Dear students,

Here is another set of data assimilation notes, perhaps a better set than my class
notes, which are somewhat old.

These are obviously (if you look at them) from Prof. Wang’s data assimilation
class. | satin her class for the first month a few years ago, and | have taken the
liberty to piece together 3 different lectures from the first few weeks.

| am giving these to you in the hopes of providing further exposure to the ideas |
tried to convey in a single lecture today.

For the exam, | expect you to understand the ideas presented in the first 21
pages, and then | would expect you to be able to derive, using some information
from pg 87 in O. Talagrand’s paper the final weights for each measurement.

Dr. Wicker
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Definition of data assimilation

e Data assimilation <-> state estimation

* Information sources to estimate the true state of the
nature:

] Observations

1 Physical laws (that govern the evolution and physical
properties of the state, often embodied in computer
model)

* DA is a process that fuses observations with physical laws (i.e.
use all available information) to determine as accurately as
possible what the true state is.



Definition of data assimilation

observations

model
forecast

assimilation

* For a commonly used DA framework, DA is a statistical, objective
analysis process that “optimally” combines observations with
short-range numerical model forecasts.

* Model forecast is also termed as first guess, or background



Definition of data assimilation

DA cycles
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DA cycles: another view
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Why need to combine with model forecast?

v' Need estimate of the state on regular model grids and variables
(wind, temperature, moisture, etc.).

v But, Non-Uniform, Indirect observations.

v' Model helps to interpolate irregular and indirect obs. to
model grid and variables.

Rawinsonde Stations

e Irregularly distributed
observation network

e Indirectly observed variables: radar
reflectivity, satellite radiance



Other examples of non-uniform observation
network
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Why need to combine with model forecast?

v Model can provide additional information.

* Observations are often
insufficient to determine all the
unknowns of the state (esp. high
dimensional system).

* First guess/ background is
introduced to solve this problem.
It is our best estimate of the state
prior to the use of current
observations.

Rawinsonde Stations

* Provide info. in poorly observed regions

* Propagate obs. info. from densely observed to poorly observed region

* Through DA cycles, the model organizes and propagates forward the
information from previous observations. In other words, information from

previous time is preserved.



A brief review of Statistical
Interpolation, 3DV AR and
4DV AR

METR 6803
Advanced topics in data assimilation:
Ensemble Kalman filter techniques

Instructor
Dr. Xuguang Wang
xuguang.wang@ou.edu
Sep. 10, 2009

1



Evolution and current status of data assimilation

Topic of this class; being actively explored in
<—  many fields; start to be operational in some
Meteorology centers; easy to implement

EnKF

4DVAR
< Variational methods are popular methods in

3DVAR operational centers; 4DVAR state of the art

Statistical
interpolation

nudging

Successive
correction

Simple
function fitting



Statistical Interpolation

e The analysis is given by
xa=xb+W(y—H(xb))=xb+Wd T

W = P?HT(HP?’HT + R)!

@  State variable

* Qbservation




The actual implementation requires simplifications in the computation of the weight
W.

The equation for X% can be regarded as a list of scalar analysis equations, one per
model variable.

For each model variable the analysis increment is given by the corresponding row of
W times the innovation.

The fundamental hypothesis in the typically implementation of statistical
interpolation is: For each model variable, only a few observations are important in
determining the analysis increment.



o Based on this assumption, the problem of matrix product and inversion is reduced by
including only a smaller number of observations for the analysis at a given grid
point.
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e The actual implementation can be as follows:
1) For each model variable x;, select a small \ &) !
number of p; observations using empirical S W/
selection criteria.
2) Form the corresponding innovation vector
3) Form the p; background error covariances between the model variable x; and the
model state interpolated at the p; observation points (i.e. the relevant p,

coefficients of the i-th row of PPHT), and

4) Form the p; Xp; background and observation error covariance submatrices formed
by the selected observations (HPPH” + R).

5) Invert the matrix in 4) for selected observations.

6) Multiply it by the i-th line of P?HT to get the necessary row of W.

x* = x° + W(y— H(x")) =x" + PPHT (HP?H” + R)~* (y — H(x"))



Three Dimensional Variational method (3ADVAR)

We look for the x that minimizes

J60 = 7 [y~ HE) Ry — HE) + (x* )" (P?) ™ (x — )]

Explicit solution never used!
_ -1
x=x"+((P") "+ HT(R)'H) HTR)(y—H(x"))

Instead, the minimum 1s found by numerical minimization, which is usually an iterative
procedure.



