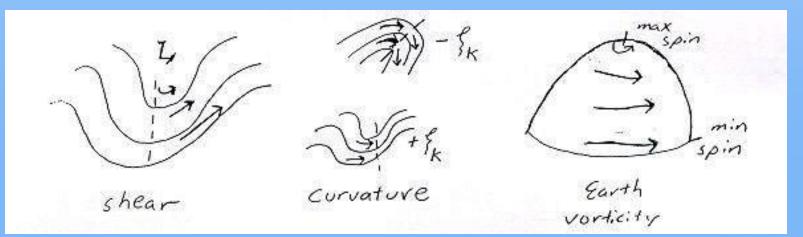
Conversion from Shear Vorticity To Curvature Vorticity, Organization of Convection, and Hurricane Genesis

> Benjamin A. Schenkel Numerical Weather Prediction 04/23/08



- Introduction: Dynamics Review
- Methodology
- Model Overview
- Results
- Conclusions

# Introduction


- Krishnamurti et. al. (1986) showed a non-divergent BAROTROPIC model had more skill than persistence for 48 hours over West Africa
- Norquist et. al. (1977) observed that conversion of energy via barotropic processes plays important role in wave maintenance and amplification after wave moves off African continent
- Thorncroft and Hodges (2001) showed correlation between occurrence of 850 mb vorticity centers and frequency of hurricanes in Atlantic
- Ability to predict genesis from AEWs key to improving tropical cyclone forecasts



Absolute vorticity composed of three components:

- I. Shear Vorticity
- 2. Curvature Vorticity
- 3. Planetary Vorticity

 $\xi = -\frac{\partial V}{\partial n} + \frac{V}{R} + f$ 



Haby, 2007: Example of shear, curvature, and planetary vorticity

# **Background Theory**

- Study argues importance of barotropic dynamics in the formation of a tropical cyclone
- Assuming there are no significant changes in latitude, absolute vorticity is materially conserved:

$$\frac{d\xi}{dt} = 0 = \frac{d\varsigma_c}{dt} + \frac{d\varsigma_s}{dt}$$

- As shear goes into curvature, parcels will move radially inward towards the center of the disturbance leading to an "organization of convection"
- The concentration of convection will allow for baroclinic based convective processes to further intensify the storm



- Keyser and Bell (1993) derive curvature and shear vorticity tendency equations in natural coordinates:
- Curvature Vorticity Tendency Equation:

$$\frac{d}{dt}(f+V\frac{\partial\alpha}{\partial s}) = \frac{-\frac{\partial V}{\partial s}\frac{d\alpha}{dt} - \frac{\partial}{\partial n}(\frac{\partial\phi}{\partial s})}{-(f+V\frac{\partial\alpha}{\partial s})\nabla_{p}\Box\vec{V} - \vec{V}\frac{\partial\omega}{\partial s}\frac{\partial\alpha}{\partial p}}$$

Shear Vorticity Tendency Equation:



- MM5 used as source for u, v, and φ that are needed for calculating shear vorticity to curvature vorticity conversions for Cartesian coordinates as derived by Bell and Keyser (1993)
- 3 single way nests with resolutions of 27 km, 9 km, and 3 km with 23 unevenly spaced vertical levels
- NCEP I° x I° FNL used for boundary and initial conditions for 27 km domain
- Innermost domain run for 48 hours
- MM5 Model Configuration:
  - Blackadar planetary boundary layer
  - Explicit convection
  - Goddard cloud microphysics
  - Cloud radiation scheme



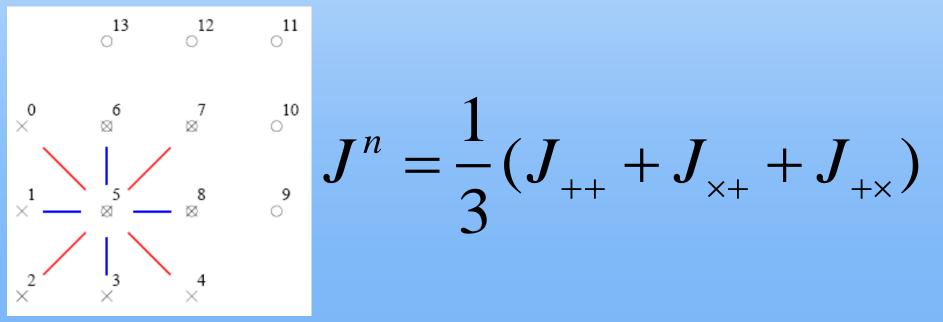
#### Used FSU Barotropic Model initialized with 3 km MM5 data 6 hours into forecast

u and v from this time were used to calculate streamfunction

- Model run for total of 42 hours with time step of I second
- Study involves developing and non-developing case:
  - I. Hurricane Helene (2006): 09/13/06 18Z 09/15/06 18Z
  - 2. NAMMA Wave #3 (2006): 08/26/06 12Z 08/28/06 12Z

