
Chapter 1
1.8 Prove that exactly half the area of the earth lies equatorward of 30◦ lati-

tude.

Solution:

Area =

Z 2π

0

Z 30◦

−30◦
R2E cosφdφdλ

= 2πR2E

Z 30◦

−30◦
cosφdφ

= 2πR2E sinφ|
30◦

−30◦

= 2πR2E (0.5− (−0.5))
= 2πR2E , half the area of a sphere.

1.9 How many days would it take a hot air balloon traveling eastward along
40◦N at a mean speed of 15 m s−1 to circumnavigate the globe?

Solution: The length of the latitude circle is l = 2πRE cos 40
◦ = 2π ×

6.37× 106 × 0.766 = 30.7× 106 m or 30,700 km. The time is the distance
divided by the velocity, i.e.,

t =
l

V

=
30.7× 106 m
15 m s−1

= 2.05× 106 s
= 23.7 days

1.10 Prove that pressure expressed in cgs units of millibars (mb = 10−3b) is
numerically equal to pressure expressed in SI units of hPa (hectoPascals
=102 Pa).

Solution:

1 mb = 103
dynes
cm−2

= 103
g cm

s−2 cm−2
= 103

g
s−2 cm

= 103
10−3 kg

s−2 10−2 m
=
102 kg m
s−2 m2

= 102
N
m−2

= 1 hPa

1.11 How far below the surface of the water does a diver experience a pressure
of 2 atmospheres (i.e., a doubling of the ambient atmospheric pressure due
to the weight of the overlying water).

Solution: At the depth where the pressure is 2 atm, half the pressure is
due to the weight of the overlying air and the other half (1 atm) is due to
the weight of the overlying water, which is equal to the density times the
depth times g. The density of water is ρ =1000 kg/m3 .
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p = ρgz = 105Pa;

z = 105/(103 × 9.8) ' 10 m
1.12 In a sounding taken on a typical winter day at the South Pole the tem-

perature at the ground is -80◦C and the temperature at the top of a 30
m high tower is −50◦C. Estimate the lapse rate within the lowest 30 m,
expressed in K km−1.

Solution:

Γ ≡ −4T

4z
= −(−50− (−80))

30
= −1◦C m−1

= −1, 000◦C km−1, a very strong inversion!!

1.13 "Cabin altitude" in typical commercial airliners is around 1.7 km. Esti-
mate the typical pressure and density of the air in the passenger cabin.

Solution: Let us assume values at sea-level of p = 1, 000 hPa and ρ = 1.25
kg m−3 and exponential relationships of the form

p = p0e
−z/H

and
ρ = ρ0e

−z/H

where the scale height H = 7.5 km. Substituting z = 1.7 km, we obtain
p ' 800 hPa and ρ ' 1.00 kg m−3.

1.14 Prove that density and pressure, which decrease more or less exponentially
with height, decrease by a factor of 10 over a depth of ln 10 = 2.303 times
the scale height.

Solution: If p = p0e
−z/H ,then p/p0 = 0.1 at the level where e−z/H = 0.1

or z = −H ln (0.1) or z = H ln(10) = 2.303H.

1.15 Consider a perfectly elastic ball of massm bouncing up and down on a hor-
izontal surface under the action on a downward gravitational acceleration
g. Prove that in the time average over an integral number of bounces, the
downward force exerted by the ball upon the surface is equal to the weight
of the ball. [Hint: The downward force is equal to the the downward mo-
mentum imparted to the surface with each bounce divided by the time
interval between successive bounces.] Does this result suggest anything
about the "weight" of an atmosphere comprised of gas molecules?

Solution: The momentum imparted to the surface with each bounce is
4M = 2mv0. The time required for the ball to fall from the top of its
orbit to the surface is t1 = v0/g, so the time between bounces must be
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4t = 2v0/g. The average downward force is equal to the average rate
of transfer of momentum F = 4M

4t = 2mv0/ (2v0/g) = mg, which is the
weight of the ball.

1.16 Estimate the percentage of the mass of the atmosphere that resides in the
stratosphere based on the following information. The mean pressure level
of tropical tropopause is around 100 hPa and that of the extratropical
tropopause is near 300 hPa, where the break between the tropical and
extratropical tropopause occurs near 30◦ latitude, in which case, exactly
half the area of the earth lies in the tropics and half in the extratropics.
On the basis of an inspection of Fig. 1.7, verify that these estimates are
reasonably close to observed conditions.

