
Chapter 7
7.7 At a certain location along the ITCZ, the surface wind at 10◦N is blowing

from the east—northeast (ENE) from a compass angle of 60◦ at a speed of
8 m s−1 and the wind at 7◦N is blowing from the south—southeast (SSE)
(150◦) at a speed of 5 m s−1. (a) Assuming that ∂/∂y >> ∂/∂x, estimate
the divergence and the vorticity averaged over the belt extending from
7◦N to 10◦N.

Solution:

∇ ·V =
∂v

∂y
=
−8 cos 60◦ − [+5 cos (180◦ − 150◦)]

3◦ × 1.11× 105 m deg−1

=
−4.00− 4.33
3.33× 105

= −2.5× 10−5 s−1

(b) The meridional component of the wind drops off linearly with pressure
from sea level (1010 hPa) to zero at the 900-hPa level. The mixing ratio
of water vapor within this layer is 20 g kg−1. Estimate the rainfall rate
under the assumption that all the water vapor that converges into the
ITCZ in the low level flow condenses and falls as rain.

Solution: The rainfall rate is given by

RR = − {∇ ·V} δp
g
w

where

{∇ ·V} = ∇ ·V
2

Substituting values yields

RR = 2.5× 10−5 s−1 ×
1
2 (1010− 900)× 102 Pa

9.8 m s−2
× 20× 10−3

= 2.81× 10−4 kg s−1 or 2.42 kg day−1

which is equivalent to a layer of liquid water 2.42 cm deep.

7.8 Consider a velocity field that can be represented as

VΨ = −k×∇Ψ
or, in Cartesian coordinates,

uΨ = −∂Ψ/∂y; vΨ = ∂Ψ/∂x

where Ψ is called the streamfunction. Prove that DivHV is everywhere
equal to zero and the vorticity field is given by

ζ = ∇2Ψ. (7.43)
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Proof: The divergence

∇ ·V =
∂u

∂x
+

∂v

∂y

=
∂

∂x

µ
−∂Ψ
∂y

¶
+

∂

∂y

µ
∂Ψ

∂x

¶
0

The vorticity

ζ =
∂v

∂x
− ∂u

∂y

=
∂

∂x

µ
∂Ψ

∂x

¶
− ∂

∂y

µ
−∂Ψ
∂y

¶
=

∂2Ψ

∂x2
+

∂2Ψ

∂y2

= ∇2Ψ

7.9 For streamfunctions Ψ with the following functional forms, sketch the
velocity field VΨ. (a) Ψ = my, (b) Ψ = my + n cos 2πx/L, (c) Ψ =
m(x2 + y2), and (d) Ψ = m(xy) where m and n are constants.

(a) Pure zonal flow: eastward if m < 0 and westward if m > 0.

(b) A wavy zonal flow in which the wavelength of the waves is L.

(c) Solid body rotation: counterclockwise if m > 0.

(d) Deformation: if m > 0 the y axis is the axis of stretching; if m < 0
the x axis is the axis of stretching.

7.10 For each of the flows in the previous exercise, describe the distribution of
vorticity.

(a) ∂2Ψ/∂x2 = ∂2Ψ/∂y2 = 0; ζ = 0 everywhere

(b) ∂2Ψ/∂x2 = (2π/L)
2
n cos 2πx/L; ∂2Ψ/∂y2 = 0;

ζ = (2π/L)2 n cos 2πx/L; sinusoidal in x, independent of y.

(c) ∂2Ψ/∂x2 = 2m; ∂2Ψ/∂y2 = 2m; ζ = 4m everywhere

(d) ∂2Ψ/∂x2 = ∂2Ψ/∂y2 = 0; ζ = 0 everywhere

7.11 Apply Eq. (7.5), which describes the advection of a passive tracer ψ by
a horizontal flow pattern to a field in which the initial conditions are
ψ = −my.

(a) Prove that at the initial time t = 0,

d

dt

µ
∂ψ

∂x

¶
= m

∂v

∂x
and

d

dt

µ
−∂ψ
∂y

¶
= −m∂v

∂y
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Proof: At the initial time,

∂ψ

∂t
= −u∂ψ

∂x
− v

∂ψ

∂y
= 0 +mv

and

d

dt

µ
∂ψ

∂x

¶
=

d

dx

µ
∂ψ

∂t

¶
(1)

=
∂

∂x
mv

= m
∂v

∂x

and

d

dt

µ
−∂ψ
∂y

¶
= − d

dy

µ
∂ψ

∂t

¶
(2)

= − ∂

∂y
mv

= −m∂v

∂y

Eq. (1) corresponds to the shear flow in Fig. 7.4b and Eq. (2)
correponds to the deformation flow in Fig. 7.4a.

(b) Prove that for a field advected by the pure deformation flow in Fig.
7.4a, the meridional gradient −∂ψ/∂y grows exponentially with time,
whereas for a field advected by the shear flow in Fig. 7.4b, ∂ψ/∂x
increases linearly with time.

Proof: From (2)
dm

dt
= −m∂v

∂y

Hence,
1

m

dm

dt
= −∂v

∂y

Integrating, we obtain

m = m0e
− ∂v
∂y (t−t0)

where m = m0 at time t = t0.

The shear flow in Fig. 7.4b does not change m. Hence, it is evident
from (1) that ∂ψ/∂y grows linearly with time.

