
Dear students, 
 
Here is another set of data assimilation notes, perhaps a better set than my class 
notes, which are somewhat old. 
 
These are obviously (if you look at them) from Prof. Wang’s data assimilation 
class.  I sat in her class for the first month a few years ago, and I have taken the 
liberty to piece together 3 different lectures from the first few weeks.   
 
I am giving these to you in the hopes of providing further exposure to the ideas I 
tried to convey in a single lecture today.   
 
For the exam, I expect you to understand the ideas presented in the first 21 
pages, and then I would expect you to be able to derive, using some information 
from pg 87 in O. Talagrand’s paper the final weights for each measurement. 
 
Dr. Wicker 
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Definition�of�data�assimilation

• Information sources to estimate the true state of the

• Data assimilation�<Ͳ>�state�estimation

Information�sources�to�estimate�the�true�state�of�the�
nature:

� Observations� Observations

� Physical laws�(that�govern�the evolution�and�physical�
ti f th t t ft b di d i tproperties�of�the�state,�often�embodied�in�computer�

model)

• DA�is�a�process�that�fuses�observations�with�physical�laws�(i.e.�
use�all�available�information)�to�determine�as�accurately�as�
possible�what�the�true�state�is.



Definition�of�data�assimilation

observations

model�
analysis

data�
forecast analysisassimilation�

• For�a�commonly�used�DA�framework, DA�is�a�statistical,�objective�
analysis�process�that�“optimally”�combines�observations�with�
shortͲrange�numerical�model�forecasts.

•Model�forecast�is�also�termed�as�first�guess,�or�background



Definition�of�data�assimilation
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DA�cycles:�another�view

Observations�(+/Ͳ3hrs) Background�or�FG

Global�analysis

Global�forecast�model

Initial�condition�
Conditions

6�hour�forecast

(operational�forecasts)�
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Why�need�to�combine�with�model�forecast?

9 Need�estimate�of�the�state�on�regularmodel�grids�and�variables�
(wind,�temperature,�moisture,�etc.).

9 B t Non Uniform Indirect b ti9 But, NonͲUniform,�Indirect� observations.
9 Model�helps�to�interpolate�irregular�and�indirect�obs.�to�

model�grid�and�variables.

Irregularly distributed• Irregularly�distributed�
observation�network • Indirectly�observed�variables:�radar�

reflectivity,�satellite�radiance



Other�examples�of�nonͲuniform�observation�
network



Why�need�to�combine�with�model�forecast?

9 Model�can�provide�additional information.�

• Observations�are�often�
insufficient�to�determine�all�the�
unknowns�of�the�state�(esp.�high�
dimensional�system).�

• First�guess/�background�is�
introduced�to�solve�this�problem.��
It�is�our�best�estimate�of�the�state�

• Provide�info.�in�poorly�observed�regions

prior�to�the�use�of�current�
observations.

p y g

• Propagate�obs.�info.�from�densely�observed�to�poorly�observed�region

• Through�DA�cycles,�the�model�organizes�and�propagates�forward�the�
information from previous observations In other words information frominformation�from�previous�observations.��In�other�words,�information�from�
previous�time�is�preserved.
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Statistical Interpolation 
 

 
 
x The  analysis is given by  
ୟܠ ൌ ୠܠ ൅܅ቀܡ െ ୠ൯ቁܠ൫ܪ ൌ ୠܠ ൅܌܅                     

 
܅�������� ൌ ௕۶்۾௕۶்ሺ۶۾ ൅  ሻିଵ܀
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x The actual implementation requires simplifications in the computation of the weight 

W. 
 
x The equation for ܠ௔ can be regarded as a list of scalar analysis equations, one per 

model variable. 
 
x For each model variable the analysis increment is given by the corresponding row of 

W times the innovation.  
 

x The fundamental hypothesis in the typically implementation of statistical 
interpolation is: For each model variable, only a few observations are important in 
determining the analysis increment.  
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x Based on this assumption, the problem of matrix product and inversion is reduced by 
including only a smaller number of observations for the analysis at a given grid 
point.  
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x The actual implementation can be as follows: 
 

1) For each model variable xi, select a small 
number of pi observations using empirical 
selection criteria. 

