

A Simple Statistical Model for the Lifetime Evolution of Outer Tropical Cyclone Size

1: University of Oklahoma, 2: Princeton University, 3: Purdue University, 4: University at Albany, SUNY

1. Introduction

Motivation

- Tropical cyclone (TC) wind field modeling has generally assumed a non-varying, uniform outer TC size (Emanuel et al. 2006);
- Outer TC size, however, can exhibit substantial fluctuations over storm lifetime (Cocks and Gray 2002);
- Accurate estimates of TC hazards (e.g., storm surge) require realistic estimates of outer TC size (Lin et al. 2014).

Objective

Construct a simple statistical model for outer TC size for North Atlantic (NA) storms to improve quantification of TC hazards.

2. Methodology

Datasets

- NA TCs (maximum azimuthal-mean 10-m azimuthal wind \geq 15 m/s) over ocean during 1979–2010 in IBTrACS (Knapp et al. 2010) are examined:
- TC wind field taken from 6-h 0.5° NCEP Climate Forecast System Reanalysis (Saha et al. 2010).

Methods

- Outer Size Metric: radius in which azimuthalmean 10-m azimuthal wind equals 8 m/s (r_8) derived following Chavas and Vigh (2014);
- Statistical r₈ model provides r₈ at three TC lifetime milestones:
 - 1. TC Genesis r₈ (r_{8,genesis});
 - 2. Lifetime Maximum r₈ (r_{8.max});
 - 3. End of Lifetime r₈ (r_{8.end}).
- TC lifetime: length of time in which TC maximum azimuthal-mean 10-m azimuthal wind \geq 15 m/s;
- Predictors for each lifetime milestone chosen stepwise multilinear regression using employing backward and forward selection at 5% confidence level;
- Model with median performance examined from 1000 model iterations constructed by randomly resampling TCs using bootstrap approach;
- 60% of cases are used for training and 40% of cases for validation

r₈. $_{1400}$ a)

Ben Schenkel¹ (benschenkel@gmail.com), Ning Lin², Dan Chavas³, Michael Oppenheimer², and Alan Brammer⁴

AMS Poster: 801