CONVERSION FROM SHEAR TO CURVATURE VORTICITY, ORGANIZATION OF CONVECTION, AND HURRICANE GENESIS

Benjamin A. Schenkel Synoptic-Dynamic Meteorology 12/5/07

Introduction

- Krishnamurti et. al. (1986) showed a non-divergent BAROTROPIC model had more skill than persistence for 48 hours over West Africa
- Norquist et. al. (1977) observed that conversion of energy via barotropic processes plays important role in wave maintenance and amplification after wave moves off African continent
- Thorncroft and Hodges (2001) showed correlation between occurrence of 850 mb circulations and frequency of hurricanes in Atlantic
- Ability to predict formation and behavior of AEWs key to improving tropical cyclone forecasts
- Can use barotropic dynamics as a tool

Dynamics Review

Haby, 2007: Example of shear, curvature, and planetary vorticity

Dynamics Review

- Absolute vorticity composed of three components:
 - **1**. Shear Vorticity
 - 2. Curvature Vorticity
 - 3. Planetary Vorticity

$$\xi_a = \zeta_c + \zeta_s + f$$

Dynamics Review

- Keyser and Bell (1993) derive curvature and shear vorticity tendency equations in natural coordinates:
- Curvature Vorticity Tendency Equation:

 $\frac{d}{dt}(f+V\frac{\partial\alpha}{\partial s}) = -\frac{\partial V}{\partial s}\frac{d\alpha}{dt} - \frac{\partial}{\partial n}(\frac{\partial\phi}{\partial s}) - (f+V\frac{\partial\alpha}{\partial s})\nabla_{p}\cdot\vec{V} - \vec{V}\frac{\partial\omega}{\partial s}\frac{\partial\alpha}{\partial p}$

 $\frac{d}{dt}\left(-\frac{\partial V}{\partial n}\right) = \frac{\partial V}{\partial s}\frac{d\alpha}{dt} + \frac{\partial}{\partial n}\left(\frac{\partial \phi}{\partial s}\right) - \left(-\frac{\partial V}{\partial n}\right)\nabla_{p}\cdot\vec{V} - \vec{V}\frac{\partial \omega}{\partial n}\frac{\partial V}{\partial p}$

Shear Vorticity Tendency Equation:

Background Theory

- Study argues importance of barotropic dynamics in the *formation* of a tropical cyclone
- Assuming there are no significant changes in latitude, absolute vorticity is materially conserved:

$$\frac{d\xi_a}{dt} = 0 = \frac{d\zeta_c}{dt} + \frac{d\zeta_s}{dt}$$

- As shear goes into curvature, parcels will move radially inward towards the center of the disturbance leading to an "organization of convection"
- The concentration of convection will allow for baroclinic based processes to further intensify the storm

Methodology

- Organization of convection was measured using satellite derived cloud liquid water from AQUA, the DMSP series, and TRMM (NOTE: DMSP-f15 not available for AEW)
- Data is derived from brightness temperatures and is only available over water (Wentz, 1997)
- Resolution of the data is 25 km
- Data was cast into cylindrical coordinates and a Fourier transform was performed on the data at radii ranging from 25 km to 125 km (in 25 km intervals) from the storm center
- Try to determine at which radius organization is predominating and how quickly it is occurring
- Growth in the magnitude of wavenumbers 0,1, and 2 is indicative of organization occurring

Methodology

- MM5 used as source for u, v, and \$\phi\$ that are needed for calculating shear to curvature conversions for Cartesian coordinates as derived by Bell and Keyser (1993)
- 3 single way nests with resolutions of 27 km, 9 km, and 3 km with 32 unevenly spaced vertical levels
- NCEP 1° x 1° FNL used for boundary and initial conditions for 27 km domain
- 2 coarser domains run for 60 hours (12 hours before period of interest)
- Innermost domain run for 48 hours
- MM5 Model Configuration:
 - Blackadar planetary boundary layer
 - Betts-Miller convective scheme with shallow convection
 - Goddard cloud microphysics
 - Cloud radiation scheme

Methodology

Study involves developing and non-developing case:

- **1**. Hurricane Nate (2005): 09/05/05 18Z 09/07/05 18Z
- 2. African Easterly Wave (2006): 08/25/06 00Z 08/27/06 00Z

between 9/05/05 18Z and 9/07/05 18Z • 0.5-0.7 increase in spectra • Indicative of organization occurring over this 3+ day period

Gradual increase in conversions over first 24 hours
Dip and recovery around last 24 hours
Overall, positive

conversions!