# **Barotropic Model Review**

Nondivergent barotropic model used:


$$\frac{d\xi}{dt} = \frac{\partial\varsigma}{\partial t} + J(\psi, \varsigma + f) = 0$$

$$J(\psi, \varsigma + f) = u \frac{\partial \varsigma}{\partial x} + v \frac{\partial \varsigma}{\partial y} + \beta v$$

Relative vorticity generated through movement of parcels to different latitudes

# **Barotropic Model Review**

#### Advective term calculated using 9-point Arakawa Jacobian



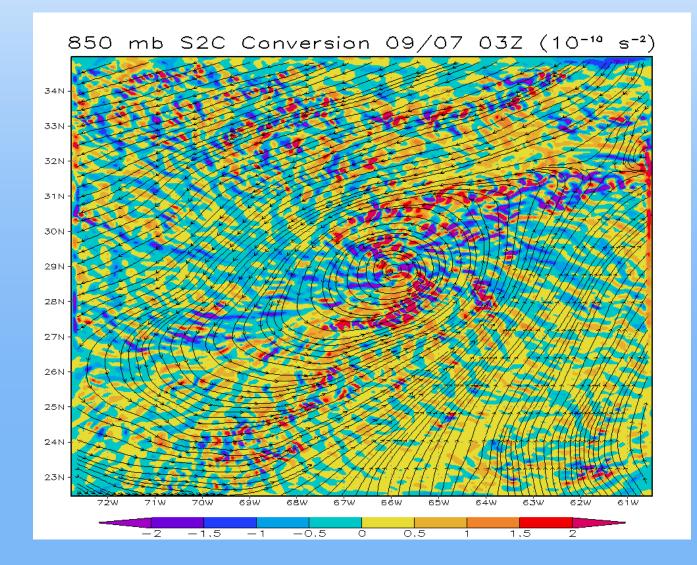
Conserves energy and enstrophy preventing nonlinear instability!

# Matsuno Time Scheme

- Multistep scheme involving "predictor" step and "corrector" step
- Predictor Step: Use forward explicit difference scheme to obtain  $u^{n+1^*}$ :

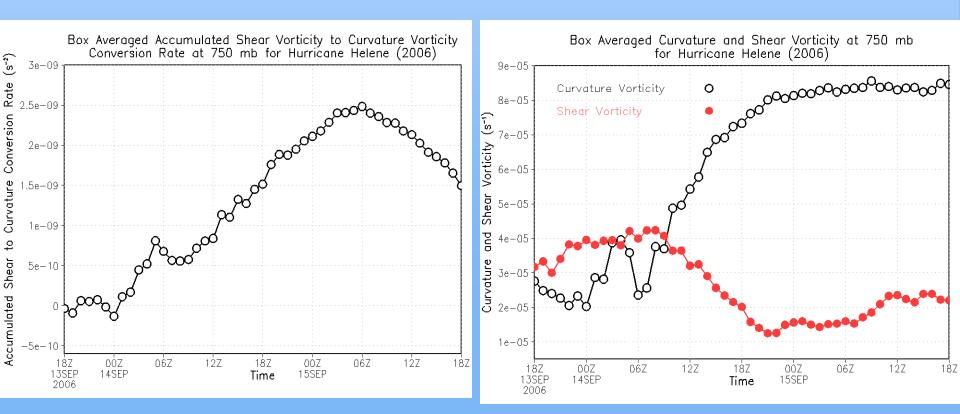
$$u^{n+1^*} - u^n = \Delta tg(u^n)$$

- Solve for  $g(u^{n+1^*})$  using  $u^{n+1^*}$
- Predictor Step: Use g(u<sup>n+1\*</sup>) to solve for u<sup>n+1</sup> using backward implicit difference scheme:


$$u^{n+1} - u^n = \Delta tg(u^{n+1^*})$$

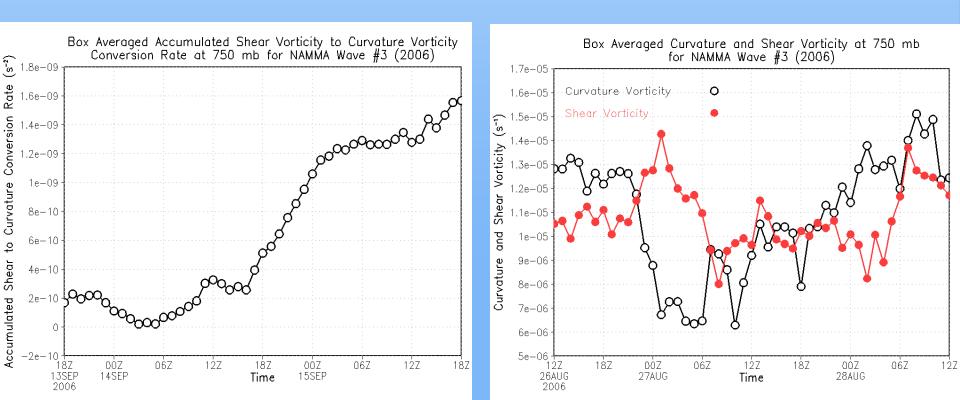
# Matsuno Time Scheme

#### Advantages:


- higher accuracy: second order accuracy
- Forward explicit and backward implicit are only first order accurate
- can use larger time step
- Disadvantage:
  - computationally expensive because evaluating g(u<sup>n</sup>) several times

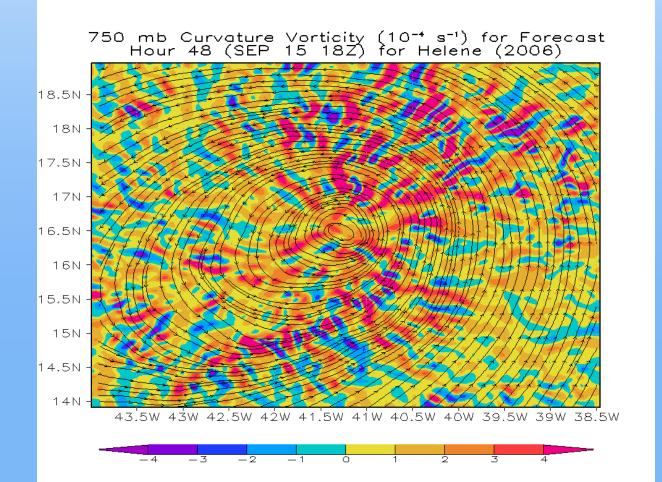
## Shear Vorticity Conversions To Curvature Vorticity Conversions




## Accumulated Shear to Curvature for MM5 Run for Hurricane Helene

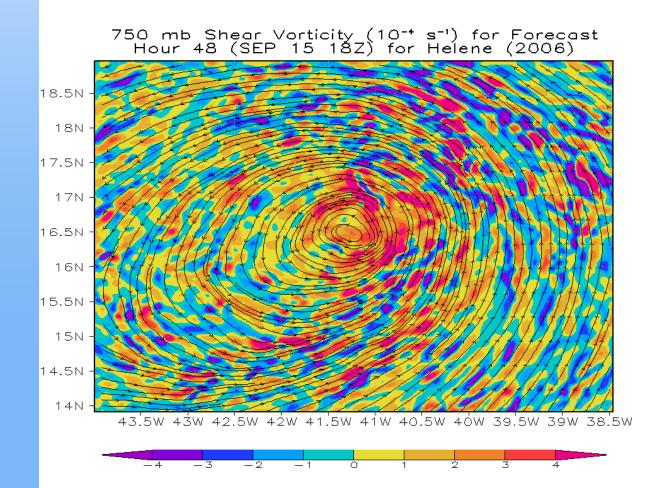
- Notice consistent conversion of shear vorticity to curvature vorticity in developing case
- Mutual exchange of shear vorticity and curvature vorticity




