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Motivation

 Tropical cyclones (TCs) cause extreme social and financial burdens

« Operational track forecasts have improved over the last several
decades, but intensity forecasts have not seen similar gains
(Franklin, 2008)

« Recent work has uncovered important aspects of TC dynamics
including Vortex Rossby waves (Montgomery and Kallenbach, 1997)
and eyewall mesovortices (Schubert et al., 1999) that possibly have
implications for predicting TC intensity fluctuations

« Much remains to be discovered to improve the understanding of TCs

« Given the link between intensity change and vortex efficiency as
seen in previous research (Schubert and Hack, 1982), it would be
natural to study curvature vorticity and shear vorticity given its
relationship with vortex efficiency

« The following study attempts to provide insight into the issue of TC
intensity changes using curvature vorticity and shear vorticity



Previous Work
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TC Vorticity Budget Studies

« No budget studies have been done for
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Curvature Vorticity and Shear Vorticity Studies

 Curvature vorticity and shear vorticity are important for describing
the curvature of the flow

 Pichler and Steinacker (1987) determined that the stretching of
vorticity followed by the conversion of vorticity from shear to
curvature was important for orographically induced cyclogenesis

« Bell and Keyser (1993) presented a case study showing the
importance of shear potential vorticity to curvature potential
vorticity exchanges in transforming a diffluent trough to a cutoff low



Background



Natural Coordinate System

« Flow following coordinate system consisting of s-axis and n-axis
 s-axis is tangent to the velocity vector at a given point
« n-axis is 90° counterclockwise with respective to the s-axis

« Orientation of coordinate axis defined with respect to Cartesian coordinate system
with angle a representing the angle between the s-axis and x-axis
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Schematic of natural coordinate system (Bell and Keyser, 1993)
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Dynamics Review

 Absolute vorticity comprised of three components:

E=frg=14{ +¢,

« Curvature vorticity: rotation caused by
the directional turning of the flow 1
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« Shear vorticity: rotation due to
change in wind speed normal
to the flow
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Shear and Curvature Vorticity
Tendency Equations

«  Curvature and shear vorticity tendency equations as given in Bell and
Keyser (1993)

« Terms boxed in red are shear to curvature vorticity conversion term

Curvature Vorticity Tendency Equation:
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Vorticity and the Efficiency of TC Heating

Vortex efficiency defined by Schubert and Hack (1982) as:

« Vortex efficiency is dependent on the inertial stability:
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Vorticity and the Efficiency of Tropical

Cyclone Heating

Increasing Vortex
Efficiency/Radial
Temperature Gradient

Heiglht

Increasing Vorticity/
Inertial Stability (2) Heat Source

Secondary circulation induced by heat source placed inwards of
RMW (Elsberry, 1995)

«  For balanced vortex, inertial stability becomes:

7’ =[f+& +EF+22.]  where ./;C:VEH and 4%

« Increasing curvature or shear vorticity yields increased inertial stability

«  For vorticity conversions, only increasing curvature and decreasing shear will lead to
increased inertial stab111ty



Questions to be Answered...

« What is the spatial distribution of each term in the curvature
vorticity and shear vorticity tendency equations?

« What are the mechanisms responsible for forcing each term?
« Which tendency terms are important in each budget equation?

 Isthere any relation between the tendency terms and intensity
changes?



Methodology



Storm History for TC lvan

« TC Ivan (2004)
simulated using
MM5

« Simulation covers
strengthening from
tropical storm to
weak hurricane

« Simulation
conducted over 48
hour period from
0600 UTC
September 3 — 0600
UTC September 5
2004
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R
MM5 Simulation Methodology

Series of one way nests with horizontal resolutions of 36, 12, and 4 km
with 43 sigma levels

e  Initial and boundary conditions from NCEP 1° x 1° FNL Analysis used for
coarsest domain
. Physics options:

Explicit convective scheme in 4 km domain and Kain-Fritsch
convective parameterization in 12 and 36 km domains

Blackadar planetary boundary layer scheme (Blackadar 1979)
Cloud-radiation scheme (Dudhia et al., 2004)
Goddard microphysics explicit moisture scheme (Tao et al. 1989)

Five-layer soil model (Dudhia, 1996)
. Data was outputted hourly and interpolated onto uniform grid

«  Center of storm defined using methodology similar to Braun (2002)



Simulation Verification

« Minimum sea level pressure verifies well, but maximum surface
winds do not

« Track corresponds well with MM5 simulation moving slightly faster
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Vorticity Budget Calculation Methodology

« Calculations performed using equations given in
Bell and Keyser (1993) using MM5 data

