How does the relationship between ambient deep-tropospheric vertical wind shear and tropical cyclone tornadoes change between coastal and inland environments?

Ben Schenkel (CIMMS/NSSL; <u>benschenkel@ou.edu</u>), Michael Coniglio (NSSL), Roger Edwards (SPC)

> Paper number: 18A.1 Live session time: 10:35 am, Friday, May 14 Session: Hurricane Hazards at Landfall

> > Funding from NSF AGS-2028151

- Westerly vertical wind shear favors tornadoes in downshear half of TC due to (Schenkel et al. 2020):
 - 1. Enhancement of TC secondary circulation downshear (Black et al. 2002);
 - 2. Constructive superposition of ambient and TC winds (Molinari and Vollaro 2008).

- Inland TC encounters stronger vertical wind shear further concentrating tornadoes downshear due to:
 - 1. Further enhancement of TC secondary circulation downshear;
 - 2. Stronger superposition between ambient and TC winds;

- Inland TC encounters stronger vertical wind shear further concentrating tornadoes downshear due to:
 - 3. Interaction of TC with pre-existing baroclinic zone.

Does ambient vertical wind shear more strongly impact the number and location of inland TC tornadoes?

- **Hypothesis:** Ambient deep-tropospheric vertical wind shear is a key factor impacting the occurrence of inland tropical cyclone tornadoes;
- TC tornado data: Storm Prediction Center TC tornado data from 1995– 2019 (N=1304 Tornadoes, 90 TCs; Edwards 2010);
- Ambient deep-tropospheric vertical wind shear data: 850–200-hPa vertical wind shear (with TC wind field removed) averaged within 500 km of TC using ECMWF ERA-5 reanalysis data for all TCs from 1995–2019 (Davis et al. 2008);
- Coastline data: Defined using 1-km Global Self-consistent, Hierarchical, High-resolution Geography (GSHHG) data (Wessel and Smith 1996).

- Vertical wind shear magnitude: Based on terciles of vertical wind shear distribution for all Atlantic TCs;
 - Strong: >11.2 m s⁻¹
 - Moderate: 6.8–11.2 m s⁻¹
 - Weak: <6.8 m s⁻¹
- **Coastal distance:** Based on terciles of TC tornado distance from coast;
 - Coastal: 0–23 km
 - Transition: 23–125 km
 - Inland: >125 km
- Analyze tornado number and location for TCs among these **nine** combinations of vertical wind shear and coastal distance regimes.

Introduction

Background

Results

Summary

Influence on TC Tornado Location

Introduction

Background

Results

Summary

Influence on TC Tornado Location

 As TCs move inland, tornadoes are increasingly favored in outer regions over narrower range of downshear azimuths.

Schenkel, Coniglio, and Edwards (2021)

- Used TC tornado reports to investigate sensitivity of tornado number and location to ambient vertical wind shear in coastal versus inland environments;
- Our study concluded that:
 - 1. Tornadoes occur more frequently in strongly sheared TCs with increasing distance inland;
 - 2. Tornadoes become increasingly concentrated in outer radii of downshear quadrants with increasing distance inland.
- For more information: Schenkel, B. A., Coniglio, M., & Edwards, R. (2021). How Does the Relationship between Ambient Deep-Tropospheric Vertical Wind Shear and Tropical Cyclone Tornadoes Change between Coastal and Inland Environments?, *Weather and Forecasting*, **36**, 539–566.