Xn+1 Xn Xp-1
Linear model: J quadratic

Typical iterative procedure for numerically minimizing J:
1. Starting from background as the first guess, compute the cost function J
2. Compute the gradient of cost function J with respect to the analysis variable x
3. Call certain optimization subroutine (using €.g., the conjugate gradient method),

passing into the subroutine the cost function and gradient vector, and determine
the amount of correction to x



4. Check if the optimal solution has been found by computing the norm of the
gradients or the value of s itself to see if either is less than a prescribed tolerance.
If not, go back to step 1, with the updated value x™*!, and repeat the steps until
convergence 1s reached. The solution obtained at convergence is the optimal
solution that minimizes J.
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Four Dimensional Variational method (4DVAR)

4DVAR is actually a direct generalization of 3DV AR to handle observations that are
distributed in time. The cost function is the same, provided that the observation operators
are generalized to include a forecast model that will allow a comparison between the

model state and the observations at the appropriate time.

4DV AR seeks the initial condition such that the forecast best fits the observations within

the assimilation interval.

assimilation window
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Cost function for 4ADVAR

Let x/(¢)=M_,|x'(t_,) | represent the (nonlinear) model forecast that advances from the

previous analysis time ., to the current ..

Assume the observations distributed within a time interval (z,,z,) will be used. The cost

function includes a term measuring the distance to the background at the beginning of the
interval, and a summation over time of the cost function for each observational increment
computed with respect to the model integrated to the time of the observation:

](X(to)) ==

[ M
1| D - Hx)) R)™ (v — HExD) +
2 i=0

(x0(t) — x(t0)) (P2) ™" (x0(to) — x(20))

where M is the number of observational vectors y; distributed over time.
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The control variable (the variable with respect to which the cost function is minimized) 1s
the initial state of the model at the beginning of the time interval, x(z,), whereas the

analysis at the end of the interval is given by the model integration from the solution

x(tn):Mo[x(to)].

In other words, 4DV AR seeks the initial condition such that the forecast best fits the
observations within the assimilation interval. The 4DV AR tries to use all observations in
the assimilation time interval as well as possible.

Numerical minimization of 4DV AR cost function

e Similar to 3DVAR except the gradient calculation involves the calculation of
tangent linear version of the model M and its adjoint (the transpose of the tangent
linear model).

e A tangent linear model, TLM, is obtained by linearizing the model about the
nonlinear trajectory of the model between ¢, and:,, so that if we introduce a

perturbation in the initial conditions, the final perturbation is given by

X(t,) +8x(t) =M [x(1) + 5x(1,) ] = M, [x(1.) |+ L 0x(t,.) + O( 5x[')
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The linear tangent model L, is a matrix that transforms an small initial perturbation at ¢
to the final perturbation at ¢.

The TLM equation is then

5X(ti) — Li_15x(ti—l) :
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Least Square Method
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1D Example

Data assimilation aims to optimally combine the background forecast/first guess with
observations.

Given two independent measures of a true scalar value x¢:
x; =xt+ g,
x, = xt + &,.
Assume a) the errors are unbiased, i.e.,

E(g) =0,
E(s;) =0,
b) the variances of the measurement errors are
E(ef) = of,
E(e3) = 03,
c) the errors of the two measures are not correlated, i.e.,
E(ee,) = 0.

Now let’s estimate x¢ from a linear combination of the two measures,

X =1-w)x, +w-x,=x +w-(x, —x,)
x® will be the best estimate of the true scalar if the weight chosen minimizes the mean
square error of x¢.

Derive yourself!



We obtain

Best weight

More accurate measure given
more weight

If optimal weight obtained, error
variance of the analysis is smaller
than that of the two measures.



What about high dimensional system?

The DA problem is now defined as finding

X' - an optimum analysis of a field of model variables with length n
given

x° - a background field available at grid points with length n, and
y - a set of p observations available at irregularly spaced points

<xf> X Y1
x* =1 : xP =1 : y = ( 5 )
X5 X Yp

e

ST



@ state variable

The unknown analysis and the known background can be 2D fields of a single
variable like the temperature analysis, or the 3D field of the initial conditions for all
the model prognostic variables.

These model variables are ordered by grid point and by variable, forming a single
vector of length n, the product of the number of points times the number of variables.
The (unknown) "truth" x', discretized at the model points, is also a vector of length 7.



@ State variable

* Observation

A different variable y is for the observations.
The observed variables are, in general, different from the model variables by
a)being located in different points, and

b)by possibly being indirect measures of the model variables.




Deriving optimal analysis and analysis error covariance in high
dimension

Definition
The optimal analysis is equal to the background plus the innovation weighted by
optimal weights which are determined so as to minimize the analysis error variance.

x? = xP +W(y— H(xb)) =x" +WwWd
e The weights are given by a matrix of dimension (nx p), denoted as W.

e H is the forward observational operator that converts the background field into
"observed first guesses." H can be nonlinear (e.g., the radiative transfer
equations that go from temperature and moisture vertical profiles to the satellite
observed radiances) or linear.



@ State variable

* Ohbservation

observation location = H(model grid)

e The vector d, also of length p, 1s called the "innovation" or "observational
increments" vector:

d=y- H(x")

which 1s defined as the difference between the observation and the background
mapped to the observational point via forward operator H.