7.12 Prove that for a flow consisting of pure rotation, the circulation C around
circles concentric with the axis of rotation is equal to 2π times the angular
momentum per unit mass.
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Proof: From (7.3)

C ≡
I

Vsds

For pure rotation, Vs = ωr, where r is the radius and Vs is the tangential
wind speed. Hence,

C = ωr

I
ds

= ωr(2πr)

= 2π × ωr2

where ωr2 is the angular momentum per unit mass.

7.13 Extend Fig. 7.8 by adding the positions of the marble at points 13—24.

Solution: The motion in the inertial frame of reference is periodic with
period 2π/Ω. Points 13-24 correspond to the second half of the first cycle,
when the marble is moving back across the dish (upward in Fig. 7.8).
Hence. point 13 will coincide with the black point 11, 13 with the black
point 10.... and point 24 with zero. The motion in the inertial frame
of reference is periodic with period π/Ω. Points 13-24 correspond to the
second circuit around the inertia circle. Hence, 13 coincides with the blue
point 1, 14 with the blue point 2... and 24 with 0.

7.14 Consider two additional "experiments in a dish" conducted with the ap-
paratus described in Fig. 7.7.

(a) The marble is released from point r0 with initial counterclockwise
motion Ωr0 in the fixed frame of reference.

Analysis: In the inertial frame of reference, the outward centrifugal
force Ω2r0 just balances the inward pull of gravity g dzdr so there is no
radial motion: i.e., the motion is circular, concentric with the exis
or rotation, with radius r = r0. There are no tangential forces, so
the tangential velocity remains constant at the initial value Ωr0. The
marble will complete one circuit around the dish at time 2πr0/Ωr0 =
2π/Ω, which is equivalent to one period of rotation of the dish. It
follows that the marble and the surface of the dish beneath it are
moving at the same rate. In the rotating frame of reference the
marble is stationary. Its motion may be described as an inertia circle
of zero radius.

(b) The marble is released from point r0 with initial clockwise motion
Ωr0 in the fixed frame of reference. Show that in the rotating frame
of reference the marble remains stationary at the point of release.

Analysis: In the rotating frame of reference, the motion is circular,
with radius r0 as in (a) but in the clockwise direction. Hence, relative
to the surface of the dish beneath it, the marble is moving clockwise
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with velocity 2Ωr0. Based on the analysis in the text, it follows that
the radius of the inertia circle in rotating coordinates is r0. Since the
motion is initially tangential and in the clockwise direction about
the axis of rotation at radius r0, the marble circles clockwise around
the axis of rotation, making two complete circuits for each rotation
of the turntable. For example, at t = 6 “hours,” the marble has
completed 1/4 (clockwise) circuit in the ineritial frame of reference
and 1/2 (clockwise) circuit in the rotating frame of reference.

7.15 Prove that for a small closed loop of area A that lies on the surface of a
rotating spherical planet, the circulation associated with the motion in an
inertial frame of reference is (f + ζ)A.

Proof: The circulation in an absolute frame of reference is equal to the
sum of the circulation in a relative frame of reference plus the circulation
associated with the rotation of the coordinate system itself; i.e.,

Cabs = Crel + Ccoords (1)

From (7.3) it follows that if the loop is infinitesimally small, so that the
relative vorticity ζ can be considered to be uniform, Crel = ζA. For the
special case of motion close to the poles, where the Earth’s surface is nor-
mal to the axis of rotation, it follows from Exercise 7.1 that Cccords = 2ΩA.
More generally, at latitude φ, the solid body rotation of the Earth’s sur-
face can be resolved into a component 2Ω sinφ in the plane perpendicular
to the Earth’s rotation and a component 2Ω cosφ in the plane of the axis
of rotation. The vorticity and the circulation reside in the perpendicular
component. Hence, Ccoords = 2Ω sinφ = f . Substituting for Crel and
Ccoords in (1) yields

Cabs = (ζ + f)A

7.16 An air parcel is moving westward at 20 m s−1 along the equator.

(a) Compute the apparent acceleration toward the center of the Earth
from the point of view of an observer external to the Earth and in a
coordinate system rotating with the Earth.

Solution: An observer external to the Earth would view the forces
in an inertial coordinate system in which the centripetal acceleration
is

a =
(ΩRE + u)

2

RE
(1)

(ΩRE + u)2 /RE where u is the zonal velocity along the equator.
Substituting values, we obtain£¡

7.29× 10−5¢× ¡6.37× 106¢− 20¤2
(6.37× 106) =

[4xx− 20]2
(6.37× 106)

= 3.11× 10−4 m s−2
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In a coordinate system rotating with the Earth, the apparent cen-
tripetal acceleration is u2/RE . Substituting values, we obtain

(20)2

(6.37× 106) = 0.627× 10
−4 m s−2

(b) Compute the apparent Coriolis force in the rotating coordinate sys-
tem.

Solution: The Coriolis force is in the plane of the equator and it is
directed toward the right of the motion (as viewed from a northern
hemisphere perspective. Since the velocity is westward, the Coriolis
force must be directed downward toward the center of the Earth.
The magnitude of the Coriolis force is 2Ωu. substituting values we
obtain

2× 7.29× 10−5 × 20 = 29.1× 10−4 m s−2

Additional comment: Note that (1) may be written as

a = Ω2RE + 2Ωu+ u2/RE

in which the first term on the right hand side represents the contribu-
tion of the earth’s rotation, the second represents the Coriolis force,
and the third represents the centripetal acceleration due to the zonal
motion relative to the rotating Earth. Note that in this example the
second (linear) term is ~50 times as large as the third (quadratic)
term.