 
2) Form the corresponding innovation vector  

 
3) Form the pi background error covariances between the model variable xi and the 

model state interpolated at the pi observation points (i.e. the relevant pi 
coefficients of the i-th row of ۾௕۶்), and  

 
4) Form the pi ×pi background and observation error covariance submatrices formed 

by the selected observations (۶۾ୠ۶் ൅  .ሻ܀
 

5) Invert the matrix in 4) for selected observations. 
 
6) Multiply it by the i-th line of ۾௕۶் to get the necessary row of W. 

 
 

ୟܠ ൌ ୠܠ ൅܅ቀܡ െ ୠ൯ቁܠ൫ܪ ൌ ୠܠ ൅ ௕۶்۾௕۶்ሺ۶۾ ൅ ሻିଵ܀ ቀܡ െ             ୠ൯ቁܠ൫ܪ
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Three Dimensional Variational method (3DVAR) 
 
We look for the � that minimizes 

ሻܠሺࡶ ൌ ͳ
ʹ ቂ൫ܡ െ ܡሻିଵ൫܀ሻ൯்ሺܠሺܪ െ ሻ൯ܠሺܪ ൅ ൫ܠୠ െ ୠܠୠ൯ିଵ൫۾൯்൫ܠ െ  ൯ቃܠ

 
Explicit solution never used! 

ୟܠ ൌ ୠܠ ൅ ቀ൫۾ୠ൯ିଵ ൅ ۶்ሺ܀ሻିଵ۶ቁ
ିଵ
۶்ሺ܀ሻିଵ ቀܡ െ  ୠ൯ቁܠ൫ܪ

 
Instead, the minimum is found by numerical minimization, which is usually an iterative 
procedure. 
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Typical iterative procedure for numerically minimizing J: 
 

1.  Starting from background as the first guess, compute the cost function J  
 
2.  Compute the gradient of cost function J with respect to the analysis variable x 
 
3.  Call certain optimization subroutine (using e.g., the conjugate gradient method), 

passing into the subroutine the cost function and gradient vector, and determine 
the amount of correction to x  
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4.  Check if the optimal solution has been found by computing the norm of the 
gradients or the value of J  itself to see if either is less than a prescribed tolerance. 
If not, go back to step 1, with the updated value xn+1, and repeat the steps until 
convergence is reached. The solution obtained at convergence is the optimal 
solution that minimizes J.  
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Four Dimensional Variational method (4DVAR) 
 
 
4DVAR is actually a direct generalization of 3DVAR to handle observations that are 
distributed in time. The cost function is the same, provided that the observation operators 
are generalized to include a forecast model that will allow a comparison between the 
model state and the observations at the appropriate time. 
 
4DVAR seeks the initial condition such that the forecast best fits the observations within 
the assimilation interval.  
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Cost function for 4DVAR 
 
 
Let 1 1( ) ( )f a

i i it M t� �ª º ¬ ¼x x  represent the (nonlinear) model forecast that advances from the 
previous analysis time 1it �  to the current it . 
 
Assume the observations distributed within a time interval � �0 , nt t  will be used. The cost 
function includes a term measuring the distance to the background at the beginning of the 
interval, and a summation over time of the cost function for each observational increment 
computed with respect to the model integrated to the time of the observation: 
 

଴ሻ൯ݐሺܠ൫ܬ ൌ
ͳ
ʹ
ۏ
ێ
ێ
ێ
ۍ
෍൫ܡ௜ െ ௜ሻ൯ܠሺܪ

୘ሺ܀௜ሻିଵ൫ܡ௜ െ ௜ሻ൯ܠሺܪ
୑

୧ୀ଴
൅

ቀܠୠሺݐ଴ሻ െ ଴ሻቁݐሺܠ
்
൫۾଴ୠ൯

ିଵ ቀܠୠሺݐ଴ሻ െ ے଴ሻቁݐሺܠ
ۑ
ۑ
ۑ
ې
 

 
 

where M is the number of observational vectors ࢏ܡ distributed over time. 
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The control variable (the variable with respect to which the cost function is minimized) is 
the initial state of the model at the beginning of the time interval, � �0tx , whereas the 
analysis at the end of the interval is given by the model integration from the solution 
� � � �0 0nt M tª º ¬ ¼x x .  

 
In other words, 4DVAR seeks the initial condition such that the forecast best fits the 
observations within the assimilation interval. The 4DVAR tries to use all observations in 
the assimilation time interval as well as possible. 
 