### Accumulated Shear to Curvature for MM5 Run for NAMMA Wave #3

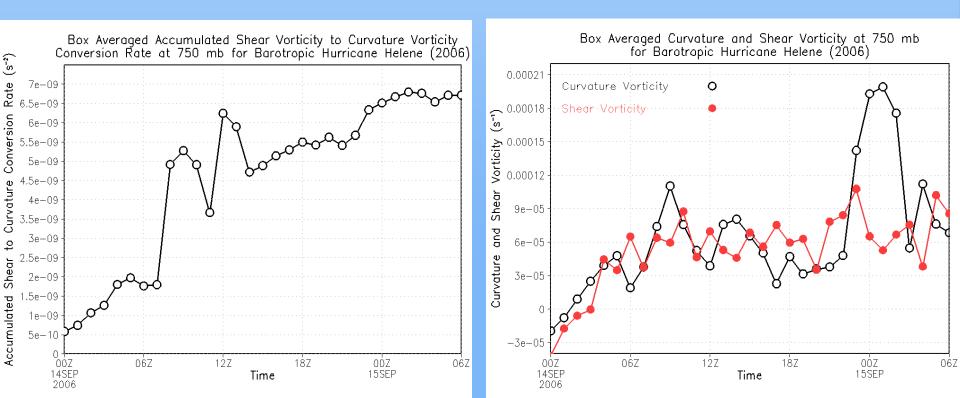
- Magnitude of conversions are smaller
- Curvature vorticity does increase, but no corresponding decrease in shear vorticity




### Curvature Vorticity and Shear Vorticity Plots

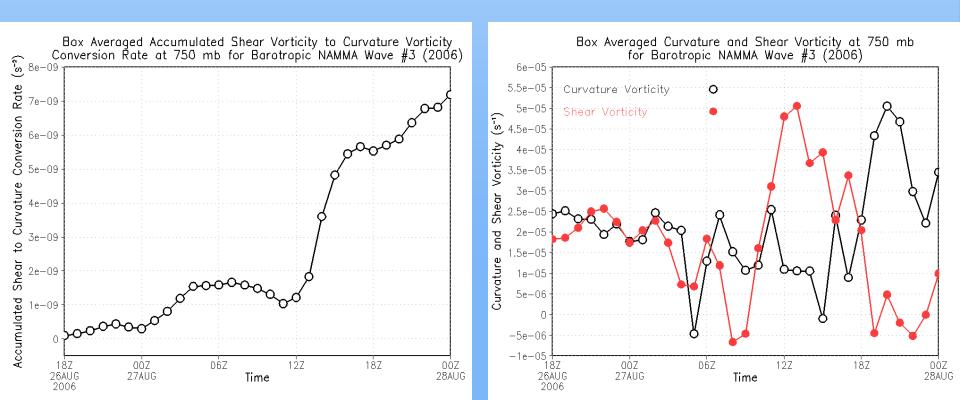
#### Curvature Vorticity normal to flow




## Curvature Vorticity and Shear Vorticity Plots

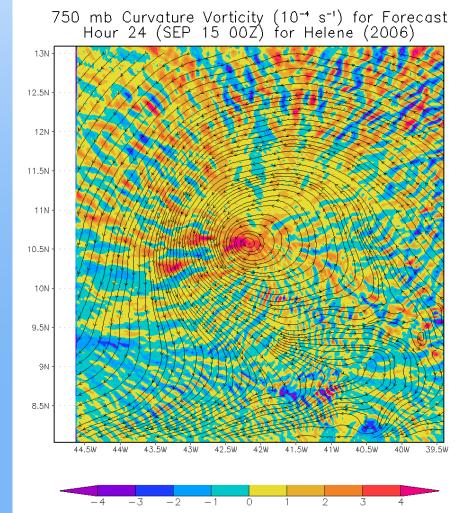
#### Shear Vorticity parallel to flow




# **Barotropic Model Results**

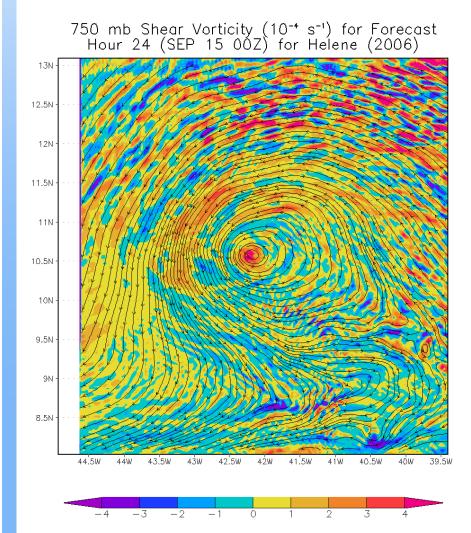
- Consistent increase in amount of shear vorticity being converted to curvature vorticity
- Signal from shear vorticity and curvature vorticity budgets is more ambiguous