7.17 A projectile is fired vertically upward with velocity w0 from a point on
Earth. (a) Show that in the absence of friction the projectile will land at
a distance

4w30Ω

3g2
cosφ

to the west of the point from which it was fired.

Solution: The equation of motion for the vertical component of the mo-
tion w is

dw

dt
= −g (1)

The component of the vertical motion that is directed normal to the
Earth’s axis induces a zonally-directed Coriolis force 2Ωw directed toward
the right of the vertical velocity vector when viewed from a northern hemi-
sphere perspective. Upward motion induces a westward Coriolis force and
vice versa. Hence, the equation of motion for the zonal wind component
is

du

dt
= −2Ωw cosφ (2)

Integrating (1) yields
w = w0 − gt (3)
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where w0 is the initial vertical velocity of the projectile and g is effective
gravity. Noting that w = dz/dt and integrating again we obtain

z = w0t− 1
2
gt2 (4)

where z is height relative to the level from which the projectile was fired.
Setting z equal to zero in (4) and solving for t, we obtain an expression
for the length of time required for the projectile to attain its maximum
height, level off, and fall back to its initial level

t1 =
2w0
g

(5)

Now let us consider the zonal velocity and displacement of the projectile.
Combining (2) and (3) yields

du

dt
= −2Ω cosφ (w0 − gt) (6)

and integrating yields

u = −2Ω cosφw0t+Ω cosφgt2

Noting that u = dx/dt and integrating (7) over the length of time that
the projectile remains in the air yields

x = −2Ω cosφw0
Z t1

0

tdt+Ω cosφg

Z t1

0

t2dt

= −Ω cosφw0t21 +
Ω cosφg

3
t31

Substituting from (5) for t1 yields

x = −4Ω cosφw
3
0

g2
+
8Ω cosφw30

3g2
(7)

= −4Ωw
3
0

3g2
cosφ

(b) Calculate the displacement for a projectile fired upward on the equa-
tor with a velocity of 500 m s−2.

Solution: Substituting values w0 = 500 m s−1, φ = 0◦, Ω = 7.29×
10−5 s−1, and g = 9.8 m s−2 into (7) yields a westward displacement
of 126 m.

7.18 A locomotive with a mass of 2×104 kg is moving along a straight track at
40 m s−1 at 43◦N. Calculate the magnitude and direction of the transverse
horizontal force on the track.
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Solution: The Coriolis force is transverse to the train tracks and directed
toward the right of the motion of the train in the northern hemisphere and
toward the left in the southern hemisphere. Its magnitude in units of N
is given by mfV , where m is the mass of the locomotive, f = 2Ω sinφ is
the Coriolis parameter at the latitude φ of the locomotive, and V is the
velocity of the locomotive. Substituting values m = 2× 104 kg, f = 10−4
s−1, and V = 40 m s−1 yields 80 N. To put this force into perspective, the
ratio of this force to the weight of the train is

mfV

mg
=

fV

g
∼ 10

−4 × 40
10

= 0.0004

7.19 Within a local region near 40◦N, the geopotential height contours on a
500-hPa chart are oriented east—west and the spacing between adjacent
contours (at 60-m intervals) is 300 km, with geopotential height decreasing
toward the north. Calculate the direction and speed of the geostrophic
wind.

Solution: The pressure gradient force P is directed northward across the
isobars and its magnitude is given by g (∂Z/∂n) where g is the gravita-
tional acceleration, Z is geopotential height, and n is the direction (locally)
normal to the isobars. The derivative ∂Z/∂n can be interpreted as the
geometric slope of the isobars. In this example, geopotental height de-
creases at a rate of 60 m per 300 km or 2×10−4. For geostrophic balance,
fVg = |P| or Vg = |P| /f . Substituting values yields

Vg =
2× 10−4
2Ω sin 40◦

=
2× 10−4
0.95× 10−4 = 21 m s−1

Since the isobars are oriented east-west, with lower pressure toward the
pole, the geostrophic wind is from the west.

7.20 (a) Derive an expression for the divergence of the geostrophic wind (7.45)
and give a physical interpretation of this result.

Proof: Laking use of (7.15b),

∇ ·Vg ≡ ∂ug
∂x

+
∂vg
∂y

=
∂

∂x

µ
− 1
f

∂Φ

∂y

¶
+

∂

∂y

µ
1

f

∂Φ

∂x

¶
= − ∂2Φ

∂x∂y
+

∂2Φ

∂x∂y
+

∂Φ

∂x

∂

∂y
(1/f)

=
∂Φ

∂x
×− 1

(2Ω sinφ)2
× 2Ω ∂

∂y
sinφ

= −vg 1

(2Ω sinφ)
× 2Ω cosφ∂φ

∂y
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Since dy = REdφ, it follows that ∂φ/∂y = 1/RE . Hence,

∇ ·Vg ≡ −vg cotφ
RE

(1)

(b) Calculate the divergence of the geostrophic wind at 45◦N at a point
where vg = 10 m s−1.