Numerical minimization of 4DVAR cost function 
 
x Similar to 3DVAR except the gradient calculation involves the calculation of 

tangent linear version of the model M and its adjoint (the transpose of the tangent 
linear model). 

 
x A tangent linear model, TLM, is obtained by linearizing the model about the 

nonlinear trajectory of the model between 1it �  and it , so that if we introduce a 
perturbation in the initial conditions, the final perturbation is given by  

 
 > @ > @ 2

1 1 1 1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) (| | )i i i i i i i i it t M t t M t t OG G G G� � � � � � ��  �  � �x x x x x L x x   
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The linear tangent model 1i�L is a matrix that transforms an small initial perturbation at 1it �  
to the final perturbation at it .  
 
The TLM equation is then  
 

1 1( ) ( )i i it tG G� � x L x . 
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Least Square Method 
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1D Example 
 

Data assimilation aims to optimally combine the background forecast/first guess with 
observations.   
 
Given two independent measures of a true scalar value ݔ௧: 

ଵݔ ൌ ௧ݔ ൅  ,ଵߝ
ଶݔ ൌ ௧ݔ ൅  .ଶߝ

Assume a) the errors are unbiased, i.e., 
ଵሻߝሺܧ ൌ Ͳ, 
ଶሻߝሺܧ ൌ Ͳ, 

      b) the variances of the measurement errors are 
ଵଶሻߝሺܧ ൌ  ,ଵଶߪ
ଶଶሻߝሺܧ ൌ  ,ଶଶߪ

      c) the errors of the two measures are not correlated, i.e., 
ଶሻߝଵߝሺܧ ൌ Ͳ. 

Now let’s estimate ݔ௧ from a linear combination of the two measures, 
� � � �121211 xxwxxwxwxa ��� ����  

 ௔ will be the best estimate of the true scalar if the weight chosen minimizes the meanݔ
square error of ݔ௔. 
 Derive yourself! 
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Best weight 

More accurate measure given 
more weight 

If optimal weight obtained, error 
variance of the analysis is smaller 
than that of the two measures. 
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What about high dimensional system? 
 
 
 
The DA problem is now defined as finding 
 

 
xa - an optimum analysis of a field of model variables with length ݊ 

 
given  
 

xb - a background field available at grid points with length ݊, and 
y - a set of p observations available at irregularly spaced points  

 
 

௔ܠ ൌ ൭
ଵ௔ݔ
ڭ
௡௔ݔ
൱����������� ௕ܠ������ ൌ ቌ

ଵ௕ݔ
ڭ
௡௕ݔ
ቍ ܡ���������������� ൌ ൭

ଵݕ
ڭ
௣ݕ
൱   
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The unknown analysis and the known background can be 2D fields of a single 
variable like the temperature analysis, or the 3D field of the initial conditions for all 
the model prognostic variables.  
 
These model variables are ordered by grid point and by variable, forming a single 
vector of length n, the product of the number of points times the number of variables. 
The (unknown) "truth" xt, discretized at the model points, is also a vector of length n. 
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A different variable y is for the observations. 
 
The observed variables are, in general, different from the model variables by 
 

a)being located in different points, and  
 

b)by possibly being indirect measures of the model variables.  
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Deriving optimal analysis and analysis error covariance in high 
dimension 

 
Definition 
The optimal analysis is equal to the background plus the innovation weighted by 
optimal weights which are determined so as to minimize the analysis error variance. 
 
 

ୟܠ ൌ ୠܠ ൅܅ቀܡ െ ୠ൯ቁܠ൫ܪ ൌ ୠܠ ൅܌܅ 
 
x The weights are given by a matrix of dimension ( )n pu , denoted as ܅.  

 
x H is the forward observational operator that converts the background field into 

"observed first guesses." H can be nonlinear (e.g., the radiative transfer 
equations that go from temperature and moisture vertical profiles to the satellite 
observed radiances) or linear.  
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    radiance = H(temperature, moisture, etc) 
 

 
 

              observation location = H(model grid) 
 
x The vector d, also of length p, is called the "innovation" or "observational 

increments" vector: 
 

܌ ൌ ܡ െ  ୠ൯ܠ൫ܪ
 
which is defined as the difference between the observation and the background 
mapped to the observational point via forward operator H. 

 
 
 