« Computations performed on innermost domain with
first six hours disregarded

 Divergence adjustment performed using method of
O’Brien (1970)

e Vertical velocities recalculated from corrected
divergence using isobaric continuity equation

« Error reduction performed on each vorticity
tendency budget to reduce residuals

« Budgets are computed in an Earth relative reference
frame



Confirmation of Results

« Computations involving case study from Bell and Keyser (1993) show results are
similar

« Bell and Keyser use PV while calculations in this case done for vorticity using
North American Regional Reanalysis (NARR) interpolated to 315 K isentropic
surface and to a horizontal resolution of 0.75°

Shear to curvature potential vorticity iSRWL L sbweswsow s edw R 0w s
conversion term (PVU / (6 hr)*) from Bell Shear to curvature vorticity conversion (1079 s2)
and Keyser (2003) at 315 Kon 0600 UTC calculated from NARR interpolated to 315 K on

September 19 1986 0600 UTC September 19 1986



Budgets for TC Ivan (2004)



Impact of Environmental Flow Upon the TC

Northerly to northeasterly shear throughout simulation with weak to
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Relative Vorticity

- Relative vorticity maximum becomes smaller and more symmetric
with time

- Relative vorticity is sum of curvature vorticity and shear vorticity
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Curvature Vorticity Budgets



Curvature Vorticity

 Curvature vorticity maxima becomes more symmetric and
concentrated over time indicating smaller radius of flows
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Vertical Advection of Curvature Vorticity

Pressure (hPa)

Negative tendency consistently found on South and West part of TC

Negative tendencies found at low levels associated with upgradient advection of
curvature vorticity
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Shear to Curvature Vorticity Conversion Term
« Dipole in vorticity tendency term at low levels N da S ( 5¢)

oS dt _5n oS

 Banded nature of conversions on eastern half of TC

« Net negative contribution at small radii at later hours in simulation
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Shear to Curvature Vorticity Conversion
Term 2

« Conversion term 2 is more dominant of terms spatially
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Shear to Curvature Vorticity Conversion
Term 2 Mechanism

As a reasonable approximation consider a symmetric TC with geopotential minimum
at center and maximum pressure gradient force at radius of maximum winds

5¢inner > §¢outer

Afssume vertical shear induces diffluence on right side of TC, confluence on left side
of TC

On right side of vortex , diffluence leads to positive conversion
On left side of vortex, confluence leads to negative conversion
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Stretching of Absolute Curvature Vorticity

 Stretching of curvature vorticity follows that of divergence field

« Small negative tendencies associated with divergence found at inner
radii and aloft

« Positive tendencies due to surface convergence _(4 ¢ T f )V -V
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Tilting of Curvature Vorticity

« Tendencies limited to western side of vortex due to along flow gradient
of vertical motion with predominantly positive values

« Temporally inconsistent net contribution on scale of mean ow O
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Summary of Results

« Each of the terms examined was shown to have
distinct asymmetries throughout the domain

- Difficulties exist in trying to estimate the net
contribution of each term and making an
intercomparison of terms

- Layer averages of areal averages of terms and
their magnitudes are used to relate terms to each
other

» Only results for the lowest layer, extending from
050 — 750 hPa, are shown



Hourly Time Series of Intensity

 Storm goes through
three periods of
intensity change
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Intercomparlson of Terms

« Magnitude of all terms increases throughout simulation
 Vorticity conversion term generally has largest magnitude

 Stretching term becomes relatively more important during second
stage of intensification
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Intercomparison of Terms

« Average magnitude of vorticity conversion term is negative in
second half of simulation

 Vertical advection has strong negative contribution and stretching

has net positive tendency
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Shear Vorticity Budgets



Shear Vorticity

« Cyclonic shear vorticity maxima at center inwards of
RMW

« Anticyclonic shear vorticity outwards of RMW

l Tﬁn

« Cyclonic vorticity maximum will expand and weaken

with height
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Vertical Advection of Shear Vort1c1ty

« Negative tendency found on South/West part of TC 600 hPa —
op
« Negative tendencies found at low levels due to upgradient —
fluxes at small radii 700 hPa Net
upward
« Presence of positive tendencies inwards and negative 800 hPa s .
tendencies outwards due to expansion of RMW with height . motion
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Stretching of Shear Vorticity  -(€vV

« Positive stretching tendencies at low level with surface convergence
« Negative tendencies aloft with compensating divergence

« Negative tendencies inwards with divergence at inner radii with nascent

eye

11.7 ' '
30 o0l i I 60
L -
10.7 E 400 F |
<
o
9.7 s a 600 - i
- [7p]
(1))
8.7+ 800 [ g
-60
i | | -30 0.0 0.2 0.4 0.6 0.8 1.0
-36.5 -35.5 34,5 -33.5 Radius (Degrees)