Solution: Substituting numerical values φ = 45◦ vg = 10 m s−1 and
RE = 6.37× 106 m into (1) yields ∇ ·Vg = 1.57× 106 s−1.

7.21 Two moving ships passed close to a fixed weather ship within a few minutes
of one another. The first ship was steaming eastward at a rate of 5 m s−1

and the second was steaming northward at 10 m s−1. During the 3-
h period that the ships were in the same vicinity, the first recorded a
pressure rise of 3 hPa while the second recorded no pressure change at all.
During the same 3-h period, the pressure rose 3 hPa at the location of
the weather ship (50◦N, 140◦W). On the basis of these data, calculate the
geostrophic wind speed and direction at the location of the weather ship.

Solution: Applying Eq. (1.3) to sea-level pressure p0 yields

∂p0
∂t

=
dp0
dt
− u

∂p

∂x
− v

∂p0
∂y

(1)

The vertical advection term does not appear because p0 is a function of
x and y only. In this book, Eq. (1.1) is usually applied to moving air
parcels, but it is equally applicable to moving observing platforms, such
as ships, in which case, the velocities correspond to those of the platforms.
The local time rate of change of sea-level pressure can be estimated on the
basis of the data at the stationary weather ship; i.e.,

∂p0
∂t

=
+3 hPa

10.8× 103 s (2)

Applying (1) to the eastward-moving ship yields

+3 hPa
10.8× 103 s =

+3 hPa
10.8× 103 s − 5 m s−1 × ∂p0

∂x
(3)

from which it follows that ∂p/∂x = 0 and vg = 0. Applying (1) and (2)
to the northward-moving ship yields

+3 hPa
10.8× 103 s = 0−

µ
10 m s−1 × ∂p0

∂y

¶
from which it follows that

∂p0
∂y

=
−300 Pa

10.8× 103 s× 10 m s−1
= −2.78× 10−3 Pa m−1

9



From the geostrophic wind equation

ug = − 1

ρf

∂p0
∂y

= −∂p0/∂y
ρf

=
2.78× 10−3

1.25× 2× 7.29× 10−5 sin 50◦
= 19.9 m s−1

7.22 At a station located at 43◦N, the surface wind speed is 10 m s−1 and
is directed across the isobars from high toward low pressure at an angle
ψ = 20◦. Calculate the magnitude of the frictional drag force and the
horizontal pressure gradient force (per unit mass).

Solution: The scalar magnitude of the Coriolis force C is given by fV
where f is the Coriolis parameter and V is the wind velocity. From Fig.
7.10 it is evident that the scalar magnitude of the frictional drag force
Fs is |C| cotψ and the scalar magnitude of the pressure gradient force P
is |C| tanψ. At 43◦N, f = 10−4 s−1. Hence, |C| = 10−3 m s−2, |Fs| =
3.63× 10−4 m s−2, and |P| = 1.06× 10−3 m s−2.

7.23 Show that if frictional drag is neglected, the horizontal equation of motion
can be written in the form

dV

dt
= −fk×Va (7.46)

where Va ≡ V−Vg is the ageostrophic component of the wind.

Proof: In the absence of friction, the horizontal equation of motion is

dV

dt
= −fk×V−∇Φ (1)

From the definition of the geostrophic wind

Vg = − 1
f
k×∇Φ (7.15a)

it follows that
∇Φ = fk×Vg (2)

Combining (1) and (2) yields

dV

dt
= −fk×V−fk×Vg

= −fk× (V−Vg)

= −fk×Va

7.24 Show that in the case of anticyclonic air trajectories, gradient wind balance
is possible only when

Pn ≤ f2RT /4
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Proof: Gradient wind balance requires that

V 2

RT
+ fV + |P| = 0

From the quadratic formula,

V =
−b±√b2 − 4ac

2a

where a = V 2/RT , b = f and c = Pn. Real solutions exist only if b2−4ac >
0, i.e., if

f2 > 4 |P| /RT

or
|P| ≤ f2RT /4

7.25 Prove that the thermal wind equation can also be expressed in the forms

∂Vg

∂p
= − R

fp
k×∇T

and
∂Vg

∂z
=

g

fT
k×∇T + 1

T

∂T

∂z
Vg

Proof: To obtain the first expression, we differentiate the geostrophic
wind equation (7.15a) with respect to pressure, which yields

∂Vg

∂p
=
1

f
k×∇∂Φ

∂p
(1)

Substituting from the hypsometric equation

∂Φ

∂p
= −RT

p

yields the thermal wind equation in (x, y, p) coordinates

∂Vg

∂p
= − R

fp
k×∇T (2)

To obtain the second equation we replace ∇Φ in (7.15a) by α∇p, making
use of the hydrostatic equation (3.18), which yields a definition of the
geostrophic wind in height coordinates

Vg =
1

f
k×α∇p (3)

Differentiating (2) with respect to height yields

∂Vg

∂z
=
1

f
k×

µ
α∇∂p

∂z
+

∂α

∂z
∇p
¶
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Substituting for ∂p/∂z from the hydrostatic equation, we obtain

∂Vg

∂z
= − g

fρ
k×∇ρ+ 1

f
k×∇p

= − g

fρ
k×∇ρ+ 1

α

∂α

∂z

µ
1

f
k×α∇p

¶
Making use of(1) and the identities dα/α = dT/T and dρ/ρ = −dT/T , as
proven in Exercise 3.11, we obtain the thermal wind equation in (x, y, z)
coordinates

∂Vg

∂z
=

g

fT
k×∇T + 1

T

∂T

∂z
Vg (4)

Note that (2), the pressure coordinate version of the thermal wind equation
is simpler and easier to interpret than (4) the height coordinate version.