# **Barotropic Model Results**

Shear vorticity being converted to curvature vorticity, but ambiguous response in shear vorticity and curvature vorticity budgets




### Barotropic Model Results: Curvature Vorticity

750 mb Curvature Vorticity (10<sup>-4</sup> s<sup>-1</sup>) for Forecast Hour 0 (SEP 14 00Z) for Helene (2006) 11.5N 11N 10.5N 10N 9.5N 9N 8.5N 8N 7.5N 7N 34.5W 34W 33.5W 33W 32.5W 32W 31.5W 31W 30.5W ЗÓW 29.5W



## Barotropic Model Results: Shear Vorticity

750 mb Shear Vorticity (10<sup>-+</sup> s<sup>-1</sup>) for Forecast Hour 0 (SEP 14 00Z) for Helene (2006) 11.5N 11N 10.5N 10N 9.5N 9N 8.5N 8N 7.5N 7N 34W 34.5W 33.5W 33₩ 32.5₩ .3Ż₩ 31.5W 31W 30.5W зо́₩ 29.5W



# Conclusions

- While MM5 hints that shear vorticity to curvature vorticity conversions are important for accounting for curvature vorticity, results from barotropic model are not definitive
  - No difference between developing and non-developing cases in terms of shear vorticity and curvature vorticity conversions
  - Response among vorticities in barotropic model runs not as clear
- Spatial structure of curvature vorticity and shear vorticity similar for MM5 and barotropic model

   → can be explained using barotropic dynamics

### Works Cited

- Bell, G. D. and Daniel Keyser, 1993: Shear and Curvature Vorticity and Potential-Vorticity Interchanges: Interpretation and Application to a Cutoff Cyclone Event. *Mon. Wea. Rev.*, 121, 76-102.
- [2] Braun, S. A., and W. K. Tao, 2000: Sensitivity of High-Resolution Simulations of Hurricane Bob (1991) to Planetary Boundary Layer Parameterizations. *Mon. Wea. Rev.*, **128**, 3941-3960.
- [3] Davis, C., and L.F. Bosart, 2002: Numerical Simulations of the Genesis of Hurricane Diana (1984). Part II: Sensitivity of Track and Intensity Prediction Mon. Wea. Rev., 130, 1100-1124.
- [4] Frank, N. 1970: Atlantic Tropical Systems of 1969. Mon. Wea. Rev., 98, 307-314.
- [5] Haby, J. cited 2007: 8 Tips to Add to Your Forecasting Knowledge. [www.theweatherprediction.com/8<sub>t</sub>ips/7a.jpg.]
- [6] Holton, J.R. An Introduction to Dynamic Meteorology. Harcourt, Brace, Jovanovich, Publishers. New York, 1992.
- [7] Keyser, D., and M. A. Shapiro, 1986: A review of the structure and dynamics of upper-level frontal zones. *Mon. Wea. Rev.*, 114, 452-499.
- [8] Kimball, S.K., and F.C. Doughterty 2006: The Sensitivity of Idealized Hurricane Structure and Development to

the Distribution of Vertical Levels. Mon. Wea. Rev., 134, 1987-2008.

- [9] Krishnamurti, T.N., 1968: A study of a developing wave cyclone. Mon. Wea. Rev., 96, 208-217.
- [10] Krishnamurti, T.N., Arun Kumar, and Xiang Li, 1986: Results of extensive integrations with simple NWP models over the tropics during FCGE. *Tellus*, **39A**, 152-160.
- [11] McFarquhar, G. M., H. Zheng, G. Heymsfield, R. Hood, J. Dudhia, J.B. Halverson, and F. Marks 2006: Factors Affecting the Evolution of Hurricane Erin (2001) and the Distribution of Hydrometeors: Role of Microphysical Processes. J. Atmos. Sci., 63, 127-149.
- [13] Norquist, D.C., E.E. Rucker, and R.J. Reed, 1977: The Energetics of African Wave Disturbances as Observed During Phase III of GATE. *Mon. Wea. Rev*, 105, 334-342.
- D.A., [13] Randall, October 2005:cited 1 of Time-Differencing Schemes Survey А Oscillation  $\operatorname{and}$ for the Decay Equations. [kiwi.atmos.colostate.edu/group/dave/at604pdf/Chapter3.pdf.]
- [14] Thorncroft, C., and K. Hodges, 2001: African Easterly Wave Variability and Its Relationship to Atlantic Tropical Cyclone Activity. J. Climate, 14, 1166-1179.