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Introduction

= Krishnamurti et. al. (1986) showed a non-divergent
BAROTROPIC model had more skill than persistence
for 48 hours over West Africa

= Norquist et. al. (1977) observed that conversion of
energy via barotropic processes plays important role
in wave maintenance and amplification after wave
moves off African continent

* Thorncroft and Hodges (2001) showed correlation
between occurrence of 850 mb circulations and
frequency of hurricanes in Atlantic

= Ability to predict formation and behavior of AEWs
key to improving tropical cyclone forecasts

= (Can use barotropic dynamics as a tool




Dynamics Review

= ShearVorticity : Curvature Vorticity:

Haby, 2007: Example of shear, curvature, and planetary vorticity




Dynamics Review

= Absolute vorticity composed of three
components:
Shear Vorticity
Curvature Vorticity
Planetary Vorticity

Ca =G To +




Dynamics Review

= Keyser and Bell (1993) derive curvature and
shear vorticity tendency equations in natural
coordinates:

= Curvature Vorticity Tendency Equation-

9 g4y 0% VA a(a¢) (f+v—)v Vv 2o
dt 0S os dt on 0s op
= ShearVorticity Tendency Equation:
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Background Theory

= Study argues importance of barotropic dynamics in
the formation of a tropical cyclone

= Assuming there are no significant changes in
latitude, absolute vorticity is materially conserved:

dga _O_dé/c : dé/s
dt dt  dt

= Asshear goes into curvature, parcels will move
radially inward towards the center of the disturbance
leading to an “organization of convection”

* The concentration of convection will allow for
baroclinic based processes to further intensify the
storm




Methodology

= QOrganization of convection was measured using satellite
derived cloud liquid water from AQUA, the DMSP series,
and TRMM (NOTE: DMSP-fiz not available for AEW)

= Datais derived from brightness temperatures and is only
available over water (Wentz, 1997)

= Resolution of the data is 25 km

= Data was cast into cylindrical coordinates and a Fourier
transform was performed on the data at radii ranging from
25 km to 125 km (in 25 km intervals) from the storm center

= Tryto determine at which radius organization is
predominating and how quickly it is occurring

= Growth in the magnitude of wavenumbers 0,1, and 2 is
indicative of organization occurring




Methodology

= MM5 used as source for u, v, and ¢ that are needed for
calculating shear to curvature conversions for Cartesian
coordinates as derived by Bell and Keyser (1993)

= 3single way nests with resolutions of 27 km, g km, and 3 km
with 32 unevenly spaced vertical levels

= NCEP 1°x1° FNL used for boundary and initial conditions
for 27 km domain

= 2 coarser domains run for 60 hours (12 hours before period
of interest)

= |nnermost domain run for 48 hours
= MM5 Model Configuration:

Blackadar planetary boundary layer

Betts-Miller convective scheme with shallow convection
Goddard cloud microphysics

Cloud radiation scheme




Methodology

= Study involves developing and non-developing case:
1. Hurricane Nate (2005): og/o5/o518Z —09/o7/05 187
2. African Easterly Wave (2006): 08/25/06 00Z — 08/27/06 00Z
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Results - Hurricane Nate
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Results - Hurricane Nate
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* Gradual increase
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Results - Hurricane Nate

3° Box Avg. 850 mb Curvature and Shear Vorticity Nate [NAGAELESEEARY
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*The forecast
period is not
represented in
this data
* Notice the
magnitude of
the power
spectra
Jcompared to
that for Nate
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Results AEW

3° Box Avq. 850 mb Shear to Curvature Conversion AEW "
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e Curvature
and Shear
vorticity
same
magnitude

* No changes
in curvature
and shear

vorticity in
agreement
with non-
development
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Conclusions

= Distinct differences between non-developing
and developing cases as expected: between
organization rates, conversion rates, and
magnitudes of vorticity

= Shear to curvature may play important role, but
calculations of divergence and tilting terms must
be done

= Additionally, MM5 should be run using explicit
convection scheme

= More cases must be done to compare to as well
= Until then results are inconclusive
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