7.26 (a) Prove that the geostrophic temperature advection in a thin layer of
the atmosphere (i.e., the rate of change of temperature due to the hor-
izontal advection of temperature) is given by AVgBVgT sin θ where the
subscripts B and T refer to conditions at the bottom and top of the layer,
respectively, θ is the angle between the geostrophic wind at the two levels,
defined as positive if the geostrophic wind veers with increasing height,
and

A =
f

R ln (pB/pT )
(1)

Proof: For a thin layer, the geostropic temperature advection is given by

GTA = Vg ·∇T ' −Vg ·∇T (2)

where the braces denote vertical averages over the depth of the layer. From
(7.20)

VgT −VgB =

µ
R

f
ln

pB
pT

¶
k×∇T

Hence

∇T = − f

R ln (pB/pT )
k× (VgT −VgB) (3)

Since the layer is thin,

Vg
∼= (VgT +VgB) /2 (4)

Combining (1), (2), and (3) yields

GTA = −k× (VgT −VgB) (5)

= −A (VgT +VgB)

2
(VgT −VgB) sin γ

where A is as defined in (1) and γ is the angle between the layer-mean
wind vector Vg and the thermal wind vector VgT −VgB, as depicted in
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the accompanying figure. Note that GTA in (4) is directly proportional
to the area of the parallelogram ABCD in the accompanying figure and
that this area, in turn is equivalent to VBVT sin θ. Hence,

GTA = AVgBVgT sin θ (5)

It is also evident from the figure that the approximation (3) is valid pro-
vided that the thermal wind is fairly uniform within the layer. The layer
need not necessarily be thin.

(b) At a certain station located at 43◦N, the geostrophic wind at the
1000-hPa level is blowing from the southwest (230◦) at 15 m s−1 while
at the 850-hPa level it is blowing from the west—northwest (300◦) at
30 m s−1. Estimate the geostrophic temperature advection.

Solution: Substituting values into (1) we obtain

A =
10−4 s−1

287 J kg−1K−1 ln (1000/850)
= 2.13× 10−6 m−2 s−1 K

and, from (5)

GTA =
¡
2.13× 10−6¢ m−2 s−1 K× 15 m s−1 × 30 m s−1 × sin 70◦

= 9.01× 10−4 K s−1 or 77.8 K day−11

The geostrophic temperature advection is positive because the wind
is veering with height.

7.27 At a certain station, the 1000-hPa geostrophic wind is blowing from the
northeast (050◦) at 10 m s−1 while the 700-hPa geostrophic wind is blow-
ing from the west (270◦) at 30 m s−1. Subsidence is producing adiabatic
warming at a rate of 3◦C day−1 in the 1000 to 700-hPa layer and diabatic
heating is negligible. Calculate the time rate of change of the thickness of
the 1000 to 700-hPa layer. The station is located at 43◦N.

Answer: Decreasing at a rate of 140 m day−1

7.28 Prove that in the line integral around any closed loop that lies on a pressure
surface, the pressure gradient force −∇Φ vanishes, i.e.,I

Pds = −
I
∇Φds = 0 (7.47)

1Such large time rates of temperature are observed only in very strong (and narrow) frontal
zones. They are not sustained over intervals of more than a few hours.
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Proof: For any line integral

−
Z 2

1

∇Φds = −
Z 2

1

∂Φ

∂s
ds = Φ2 − Φ1

For a full circuit around any loop, the line integral must vanish because
Φ2 = Φ1.

7.29 Prove that in the absence of friction, the circulation

Ca ≡
I
c · ds (7.48)

is conserved, where c is the velocity in an inertial frame of reference.

Proof: For each element ds along the loop, the equation of motion is
applicable. In the absence of forces,

dc

dt
= 0

Hence, in the absence of forces, Ca ≡
H
c · ds is conserved. In Exercise

7.28 it was shown that the existence of a pressure gradient force does not
change the circulation. It follows that in an inertial frame of reference, in
which there are no apparent forces, circulation is conserved in the absence
of friction.

7.30 Based on the result of the previous exercise, prove that in an inertial frame
of reference

[cs]
dL

dt
= −Ld[cs]

dt

where

[cs] ≡
H
c · ds
L

[cs] is the tangential velocity averaged over the length of the loop and L =H
ds is the length of the loop. Hence, a lengthening of the loop must be

accompanied by a proportionate decrease in the mean tangential velocity
along the loop and vice versa.

Proof: Based on the definition of cs, we can write

Ca ≡
I
c · ds = [cs]L

If circulation is conserved,

d

dt
[cs]L = [cs]

dL

dt
+ L

d[cs]

dt
= 0

It follows that

[cs]
dL

dt
= −Ld[cs]

dt
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7.31 For the special case of an axisymmetric flow in which the growing or shrink-
ing loop is concentric with the axis of rotation, prove that the conserva-
tion of circulation is equivalent to the conservation of angular momentum.
[Hint: Show that angular momentum M = C/2π.]

See the solution to Exercise 7.12. The exercise was inadvertently repeated.