Solution: The boundary between the tropical tropopause and the extra-
tropical tropopause is close to 30◦ latitude. Roughly half the mass of the
atmosphere lies equatorward of this latitude. In the tropical half of the
globe the tropopause level is close to 100-hPa. At any height, pressure is
the weight of the atmosphere above it (per unit area), so we can estimate
the ratio r of stratospheric to total mass as r = mstrat

mtot
= pstrat

p0
, where p0

is the surface pressure (the mass above the stratopause is negligible). In
the tropics r = 100

1000 ∼0.1. Roughly 10% of the mass of the atmosphere lies
in the stratosphere. In the extratropical half of the globe the tropopause
lies close to 300-hPa, so roughly 30% of the mass of the atmosphere lies
in the stratosphere. So for the globe as a whole the fraction of the mass
of the astmosphere that lies in the stratosphere is the mean of these two
values, or '20%.

1.17 If the earth’s atmosphere consisted of an incompressible fluid whose den-
sity was everywhere equal to that observed at sea level (1.25 kg m−3) how
deep would it have to be to account for the observed mean surface pressure
of ∼105 Pa.
Solution: If h is the height of the free surface of the fluid

p = ρgh = 1000 hPa

Solving, we obtain

h =
105

9.8× 1.25 ' 8000 m

1.18 The mass of the water vapor in the atmosphere (∼10 kg m−2) is equivalent
to that of a layer of liquid water how deep?

Solution: The density of liquid water is 103 kg m−3.

1.19 If the density of air decreases exponentially with height from a value of
1.25 kg m−3 at sea-level, calculate the scale height that is consistent with
the observed global mean surface pressure of ∼105 hPa. [Hint: Integrate
the counterpart of (1.4) from the earth’s surface to infinity to obtain the
atmospheric mass per unit area.]
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Solution: Integrating (1.4) from sea-level to the top of the atmosphere
assuming a constant value of the scale height yields

p0 =

Z ∞
0

ρgdz

=

Z ∞
0

ρ0e
−z/Hgdz

= ρ0g

Z ∞
0

e−z/Hdz

= ρ0gHe−z/H |∞
0

= ρ0gH

Solving for H, we obtain

H =
p0
ρ0g

=
105

(1.25× 9.8)
∼ 8, 000 m

1.20 The equatorward flow in the tradewinds is on the order of 1 m s−1 averaged
around the circumference of the earth at 15◦N and 15◦S, and it extends
through a layer extending from sea-level up to around the 850 hPa pressure
surface. Estimate the equatorward mass flux into the equatorial zone due
to this circulation.

Solution: The equatorward mass flux across the 15◦N, in units of kg s−1,
is given by

−
I
15◦N

Z z850

0

ρvdzdx

where ρ is the density of the air, v is the meridional (northward) velocity
component, the line integral denotes an integration around the 15◦N lat-
itude circle and the vertical integral is from sea-level up to the height of
the 850 hPa surface.To evaluate the integral, we make use of the relationsI

15◦N
dx = 2πRE cos 15

◦ (= l, the length of the latitude circle)

andZ z850

0

ρdz = −dp/g = p0−p850
g

(= m, the mass per unit area in the layer)

The mass flux, per unit length along the latitude circle is mv. Multiplying
by the length of the latitude circle and by 2 ( the flux enters the equatorial
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region from 15◦S and 15◦N) we obtain the total mass flux

Fm = 2× l ×m× v =

= 2× 2π × 6.37× 106 × cos(15◦)× 1.5× 10
4

9.8
× 1

= 1.18× 1011 kg s-1.

1.21 During September, October and November the mean surface pressure over
the northern hemisphere increases at a rate of ∼1 hPaper 30-day month.
Calculate the mass averaged northward velocity across the equator that
is required to account for this pressure rise.

Solution: The required mass transport Fm is equal to the rate of pressure
change, divided by g, times the area of the hemisphere (2πR2E), or

Fm =
1

g
× δp

δt
× 2πR2E = vm

I Z ∞
0

ρdxdz

where δt is 1 month or 2.59 × 106 s. Noting that H dx = 2πRE , andR∞
0

ρdz = p0/g, we can write

δp

g × δt
× 2πR2E = 2πRE × vm × p0

g

Solving, we obtain

vm =
δp×RE

p0δt

= 100× 6.37× 106
103 × 2.59× 106

= 2.46 mm s−1
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