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Why is there large variability in the frequency 
and location of tornadoes produced by 

landfalling TCs? 
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above 300 m2 s22, extended throughout the downshear
region. Only one point exceeded 100 m2 s22 directly
upshear.

Figure 4 shows the radial distribution of helicity for
small and large ambient shear. For small ambient shear,
helicity was slightly larger downshear, but mean values
remained below 100 m2 s22. For strongly sheared storms,
the upshear–downshear differences amounted to almost
an order of magnitude outside the 200-km radius.

Figure 5 shows mean radial velocity upshear and
downshear, averaged over radii of 75–400 km, for both
small (Fig. 5a) and large (Fig. 5b) ambient shear. For the
reasons given in section 2, the measured radial velocity
(rather than that relative to the tropical cyclone motion)
is shown. When ambient shear was small, upshear and
downshear mean radial velocity showed only modest
differences. For highly sheared storms, radial velocity
increased upward from the surface (strong inflow) to
the 6-km level (strong outflow) downshear of the cen-
ter. Upshear of the center, radial velocity increased up-
ward only in the boundary layer. As a result, mean
inflow depth downshear exceeded that upshear by a
factor of 4.

Figure 5 is suggestive of results shown previously.
Schneider and Barnes (2005) showed maximum inflow
depths in the northwest quadrant of Hurricane Bonnie
(1998) when the storm was near landfall. Using the ambi-
ent vertical shear at that time shown by MV08, this deep

inflow occurred downshear left. Similarly, Sitkowski and
Barnes (2009) showed maximum inflow depths exceed-
ing 4 km, also downshear left, in Hurricane Guillermo
(1997) during its period of rapid intensification.

FIG. 3. Location of dropsondes and 0–3-km helicity values for (a) small ambient vertical wind shear and (b) large ambient shear.
Dropsonde locations have been positioned with respect to the moving center at the time of their splashdown and have been rotated with
respect to the ambient vertical wind shear following Corbosiero and Molinari (2002). The right half represents downshear. Range circles
are shown every 100 km. Gray dots represent helicity ,100 m2 s22; small red dots 100 m2 s22 # SREH , 200 m2 s22; medium red dots
200 m2 s22 # SREH , 300 m2 s22; large red dots $300 m2 s22. Helicity was not calculated within 75 km of the center (shaded) because of
potential errors associated with sonde drift.

FIG. 4. Radial variation of 0–3-km helicity (m2 s22) averaged
over 75–200, 200–300, and 300–400 km for TCs experiencing (left)
small and (right) large ambient shear. Upshear means are in blue
and downshear in red.
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Figure 4 shows the radial distribution of helicity for
small and large ambient shear. For small ambient shear,
helicity was slightly larger downshear, but mean values
remained below 100 m2 s22. For strongly sheared storms,
the upshear–downshear differences amounted to almost
an order of magnitude outside the 200-km radius.
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above 300 m2 s22, extended throughout the downshear
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an order of magnitude outside the 200-km radius.
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(rather than that relative to the tropical cyclone motion)
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ward only in the boundary layer. As a result, mean
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ECMWF ERA-Interim reanalysis following Davis et al. (2008):

1. Compute ambient wind field at 850-hPa and 200-hPa by removing 
irrotational and nondivergent TC winds within 500 km radius of TC center
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Data and Methods
• TCs are separated into two ambient deep-tropospheric vertical wind shear 
categories (e.g., Molinari and Vollaro 2010):

1. Strong ambient vertical wind shear: ≥10 m s-1

2. Weak-to-moderate ambient vertical wind shear: <10 m s-1

• Analysis will assess sensitivity of tornado frequency and location in TCs 
binned according to strong or weak-to-moderate ambient vertical wind shear

Background Results SummaryMotivation
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• Majority of 
tornadoes occur in 
strongly sheared 
TCs

• Landfalling TCs 
undergo weak-to-
moderate ambient 
vertical wind shear 

• Strongly sheared 
landfalling TCs 
produce tornadoes 
at greater 
percentage of time
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Strong Ambient Vertical Wind Shear • Nearly all 
tornadoes occur in 
downshear half of 
TC

• Inner core 
tornadoes occur in 
downshear left 
quadrant

• Outer region 
tornadoes occur in 
downshear right 
quadrant

Shear Vector
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• Tornadoes 
primarily occur in 
downshear 
quadrants 
regardless of 
ambient shear 
magnitude
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• Tornadoes in 
weakly-to-
moderately 
sheared TCs 
occur in all 
quadrants except 
upshear right

• Nearly all 
tornadoes occur 
downshear in TCs 
undergoing strong 
ambient shear
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Summary and Discussion
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Strong ambient shear: 1) more tornadoes 
and 2) tornadoes exclusively occur in 
downshear quadrants

Weak-to-moderate shear: 1) fewer
tornadoes and 2) most, but not all
tornadoes occur in downshear quadrants