7.32 Solution in text

7.33 Consider a sinusoidal wave along latitude φ with wavelength L and am-
plitude v in the meridional wind component. The wave is embedded in a
uniform westerly flow with speed U . (a) Show that the amplitude of the
geopotential height perturbations associated with the wave is fvL/2πg
where f is the Coriolis parameter and g is the gravitational acceleration.
(b) Show that the amplitude of the associated vorticity perturbations is
(2π/L)v. Show that the maximum values of the advection of planetary
and relative vorticity are βv and (2π/L)2Uv, respectively, and that they
are coincident and of opposing sign. (c) Show that the advection terms
exactly cancel for waves with wavelength

LS = 2π

s
U

β
.

(a) If the meridional wind component is in geostrophic balance,

v = vm cos (2πx/L) =
g

f

∂Z

∂x

so

Z =
f

g

Z
v cos (2πx/L) dx

=
fvmL

2πg
sin (2πx/L)

and

Zm =
fvmL

2πg
(1)

The vorticity is given by

ζ =
∂

∂x
vm cos (2πx/L) (2)

= −2π
L
vm sin (2πx/L)

The rate of advection of relative vorticity by the zonal wind is

−U ∂ζ

∂x
= −U ∂

∂x

∙
−2π

L
vm sin (2πx/L)

¸
(3)

=
(2π)2 Uvm

L2
cos (2πx/L)
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The rate of advection of planetary vorticity is given by

−βvm cos (2πx/L) (4)

The rates of advection of relative and planetary vorticity are thus of
the same functional form: for waves of any given zonal wavelength
L, they are linear multiples of one another. For the special case of
stationary waves with zonal wavelength L = LS , the advection of
absolute (i.e., relative plus planetary) vorticity is zero, so the rates
prescribed by (3) and (5) are equal and opposite; i.e.,

(2π/LS)
2Uvm = βvm

LS = 2π

s
U

β
.

LS is referred to as the wavelength of a stationary Rossby wave.
For L < LS , the advection of relative vorticity is larger than the
advection of planetary vorticity and the waves propagate eastward
and for L > LS , the advection of planetary vorticity dominate and
the waves propagate westward. This behavior is actually observed
when the waves propagating along a prescribed latitude circle such
as 50◦N are decomposed into wave-numbers by harmonic analysis.
Zonal wavenumber 1 tends to propagate westward and wavenumbers
4 and higher propagate eastward.

7.34 Suppose that the wave in the previous exercise propagating is along 45◦

latitude and has a wavelength of 4000 km. The amplitude of the merid-
ional wind perturbations associated with the wave is 10 m s−1 and the
background flow U = 20 m s−1. Assume that the velocity field is inde-
pendent of latitude and neglect the latitude dependence of the Coriolis
parameter f . Using the results of the previous exercise, estimate (a) the
amplitude of the geopotential height and vorticity perturbations in the
waves, (b) the amplitude of the advection of planetary and relative vor-
ticity, and (c) the wavelength of a stationary Rossby wave embedded in a
westerly flow with a speed of 20 m s−1 at 45◦ latitude.

Answers: (a) 64.6 m; 1.57 × 10−5 s−1 (b) 1.62 × 10−10 and 4.93 × 10−10
s−2, respectively; and (c) 7000 km

7.35 Verify the validity of the conservation of barotropic potential vorticity
(f + ζ)/H, as expressed in Eqn. (7.27).

From Eq. (7.21b)
d

dt
(f + ζ) = − (f + ζ)∇ ·V

From (7.2) and (7.26)
1

H

dH

dt
= −∇ ·V
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where H is the depth of a column of fluid. Combining these expressions
yields

1

(f + ζ)

d

dt
(f + ζ)− 1

H

dH

dt
= 0

Making use of the identity dy/y = −dx/x, where y = 1/x, the above
expression can be rewritten as

1

(f + ζ)

d

dt
(f + ζ) +

1

(1/H)

d(1/H)

dt
= 0

from which it follows that

d

dt

µ
f + ζ

H

¶
= 0

7.36 Consider barotropic ocean eddies propagating meridionally along a sloping
continental shelf, with depth increasing toward the east, as pictured in Fig.
7.25, conserving barotropic potential vorticity in accordance with (7.27).
There is no background flow. In which direction will the eddies propagate?

At point A, the flow in the eddies is toward shallower water so the depth
H of a moving column of water is decreasing. Absolute vorticity (f + ζ)
decrease by a proportionate amount so that barotropic potential vorticity
(f + ζ)/H remains constant. The planetary vorticity does not change
appreciably because the water column at A is not moving meridionally.
Hence there must be an anticyclinic tendency in relative vorticity ζ. By
the same line of reasoning it can be argued that there must be a cyclonic
vorticity tendency at pont B, where water columns are being stretched as
they move away from the shore.

The direction of propagation of the eddies depends on which hemisphere
they are in. If they are in the northern hemisphere, the clockwise eddy
situated between A and B is anticyclonic. This eddy must be moving
toward point A, where the vorticity tendency is negative, and away from
point B where the vorticity tendency is positive. Hence the eddies must
be propagating southward. By the same reasoning, if the eddies are in the
southern hemisphere they must be propagating northward. Note that in
both cases the direction of propagation is equatorward.

Analogous behavior is observed in atmospheric waves propagating along
sloping terrain, as discussed in Section 8.2.

