measurement from our first 
instrument.   
 
Note the subscript now indicates the observation number,  
  z1, z2, …., zn 
 
The second estimate of the  
temperature and its variance is:!
 

x2
a = x1

a + K2 z2 − x1
a⎡⎣ ⎤⎦

σ 2
2 = σ1

2 1− K2[ ]



What is the �Kn�? 
  

It�s called the Kalman Gain  

K2 =
σ1
2

σ1
2 +σ 2

2

One can show that the Kalman filter solution to this 
problem is identical to our original approach. 
 
Note that the analysis variance must decrease with 
each observation:  

σ n
2 = σ n−1

2 1− Kn⎡⎣ ⎤⎦



Graphical Interpretation 
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Third observation…… 

x3
a = x2

a + K3 z3 − H x2
a⎡⎣ ⎤⎦⎡⎣ ⎤⎦

H x[ ] = forward model

K3 =
σ 2

2

σ 2
2 +σ 3

2

σ 3
2 = σ 2

2 1− K3⎡⎣ ⎤⎦

We add one wrinkle, the H(x) forward operator:  it transforms 
the model solution to the simulated observation at the 

observation point  

Analysis 
Increment 



How to 
generalize 

this? 

Define :Pt
f = E x − xt

f( ) x − xtf( )T⎡
⎣

⎤
⎦
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Analysis

K = Pt
f H T

HPt
f H T + R

x a = x f + K zo − H x f⎡⎣ ⎤⎦( )
Pa = I − KH( )P f



What the heck? 
Now starting with Snyder & Zhang 2003…pg 1666 

Pt
f H T = Cov x − xt

f( ) x − xtf( )T⎡
⎣

⎤
⎦H

T = Cov x − xt
f( )H x − xt

f( )T⎡
⎣

⎤
⎦

Pf HT is the forecasted covariance of the model state variables  
with 

the observed variables. 
 

There is MAGIC here - this means if you have an radar observation of radial velocity,  
Pf HT tells you how to increment the temperature field at that location! 



Continuing….with Snyder & Zhang 2003…pg 1666 
Pt

f H T = Pxy
f
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Pf HT is the forecasted 
covariance of the model 
state variables with the 

observed variables. 

if  no. of obs = 1
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zo − H xi
f⎡⎣ ⎤⎦⎡⎣ ⎤⎦

Pa = P f − cc
T

d

This result corresponds heuristically to the first figure (setting x i to be the vertical velocity 
and zo to be the radial velocity).  The updated w differs from the prior w by an amount 
proportional to the increment * Cov(x, H[x]).  For example, if the observed radial velocity is 
greater than its forecast radial velocity and if radial velocity in the model is positively 
correlated with w, then the analyzed w should be greater than the forecast w."

zo − H x f⎡⎣ ⎤⎦



Quick Review 
•  Kalman filter uses three pieces of information, the 

observation, its error variance, and the error variance of 
previous state estimate (�the background state�) to create 
the analysis. 

 
•  A dynamical model can be thought of not only propagating 

the observations, but the error variance as well. 

•  Using the Kalman filter with a dynamical model requires 
that we need to know: 

 
•  observational error variance 

•  model forecast error variance 



Kalman filter data assimilation 
within an NWP model 

•  Multi-dimensional and multi-variable! 

•  Pf is an ~ N2 matrix (N~108) where N is the number 

of degrees of freedom (Nx*Ny*Nz*Nvar) 

•  Direct evolution of Pf(t) is computational prohibitive 

for NWP models! 