• Remain steady for first 12 hours, afterwards:

 Increase in curvature vorticity
 Decrease in shear vorticity
 Shear vorticity
 Shear vorticity becomes increasingly negative indicative of increasing anticyclone shear

• Magnitude of change in curvature vorticity is higher than shear vorticity

• Conversion terms playing role, but creation of vorticity through divergence and tilting also plays a large part

Results - AEW

Results - AEW

The forecast period is not represented in this data
Notice the magnitude of the power spectra compared to that for Nate

Results AEW

The magnitude of shear to curvature conversions is much smaller than for Nate
Marginal changes in conversions over forecast period

Results - AEW

Curvature
and Shear
vorticity
same
magnitude
No changes
in curvature
and shear
vorticity in
agreement
with nondevelopment

Conclusions

- Distinct differences between non-developing and developing cases as expected: between organization rates, conversion rates, and magnitudes of vorticity
- Shear to curvature may play important role, but calculations of divergence and tilting terms must be done
- Additionally, MM5 should be run using explicit convection scheme
- More cases must be done to compare to as well
- Until then results are inconclusive

Works Cited

- Bell, G. D. and Daniel Keyser 1993: Shear and Curvature Vorticity and Potential-Vorticity Interchanges: Interpretation and Application to a Cutoff Cyclone Event. Mon. Wea. Rev., 121, 76-102.
- [2] Braun, S. A., and W. K. Tao 2000: Sensitivity of High-Resolution Simulations of Hurricane Bob (1991) to Planetary Boundary Layer Paramterizations. *Mon. Wea. Rev.*, **128**, 3941-3960.
- [3] Davis, C., and L.F. Bosart 2002: Numerical Simulations of the Genesis of Hurricane Diana (1984). Part II: Sensitivity of Track and Intensity Prediction Mon. Wea. Rev., 130, 1100-1124.
- [4] Frank, N. 1970: Atlantic Tropical Systems of 1969. Mon. Wea. Rev., 98, 307-314.
- [5] Haby, J. cited 2007: 8 Tips to Add to Your Forecasting Knowledge. [www.theweatherprediction.com/8_tips/7a.jpg.]
- Holton, J.R. An Introduction to Dynamic Meteorology. Harcourt, Brace, Jovanovich, Publishers. New York, 1992.
- [7] Keyser, D., and M. A. Shapiro, 1986: A review of the structure and dynamics of upper-level frontal zones. *Mon. Wea. Rev.*, 114, 452-499.
- [8] Kimball, S.K., and F.C. Doughterty 2006: The Sensitivity of Idealized Hurrican Structure and Development to the Distribution of Vertical Levels. Mon. Wea. Rev., 134,

1987 - 2008.

- [9] Krishnamurti, T.N., 1968: A study of a developing wave cyclone. Mon. Wea. Rev., 96, 208-217.
- [10] Krishnamurti, T.N., Arun Kumar, and Xiang Li, 1986: Results of extensive integrations with simple NWP models over the tropics during FCGE. *Tellus*, **39A**, 152-160.
- [11] McFarquhar, G. M., H. Zheng, G. Heymsfield, R. Hood, J. Dudhia, J.B. Halverson, and F. Marks 2006: Factors Affecting the Evolution of Hurricane Erin (2001) and the Distribution of Hydrometeors: Role of Microphysical Processes. J. Atmos. Sci., 63, 127-149.
- [12] NHC,2007: Atlantic Basin Hurricane Tracking Chart. [www.nhc.noaa.gov/pdf/AT_Track_chart1.20060925.pdf]
- [13] Norquist, D.C., E.E. Rucker, and R.J. Reed 1977: The Energetics of African Wave Disturbances as Observed During Phase III of GATE. *Mon. Wea. Rev*, 105, 334-342.
- [14] Rennick, M.A., 1976: The generation of African Waves. J. Atmos. Science, 33, 1955-1960.
- [15] Thorncroft, C., and K. Hodges 2001: African Easterly Wave Variability and Its Relationship to Atlantic Tropical Cyclone Activity. J. Climate, 14, 1166-1179.
- [16] Wentz, F.J. 1997: A well-calibrated ocean algorithm for SSM/I. J Geophys. Res., 102:8703-8718.