Barotropic ocean eddies propagating along a continental shelf, as envi-
sioned in Exercise 7.36.
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7.37 During winter in middle latitudes, the meridional temperature gradient is
typically on the order of 1◦ per degree of latitude, while potential tem-
perature increases with height at a rate of roughly 5◦C km−1. What is a
typical slope of the potential temperature surfaces in the meridional plane?
Compare this result with the slope of the 500-hPa surface in Exercise 7.19.

In the meridional plane

dθ =
∂θ

∂y
dy +

∂θ

∂z
dz

On a potential temperature surface dθ = 0. Hence,

dz

dy
= −∂θ/∂y

∂θ/∂y

Substituting values yields

dz

dy
=
1 K per 111 km
5 K per km

∼ 0.01
5

= 2× 10−3

Comparing with Exercise 7.19, we find that the isentropic in extratropical
latitudes surfaces slope about an order of magnitude more steeply than
the pressure surfaces

7.38 Making use of the approximate relationship ω ' −ρgw show that the
vertical motion term

(
κT

p
− ∂T

∂p
)ω

in Eqn. (7.37) is approximately equal to

−w(Γd − Γ)

where Γd is the dry adiabatic lapse rate and Γ the observed lapse rate.

The vertical motion term is approximately equal to

−(κT
p
− ∂T

∂p
)ρgw

From the equation of state

κT

p
=

RT

cpp
=

α

cp

From the hydrostatic equation

−∂T
∂p

=
1

ρg

∂T

∂z

18



Substituting yields

−
µ
α

cp
+
1

ρg

∂T

∂z

¶
ρgw

Simplifying and using the definitions Γ ≡ −∂T/∂z and Γd ≡ g/cp yields

−w(Γd − Γ)

7.40 In middle-latitude winter storms, rainfall (or melted snowfall) rates on
the order of 20 mm day−1 are not uncommon. Most of the convergence
into these storms takes place within the lowest 1—2 km of the atmosphere
(say, below 850 hPa) where the mixing ratios are on the order of 5 g kg−1.
Estimate the magnitude of the convergence into such storms.

Rainfall rate = − (∇ ·V) δp
g
w

where δp is the depth of the layer (expressed in units of Pa) in which the
precipitation is occurring and w is the water vapor mixing ratio (expressed
in dimensionless units). A rainfall rate of 20 mm day−1 is equivalent to
a mass flux per unit area of 20 kg per 86,400 s−1 or 2.31 × 10−4 kg s−1.
Substituting values into (1) and solving for the convergence − (∇ ·V)
yields

− (∇ ·V) =
2.31× 10−4

(1.5×104)
9.8 × 5× 10−3

= 3.02× 10−5 s−1

7.43 Averaged over the mass of the atmosphere, the root mean squared velocity
of fluid motions is ∼17 m s−1. By how much would the center of gravity of
the atmosphere have to drop in order to generate the equivalent amount
of kinetic energy?

The kinetic energy per unit area is given by

KE =

µ
p0
g

¶
V 2

2

where V is the root mean squared velocity, p is the mean surface pressure,
and g is gravity. The potential energy (per unit area) released by lowering
the center of mass of the atmosphere by the increment δz is given by

δPE =

µ
p0
g

¶
δΦ =

µ
p0
g

¶
gδz

where Φ is geopotential. Hence,

δz =
V 2

2g
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Substituting values, we obtain

δz =
(17)2

2× 9.8 = 14.7 m

7.44 Suppose that a parcel of air initially at rest on the equator is carried
poleward to 30◦ latitude in the upper branch of the Hadley cell, conserving
angular momentum as it moves. In what direction and at what speed will
it be moving when it reaches 30◦?

The angular momentum per unit mass of air moving with zonal velocity
u is

M = (ΩRE cosφ+ u)RE cosφ

where Ω and RE are the rotation rate and radius of the Earth. For an air
parcel at rest on the equator

M = ΩR2E

If the air parcel moves poleward to latitude φ,ΩR2E while conserving an-
gular momentum,

(ΩRE cosφ+ u)RE cosφ = ΩR
2
E

Solving for the zonal velocity

u =
ΩR2E

¡
1− cos2 φ¢

RE cosφ

Substituting values Ω = 7.29 × 10−5 s−1, RE = 6.37 × 106 and cosφ =√
3/2, we obtain u = 120 m s−1.

7.45 On average over the globe, kinetic energy is being generated by the cross-
isobar flow at a rate of ∼2 W m−2. At this rate, how long would it take
to “spin up” the general circulation, starting from a state of rest?

The “spin up” time is

T =
KE

G
(1)

where

KE =

µ
p0
g

¶
V 2

2

is the kinetic energy of the atmospheric circulation and G is the rate of
kinetic energy production. Assume a root-mean-squared velocity of fluid
motions of 17 m s−1, as in Exercise 7.43. Substituting values into (1), we
obtain

T ∼ 1.5× 10
6 J m−2

2 W m−2
∼ 7× 105 or about a week
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7.46 The following laboratory experiment provides a laboratory analog for the
kinetic energy cycle in the atmospheric general circulation.

A tank with vertical walls is filled with a homogeneous (constant density)
incompressible fluid. The height of the undulating free surface of the fluid
is Z(x, y).

