
Kalman Filter Notes – March 25, 2004

1.  Introduction to the Kalman Filter:

• “best linear unbiased estimate” Taligrand (J. Japan Meteor. Soc., 1997)

• “optimal recursive data processing algorithm”, Maybeck (1979)

• Least squares estimator that takes into effect:

o Error is measurement (accts for confidence)

o Noise in modeled system

This is why it is called a “filter”.

Original system studied using several assumptions.  Errors in measurements and

system noise are:

• white noise

• gaussian

• System is linear

2. Taligrand example

Consider measuring a scalar, xt , such as temperature with two different

instruments (such as a mercury thermometer and a thermograph).  Each of these

instruments has its own error properties.
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The errors properties are that they are unbiased and that their variance is known:
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and to keep things simple, the correlation between the errors is zero,
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How do we get the best, xa , the best analysis of temperature?  Lets assume that a

linear combination of the two measurements can give one the best answer, i.e.,
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So lets determine the a’s.  We need two constraints.  One obvious one, which

actually means we want an unbiased estimate, so that,
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else the temperature would always be either too high or too low.  Second, we

want to minimize the analysis variance, i.e.,
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This could be done in several ways, but it might be obvious that,
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The physical interpretation of this result is that the less you believe in the

accuracy of one measurement, more weight should be given to the other

measurement in the analysis.

3.  Variational Approach

The same problem can be formulated as a variational problem:  Minimize the

distance between the analysis and the observations and take into account the

accuracy of the measures.  Create a cost function J(x),
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By determining the minimum of J(x), we find where the analysis value xa will

meet our requirement.  Interestingly, we can convert either of these problems,

given the assumptions, into a sequential estimator (a Kalman filter).

4.  Kalman Filter

The first estimate of our temperature is given by,
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i.e., our first guess is simply the measurement from our first instrument.  Note the use of

“t” here could mean time, or just a sequence of observations at the same time.  The

second estimate of the temperature is given by,
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where “K” is called the “Kalman Gain”.  Note that as in the first example, we have an

estimate of the analysis variable AND its variance.  Also notice that the analysis variance

MUST decrease as we add information.  So what does the K look like?  Well, it’s the

same as before, the Kalman gain is given as
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One can show trivial that this set of equations is the identical solution shown in Section

(2).

So have we gained anything?  Maybe so, assuming our problem can live within the

working assumptions of Gaussian distributions and white noise power spectra.  If the

observations can be processed sequentially (i.e., they are uncorrelated), then one can take



a problem that often is written as a variational method (and therefore needs to be solved

as a matrix problem which can be messy) and convert it into a recursive algorithm that

processes each observation in a very simple manner.  This methodology is very

minimalist in memory and cost.  This is the power associated with the Kalman Filter.

5.  Extended Kalman Filter

So far we have talked about measurements for analysis, but what about

modeling systems?  The following example shows the extended Kalman filter,

which enables the use of the Kalman filter for nonlinear systems (removing one

of the assumptions).  Suppose we have a forecast model and a real world system

that can be described as,
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where “t” means the true state, “f” means the forecast state, and “a” means the analysis.

The “G” and “F” are the nonlinear operators that advance the “solution” from one state to

the next.  The forecast model has error, and we represent this error as,
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and again we assume that η(t) has a Gaussian distribution and white noise spectrum such

that the mean is zero and the variance is Q.  Note, that this type of error is not realistic for

actual forecast models, as they have biases, etc.  In our system, the observations are given

as,
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where ε is the observational noise and yk is a column vector of observations.  The

operator “H” converts the knowledge of the true state of the atmosphere into

variables that the forecast model understands (and needs for the analysis).  Just

like in the Kalman filter, if the observations are uncorrelated we can write down

a sequential estimator for the analysis as,
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and recursive improve the analysis over each observation yk.  What does K(t) look

like here?  It’s a bit more involved because everything is a matrix, but if the

covariance between the model noise η(t) and the observation error ε(t) is zero,

then

€ 

K t( ) = P f
t( ) + HT

HP
f
t( )HT + R(t)[ ]

−1

which is pretty much a mess and incomprehensible to most people.  Pf(t) is the

forecast error covariance, and that is actually were the work for all of this comes

in.  The Pf(t) has to be forecast from another equation, which also involves the

Pa(t), the analysis error covariance.  These equations look like,
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which is even more messy.  Now we have to evolve the model and two error analysis

covariances matrices!   For realistic models, this is where the whole concept falls on itself

because these matrices are the size of N2, where N = # of grid points x number of

variables.  For a modern NWP model, N ~ 108, which means that NxN is WAY TO BIG

to store or deal with!  There are ways to cut down the size (and in fact, the Ensemble KF

uses these implicitly), but this is why until recently, the use of Kalman filtering in



geophysical modeling was almost never used……until someone came up with a crafty

idea.

6. Ensemble Kalman Filter

Evensen (1994) proposed that instead of evolving the two covariance matrices

directly that the equation for Pf(t) could estimated from an ensemble of model forecasts.

Since we have no absolute knowledge of the true state of the atmosphere, we use

the mean values from the ensemble to approximate xt.  The equations that are

used for the ensemble Kalman filter (EnKF) look like (relative to our previous

examples):
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Notice that we have the R(t) term, the observational error accounted for, but

notice the Q(t) cannot be accounted for here explicitly.  This is one of the

problems with this methodology.  How many ensemble members do we need to

have in order for Pf(t) to be accurately estimated?  Well, it turns out that probably

having 1000 ensemble members is a very safe number, and probably 100 is

workable.  However, it is going to depend on the situation and dynamics

involved, as well as how well the ensemble “spans” the solution space for the

problem.  Therefore, there is no hard and fast rule.  Most NWP applications of



EnKF use between 50-200 members.  Experiments with idealized chaotic systems

(e.g., Lorenz models) often use 1000.