•  Approximate Pf using an ensemble (Evensen 1994) 



Ensemble Kalman Filter 

Pf is estimated 
from an 
ensemble of 
model 
forecasts 
where 
ensemble 
mean is used 
as estimate of 
the true state. 

xi
f t( ) = forecast model output,   i = 1,n
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How the EnKF Method �Works� 

z 

x 



How EnKF �Works� 
Normalized covariance of MODEL temperature perturbations 
and MODEL radial velocity (vr) at the point shown at T=tn 

z 

x 

T�Vr� > 0    then 
IF Vr (radar) > 0, adjust T� > 0 
 
IF Vr (radar) < 0, adjust T� < 0 

MODEL Pf(t) 

� 

xi
a t( ) = xi

f t( ) + K(t) yk t( ) −H xi
f t( )[ ][ ]

OBSERVATION 
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Ensemble Kalman Filter (EnKF) 
Data-Assimilation Method 

!  Implementation is straightforward. 
–  The data-assimilation code is typically easier to develop 

than the forecast model. 
–  Serial (one-at-a-time) observation processing is possible if 

observation errors are uncorrelated. 
 

!  First tests were for large-scale flows; tests for deep, 
moist convection are potentially more challenging. 
–  Lack of geostrophic balance 
–  Importance of precipitation microphysical processes 
–  Non-Gaussian forecast errors 



Storm-Scale EnKF 

!  Snyder and Zhang 2003, Monthly Weather Review 

!  Focus on radar observations (only volumetric 
observations on ~1 km scale) 
–  Doppler velocity 
–  Reflectivity (*) 

!  Emphasis on retrieval of unobserved fields 
–  Vertical velocity, temperature, cloud water, etc. 



!  Produce a reference simulation (�truth�). 
–  Splitting supercell in Sun and Crook (1997) model 
–  Grid spacing:  2 km horizontal, 0.5 km vertical 

!  Extract observations (velocity component with 
respect to �radar�) from the reference simulation. 
–  Add random errors with 1 m s-1 standard deviation. 
–  Extract observations only where there is precipitation. 

!  Initialize and advance an ensemble, assimilating 
observations when available. 
–  Ensemble Square-Root Filter (EnSRF) data-assimilation 

scheme (Whitaker and Hamill 2002) 

Snyder and Zhang�s Synthetic-Data Experiments 



!  50 ensemble members 
–  Base state plus random noise 
–  20 min integration before first observation is assimilated 
 

!  Assimilation of synthetic radar data every 5 min 

!  Localization of filter update 
–  Sphere of radius 4 km around each observation 

!  �Perfect model� experiments 
–  Exact environmental state estimate 
–  Exact model resolution and physics 

Snyder and Zhang�s Synthetic-Data Experiments 



Ensemble Initialization 
!  Each ensemble member is initialized with low-level 

temperature perturbations in random locations, then 
integrated 30 min before the first data assimilation. 

Perturbation temperature 
2.25 km AGL 

at initialization time 

Velocity 
2.25 km AGL 

at first ob. time 

Velocity 
2.25 km AGL 

at first ob. time 

Ensemble Member Ensemble Member Truth 



truth 

EnKF 
analysis 

3 volumes 
assimilated 

13 volumes 
assimilated 

Vertical Velocity (6 km AGL) 
in Snyder and Zhang�s Experiments 



RMS Errors of Ensemble Mean 
in Snyder and Zhang�s Experiments 

!  Gray, dotted, thick black, and thin black lines indicate errors in     
w, �l, vh, and qr respectively. 

!  The red line indicates errors in w for an assimilation experiment in 
which the filter was used to update only velocity in the model. 



!  The model state in the reference simulation was 
reproduced well after several Doppler volumes were 
assimilated (over approximately 30 min). 

!  Ensemble covariances between observed quantities 
and unobserved fields provided useful information. 

!  Results were sensitive to initialization. 

!  Suggested topics for further research: 
–  Performance relative to other retrieval methods 
–  Other observation types (e.g., reflectivity) 
–  Uncertainty in environmental state 
–  Errors in parameterizations of moist processes 

Conclusions:  Snyder and Zhang 2003 



Real-Data Experiments 
!  Dowell et al., Monthly Weather Review, summer 2004 
                17 May 1981 Arcadia, Oklahoma supercell 

Cimarron animation 
(lowest tilt) 



Radar-Data Characteristics 

!  One of the few good dual-doppler radar data sets of 
a tornadic supercell available. 

