Does Ambient Deep-Tropospheric Vertical Wind Shear Influence Tornado Occurrence during Landfalling Tropical Cyclones?

Ben Schenkel¹ (benschenkel@gmail.com),

Nusrat Yussouf^{1,2}, and Roger Edwards³

1: OU/NOAA CIMMS, 2: National Severe Storms Laboratory, 3: Storm Prediction Center

2018 AGU Fall Meeting

12/14/2018

 $20^{\circ}N \xrightarrow{6} 90^{\circ}W \qquad 80^{\circ}W \qquad 70^{\circ}W$

Why is there large variability in the *frequency* and location of tornadoes produced by landfalling TCs?

MotivationBackgroundResultsSummaryHow Does Ambient Vertical Wind Shear Impact TCs?

MotivationBackgroundResultsSummaryHow Does Ambient Vertical Wind Shear Impact TCs?

MotivationBackgroundResultsSummaryHow Does Ambient Vertical Wind Shear Impact TCs?

Motivation

Background

Results

Summary

How Does Ambient Vertical Wind Shear Impact TCs?

- Deep convection concentrated in downshear quadrant due to ascent from ambient shear
- Lightning closest to TC center located downshear left

Motivation

Background

Results

Summary

How Does Ambient Vertical Wind Shear Impact TCs?

- Deep convection concentrated in downshear quadrant due to ascent from ambient shear
- Lightning closest to TC center located downshear left quadrant
- Lightning at outer region largely located in downshear right quadrant

Credit: Corbosiero and Molinari (2002)

<u>Legend</u> Lightning Strike

Summary: Ambient vertical wind shear provides favorable environments for deep convection and supercells in downshear quadrants of TC

Can ambient deep-tropospheric vertical wind shear explain the differences among TCs in tornado frequency and location?

 Hypothesis: Strong ambient deep-tropospheric vertical wind shear – 1) enhances tornado frequency and 2) concentrates tornadoes in downshear quadrants of TC

- Hypothesis: Strong ambient deep-tropospheric vertical wind shear 1) enhances tornado frequency and 2) concentrates tornadoes in downshear quadrants of TC
- Tornado data: Storm Prediction Center TC Tornado data (Edwards 2010) includes TC tornadoes from 1995–2017 (N=1264 Tornadoes, 83 TCs)

- Hypothesis: Strong ambient deep-tropospheric vertical wind shear 1) enhances tornado frequency and 2) concentrates tornadoes in downshear quadrants of TC
- Tornado data: Storm Prediction Center TC Tornado data (Edwards 2010) includes TC tornadoes from 1995–2017 (N=1264 Tornadoes, 83 TCs)
- TC track data: National Hurricane Center Best-Track data for TCs from 1995–2017 (Knapp et al. 2010)

- Hypothesis: Strong ambient deep-tropospheric vertical wind shear 1) enhances tornado frequency and 2) concentrates tornadoes in downshear quadrants of TC
- Tornado data: Storm Prediction Center TC Tornado data (Edwards 2010) includes TC tornadoes from 1995–2017 (N=1264 Tornadoes, 83 TCs)
- TC track data: National Hurricane Center Best-Track data for TCs from 1995–2017 (Knapp et al. 2010)
- Ambient deep-tropospheric vertical wind shear data: calculated from ECMWF ERA-Interim reanalysis following Davis et al. (2008):

- Hypothesis: Strong ambient deep-tropospheric vertical wind shear 1) enhances tornado frequency and 2) concentrates tornadoes in downshear quadrants of TC
- Tornado data: Storm Prediction Center TC Tornado data (Edwards 2010) includes TC tornadoes from 1995–2017 (N=1264 Tornadoes, 83 TCs)
- TC track data: National Hurricane Center Best-Track data for TCs from 1995–2017 (Knapp et al. 2010)
- Ambient deep-tropospheric vertical wind shear data: calculated from ECMWF ERA-Interim reanalysis following Davis et al. (2008):
 - 1. Compute ambient wind field at 850-hPa and 200-hPa by removing irrotational and nondivergent TC winds within 500 km radius of TC center

- Hypothesis: Strong ambient deep-tropospheric vertical wind shear 1) enhances tornado frequency and 2) concentrates tornadoes in downshear quadrants of TC
- Tornado data: Storm Prediction Center TC Tornado data (Edwards 2010) includes TC tornadoes from 1995–2017 (N=1264 Tornadoes, 83 TCs)
- TC track data: National Hurricane Center Best-Track data for TCs from 1995–2017 (Knapp et al. 2010)
- Ambient deep-tropospheric vertical wind shear data: calculated from ECMWF ERA-Interim reanalysis following Davis et al. (2008):
 - 1. Compute ambient wind field at 850-hPa and 200-hPa by removing irrotational and nondivergent TC winds within 500 km radius of TC center
 - 2. Compute **850–200-hPa vertical wind shear** from wind field without TC and average within 500 km radius of TC center

	Motivation	Background	Results	Summary
Data	and Methods			

• TCs are separated into two ambient deep-tropospheric vertical wind shear categories (e.g., Molinari and Vollaro 2010):

Motivation	Background	Results	Summary	
Data and Met	hods			

- TCs are separated into two ambient deep-tropospheric vertical wind shear categories (e.g., Molinari and Vollaro 2010):
 - **1. Strong** ambient vertical wind shear: $\geq 10 \text{ m s}^{-1}$

	Motivation	Background	Results	Summary
Data a	and Methods			

- TCs are separated into two ambient deep-tropospheric vertical wind shear categories (e.g., Molinari and Vollaro 2010):
 - **1. Strong** ambient vertical wind shear: $\geq 10 \text{ m s}^{-1}$
 - 2. Weak-to-moderate ambient vertical wind shear: <10 m s⁻¹

	Motivation	Background	Results	Summary
Data	and Methods			

- TCs are separated into two ambient deep-tropospheric vertical wind shear categories (e.g., Molinari and Vollaro 2010):
 - **1. Strong** ambient vertical wind shear: $\geq 10 \text{ m s}^{-1}$
 - 2. Weak-to-moderate ambient vertical wind shear: <10 m s⁻¹
- Analysis will assess sensitivity of tornado frequency and location in TCs binned according to strong or weak-to-moderate ambient vertical wind shear

Variation of TC Tornado Frequency with Ambient Vertical Wind Shear

- Majority of tornadoes occur in strongly sheared TCs
- Landfalling TCs undergo weak-tomoderate ambient vertical wind shear

Variation of TC Tornado Frequency with Ambient Vertical Wind Shear

- Majority of tornadoes occur in strongly sheared TCs
- Landfalling TCs
 undergo weak-to moderate ambient
 vertical wind shear
- Strongly sheared landfalling TCs produce tornadoes at greater percentage of time

Strong ambient shear: 1) *more* tornadoes and 2) tornadoes *exclusively* occur in downshear quadrants

Strong ambient shear: 1) *more* tornadoes and 2) tornadoes *exclusively* occur in downshear quadrants

Weak-to-moderate shear: 1) *fewer* tornadoes and 2) *most, but not all* tornadoes occur in downshear quadrants