Plan view of stretching of shear vorticity for

hour 12 at 900 hPa

Vertical cross section of wavenumber 0 from
spectral analysis at simulation hour 42



Tlltmg of Shear Vorticity o oV

Pressure (hPa)

Confined near center due to flow normal gradients of on op
vertical motion with positive values to South of storm —
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Summary of Results

» Once again the terms are shown to have
asymmetries throughout the domain making it
difficult to relate tendency terms to each other

- For purposes of comparison, layer averages of
areal averages of the terms and their magnitudes
are computed

» Only results in the lowest layer, 750 — 950 hPa,
will be shown



Intercomparison of Terms

« Curvature to shear vorticity tendency has strongest magnitude

« Stretching has large magnitude increase during latter portion of

simulation
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Intercomparison of Terms

 Curvature to shear vorticity conversion becomes predominantly
negative prior to second half of simulation

 Vertical advection negative throughout simulation

20 = Curvature to Shear Conversion 1 20| — Vertical Advection .
"o — Tilting "o — Stretching
> >
) Q -
= s 10
o} e}
5 5
= e
= = 0
'© 3]
2 =
S S
10 . 10 7
10 20 30 40 10 20 30 40
Forecast Hour Forecast Hour
Layer average of curvature to shear vorticity Layer average of vertical advection and

conversion and tilting term (108s2) stretching term (108s2)



R\
Correlation with Intensity Change

 Strong correlation between layer averages of vorticity tendency
terms and hourly intensity change (minimum sea level pressure) in
either equation not present

 Correlation coefficients computed for layer average magnitudes:

1. Show weak relationships (range from 0.24 to 0.41) that do not change
significantly throughout vertical

2.  Upper level has lowest correlation coefficient values

 Correlation coefficients computed for layer average values:

1. Values are slightly larger and have much wider range than for layer
average magnitudes

2. Little consistency between coefficients from level to level

3. Range is from 0.52 (stretching of curvature vorticity in lowest layer) to
-0.01 (shear to curvature vorticity conversion term at upper levels)

4. Existence of positive correlation coefficients at lower levels needs
further investigation



Conclusions



Conclusions

 Case study of TC Ivan (2004) simulated used in curvature vorticity
and shear vorticity budget study

« All terms showed asymmetries due to vertical wind shear

« For relevant curvature vorticity tendency terms:

1. Vertical advection contains negative values at surface and positive
values above level of maximum vorticity due to reversal of vertical
vorticity gradient

2. Shear to curvature vorticity conversion term yields dipole at low levels
with a net negative contribution at later hours in the simulation due to
divergence induced by vertical shear

3. Stretching of vorticity contains positive tendencies at surface at outer
radii associated with convergence and negative tendencies aloft and at
inner radii due to divergence.

4. Tilting tendencies limited to western side of TC with significant
asymmetries in vertical



Conclusions

« For relevant shear vorticity tendency terms:

1. Vertical advection of vorticity associated with negative values at
the surface and both negative and positive values above level of
maximum vorticity due to reversal of vertical vorticity gradient
and expansion of RMW

2. Stretching term yields patterns similar to the corresponding
curvature vorticity tendency term

3. Tilting of vorticity contains tendencies limited to the vortex
center with significant asymmetries in the vertical especially at
mid-levels

« For both the shear and curvature vorticity tendency equations, layer
averages of magnitudes of terms showed shear to curvature vorticity
conversion term with largest average magnitude in all layers with
the tilting term also being important at mid-to-upper levels



Conclusions

« Layer averages of curvature tendency equation show net conversion
of curvature vorticity into shear vorticity, negative vertical advection
tendencies, and positive stretching tendencies

« Layer averages of shear vorticity tendency equation show net
conversion of curvature vorticity into shear vorticity and negative
vertical advection tendencies at low levels

 Correlation of layer averages with intensity change show only weak
relationships with either minimum sea level pressure or maximum
surface wind speed

« The low correlation values may be attributed to layers chosen for
averaging



E————————.
Future Work

1. Correct derivation of curvature vorticity tendency equations and
shear vorticity tendency equations as given in Viiadez and Haney
(1996) needs to be used.

2. Computations should be done in a storm relative reference frame
rather than an Earth relative frame.
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Storm Relative Versus Earth Relative

« Comparison of storm relative versus Earth relative computations for
TC Ivan (2004) dramatically impacts Eulerian time tendency and

horizontal advection terms
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Storm Relative Versus Earth Relative

Comparison does not yield substantial difference between other
terms such as shear to curvature vorticity conversion term and

stretching term
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