(a) Since the density of the fluid is horizontally uniform, pressure de-
creases with height at a uniform rate as well. Hence,

∂P

∂z
=

∂

∂z

µ
1

ρ
∇p
¶
= 0

everywhere within the fluid. If follows that the pressure gradient
force on any horizontal surface within the fluid must be exactly the
same as that at the level corresponding to the low point on the free
surface, where

P = −g∇Z (1)

(b) Since the density of the fluid is constant,

d

dt
δxδyδz = 0

following an imaginary block of fluid as it moves about in the tank.
Proceeding as in the proof of (7.2) in the text, we obtain

∇ ·V+ ∂w

∂z
= 0 (2)

Note that this relationship does not hold for a compressible fluid , but
if the motion is hydrostatic, an analogous relation [i.e., Eq. (7.39a)]
can be derived in pressure coordinates.

(c) Integrating (1) from the bottom (B) to the top (T ) of the layer of
fluid in the tank yields

wT − wB = −
Z T

B

(∇ ·V) dz

If we assume that V and (∇ ·V) are independent of height and that
wB = 0, the integration yields

wT =
dZ

dt
= −Z (∇ ·V) (3)

where Z is the mean height of the free surface of the fluid. From here
onward we will assume that the vartations in the height of the free
surface Z are small in comparison to the mean height [Z] of the free
surface, in which case,

dZ

dt
= −[Z] (∇ ·V) (4)
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Hence, the free surface of the fluid in the tank is rising in areas of
convergence and sinking in areas of divergence.

(d) The potential energy of the fluid in the tank is

PE =

Z Z Z
ρgzdxdydz

= ρg

Z Z Z
zdxdydz

Integrating ftom the bottom of the tank up to the height of the free
surface yields

PE =
1

2
ρg

ZZ
Z2dA

=
1

2
ρg

ZZ
[Z]2dA+

1

2
ρg

ZZ
Z02dA

where dA = dxdy and Z 0 is the difference between the local height
of the free surface and the area-averaged height [Z] of the fluid in
the tank. Provided that the volume of fluid in the tank is constant,
the first term cannot change with time. Hence, the vartable part of
the potential energy, which is "available" for conversion to kinetic
energy, is given by

APE =
1

2
ρg

ZZ
Z 02dA (5)

Note that available potential energy (APE ) is a positive definite
quantity; i.e., it is zero if the surface of the fluid in the tank is per-
fectly flat and it is positive if there are any variations in the height
of the surface. If the fluid tank started out with a wavy free surface
and if, over the course of time, the surface became flatter, PE would
decrease (i.e., be released for conversion to kinetic energy). APE, as
defined in (5) is the maximum possible amount of PE that could be
released in this manner.

(e) The rate of release of APE may be estimated by differentiating (5)
with respect to time

− d

dt
APE = −ρg

ZZ
Z0

dZ0

dt
dA (6)

= −ρg
ZZ

Z0w0T dA

Hence, available potential energy will be released if the fluid is sinking
in the regions of the tank where the free surface is raised relative to
the reference level [Z] and rising in regions of the tank in which the
free surface is depressed. Vertical motions in this sense will tend to
flatten the free surface, thereby reducing the APE.
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(f) Combining (4) and (6) yields

− d

dt
APE = −ρg [Z]

ZZ
Z0 (∇ ·V) dA (7)

Hence, potential energy is released if the fluid in the tank is tending
to diverge (horizontally) out of areas in which the surface is raised,
relative to the reference level, and converge into areas in which the
surface is depressed. This is analogous to air diverging out of highs
and converging into lows in the Earth’s atmosphere.

(g) Since the tank is cylindrical and fluid cannot flow through the walls,
it can be inferred from Gauss’s theorem [i.e., from Eq. (7.4) with Vn
replaced by Z0Vn and (∇ ·V) by (∇ · Z0V)] thatZZ

(∇ ·VZ 0) dA = 0 (8)

Integrating by parts yieldsZZ
Z0 (∇ ·V) dA = −

ZZ
(V ·∇Z0) dA

Substituting into (7) yields

− d

dt
APE = −ρg [Z]

ZZ
(V ·∇Z)dA (9)

From (1) the pressure gradient force P in the horizontal equation of
motion is proprtional to ∇Z and directed down the Z (or pressure)
gradient from higher toward lower values. Hence, (9) indicates that
potential energy is being released if, on average over the area of the
tank, the horizontal velocityV is directed down the pressure gradient,
in the direction of the pressure gradient force P, in which case, work
is being done on the fluid by the pressure gradient force.

It is possible to obtain (9) by considering the production of kinetic
energy by the horizontal pressure gradient force. Start with the
horizontal equation of motion [adapted from (7.14)]

dV

dt
= −g∇Z − fk×V+F

Taking the dot product with the horizontal velocity vector V, we
obtain

d

dt

V 2

2
= −g (V ·∇Z) +F ·V (10)

The Coriolis force does not contribute to changing the kinetic energy
because it is perpendicular to the velocity vector: it contributes to
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changing the wind direction but not the wind speed. Integrating (10)
over the mass of the fluid in the tank yields

d

dt
KE = −ρg [Z]

ZZ
(V ·∇Z)dA+−ρg [Z]

ZZ
(F ·V)dA(11)

=
d

dt
APE −D

where D is the frictional dissipation of kinetic energy. In the absence
of frictional dissipation

d

dt
(APE +KE) = 0
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