!  Observations from both radars for 1 hour during 
mature storm phase. 

!  Volumes typically every 4-5 min. 

!  12-15 sweeps per volume. 

!  Removal of noisy data, unfolding of aliased 
velocities, and objective analysis before assimilation. 

 
 



Forecast-Model Characteristics 

!  Anelastic model (Sun and Crook 1997, 1998) 

!  Warm-rain microphysical scheme 

!  Domain:  100 km x 100 km x 17 km 

!  Grid spacing:  2 km horizontal,  

    500 m vertical 

!  Base state:  3400 J kg-1 CAPE,                                
23 m s-1 change in wind from                                  
250 to 5250 m AGL 



EnKF Assimilation Experiments:  Real Data 

!  Assimilated data 
–  Cimarron radar observations 

!  Data not assimilated:   
–  Norman radar observations 

–  WKY 440 m tall instrumented 
tower data 

–  Used for independent 
validation 

 



EnKF Assimilation Method:  Real Data 
The assimilation method is similar to that employed by Snyder 

and Zhang for their synthetic-data experiments, except: 

!  Ensemble initialized with �blob� perturbations 

!  Reflectivity data in precipitation core used to update model qr 

–  Truncation at 55 dBZ 

 

!  Horizontally homogeneous  

    environment 

!  No systematic attempt to correct  

    model biases 



Verification of Real-Data Experiments 
!  Large errors in data used for �verification� 

–  Cimarron and Norman Doppler observations:                     
typical errors 2 to 4 m s-1 (?) 

–  Crossbeam horizontal wind component in dual-Doppler 
analysis:  50 to 100% errors 

–  Vertical velocity in dual-Doppler analysis:  even larger 
errors 

 

!  Interest in isolated phenomena 
–  RMS differences between EnKF and dual-Doppler 

analyses in updraft region (not downstream anvil) 
–  Subjective analyses of updraft, downdraft, and 

mesocyclone characteristics 



RMS Differences between Cimarron Doppler Observations 
(which were assimilated) and EnKF Radial Winds 



RMS Differences between Norman Doppler Observations   
(which were not assimilated) and EnKF Radial Winds 



Vertical Velocity and Horiz. Wind at 4.25 km AGL 

EnKF analysis 
5 Cimarron volumes assimilated 

Dual-Doppler analysis 

Contour interval:  4.0 m s-1 



Vertical Velocity (m s-1) at Tower Location (444 m AGL) 

Higher-Resolution Assim. 
 Experiment (�x = �y = 1 km) 

Control Assim. Experiment 

EnKF 
Tower Data 



RMS Differences between Crossbeam Horiz. Wind 
Components in EnKF and Dual-Doppler Analyses 

!  How valuable are the covariances between radial 
velocity and unobserved fields (�l, qr, qt)? 



Perturbation Temp. (K) and Horiz. Wind at 0.25 km AGL 
(3 Cimarron volumes assimilated) 

Control assimilation experiment 
(all model fields updated) 

Only u, v, and w 
updated with filter 

Contour interval:  1.0 K 



Perturbation Temperature (K) at 266 m AGL: 
Control Assimilation Experiment vs. Tower Data 

EnKF 
Tower Data 



Conclusions:  Real-Data Experiments 

!  Verification of assimilation results is difficult; nevertheless, the 
retrieved velocity fields are somewhat encouraging. 
–  Agreement between EnKF and dual-Doppler analyses about locations 

and strengths of main updraft and mesocyclone 
–  Similar low-level vertical-velocity traces in the assimilation results and 

tower data 

 

!  Analyses of the cold pool highlight challenges in retrieving 
temperature at low levels. 
–  Observational limitations:  lowest scans at approximately 400 m AGL 

for a storm that is 30 km from the radar 
–  Model uncertainty:  precipitation microphysical parameterizations 


