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ABSTRACT

Gridpoint statistical interpolation (GSI), a three-dimensional variational data assimilation method (3DVAR)

has been widely used in operations and research in numerical weather prediction. The operational GSI uses

a static background error covariance, which does not reflect the flow-dependent error statistics. Incorporating

ensemble covariance in GSI provides a natural way to estimate the background error covariance in a flow-

dependent manner. Different from other 3DVAR-based hybrid data assimilation systems that are pre-

conditioned on the square root of the background error covariance, commonly used GSI minimization is

preconditioned upon the full background error covariance matrix. A mathematical derivation is therefore

provided to demonstrate how to incorporate the flow-dependent ensemble covariance in the GSI variational

minimization.

1. Introduction

Gridpoint statistical interpolation (GSI; Wu et al.

2002; Kleist et al. 2009), a three-dimensional variational

data assimilation method (3DVAR) has been widely

used in operations and research in numerical weather

prediction (NWP). GSI is capable of ingesting a large

variety of atmospheric observations and has developed

capabilities for data thinning, quality control, and sat-

ellite radiance bias correction. The operational GSI uses

a static background error covariance, which does not

reflect the flow-dependent error statistics. The anisotropic

recursive filter (e.g., Purser et al. 2003a,b) provides the

possibility to introduce anisotropic and inhomogeneous

covariances. How to determine the parameters used in the

anisotropic recursive filter to realistically represent vary-

ing background error covariance, however, still remains

an issue.

A four-dimensional variational data assimilation sys-

tem (4DVAR) implicitly includes a time-evolving co-

variance model through the evolution of initial errors

under tangent linear dynamics (Lorenc 2003). However,

the evolved, flow-dependent covariance model may still

be limited by the usage of a static covariance model

at the beginning of each 4DVAR cycle (Buehner et al.

2010a,b).

On the other hand, the ensemble Kalman filter (EnKF)

has been extensively explored as an alternative data as-

similation method (e.g., Houtekamer et al. 2005; Whitaker

et al. 2008; Szunyogh et al. 2005; Liu et al. 2008; Torn and

Hakim 2008; Zhang et al. 2009; Aksoy et al. 2009; Jung

et al. 2008). The main advantage of the EnKF is that it

can conveniently provide, through ensemble covariance,

flow-dependent estimate of the background error co-

variance, and therefore the background forecast and the

observations are more appropriately weighted during

the assimilation.

A hybrid method was proposed (e.g., Hamill and

Snyder 2000; Lorenc 2003; Zupanski 2005; Wang et al.

2007a) and has been developed and implemented re-

cently for real NWP models (e.g., Buehner 2005; Wang

et al. 2008a,b; Buehner et al. 2010a,b). The hybrid

method combines the advantages of both the variational

method and the EnKFs and therefore demonstrates

great potential for future research and operations. In the

hybrid method, the variational framework is used to con-

duct data assimilation within which the flow-dependent

ensemble covariances are effectively incorporated to
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estimate the background error covariance. Studies using

simple models and full NWP models have demonstrated

the potential of the hybrid method as compared with

a standalone variational method (VAR; e.g., Hamill and

Snyder 2000; Wang et al. 2007b, 2008a,b, 2009; Buehner

et al. 2010a,b). Recent studies also suggest potential

advantages of the hybrid method in comparison with

a stand-alone EnKF. For example, Wang et al. (2007b,

2009) suggested that for large-scale application the hy-

brid EnKF–3DVAR was more robust than the EnKF for

small ensemble size and large model errors since the

static covariance used in 3DVAR helped to reduce the

sampling errors, which indicates smaller ensemble size

may be needed by the hybrid than by the EnKFs to

achieve similar performance. This is particularly at-

tractive for operational forecasts for which the size of

the ensemble may be constrained by the availability of

the computational resources and the timing of the

forecasts. Studies by Buehner et al. (2010a,b) suggested

the 4DVAR-based hybrid is better than the stand-alone

EnKF, likely because the temporal evolution of the

background error covariance was in a space with much

higher dimension by the 4DVAR-based hybrid method

than the EnKF. Another advantage of the hybrid is that

it is built based on the existing operational variational

framework so that the established capability in VAR can

be easily adopted. In addition, since the hybrid adopts

the variational framework, the dynamic constraint can be

conveniently added during the data assimilation (Kleist

et al. 2009). In the current implementation of the hybrid

method, the ensemble covariance is incorporated in the

variational framework through the extended control

variable method (Lorenc 2003; Buehner 2005; Wang

et al. 2007a, 2008a), and the ensemble covariance lo-

calization is conducted in the model state variable space

(i.e., model space localization); therefore, no assump-

tion about the explicit position of the observation is

required during this procedure of the covariance local-

ization. For widely used EnKFs, explicit positions of the

observations are needed to apply covariance localiza-

tion (so-called observation space localization; Hamill

et al. 2001). For satellite radiances, for which there is no

explicit vertical position, such observation space locali-

zation is thus inappropriate. Results in Campbell et al.

(2010) suggested that model space localization such as

used in the hybrid framework is more sensible and ef-

fective in assimilating satellite radiances.

In an operational variational data assimilation system,

the background error covariance and its inversion are

never explicitly formed during the minimization because

of the large dimension of the problem. Incorporating the

ensemble covariance therefore cannot be conducted by

a simple weighted sum of the static and ensemble

covariances. For VAR that is preconditioned upon the

square root of the background error covariance, Buehner

(2005) and Wang et al. (2008a,b) described a method to

modify the variational minimization to incorporate the

ensemble covariance. Different from Buehner (2005)

and Wang et al. (2008a,b), in the widely used GSI the

minimization procedure is preconditioned upon the full

background error covariance (Derber and Rosati 1989).

A framework to define how to incorporate the ensemble

covariance in GSI is therefore needed. The goal of this

paper is to provide a mathematical derivation demon-

strating this framework. Such a framework can be applied

in the variational system with similar preconditioning.

Given the popularity of the GSI and encouraging results

from previous work on hybrid data assimilation, this pa-

per represents the first step toward developing and in-

vestigating the hybrid data assimilation method based on

the GSI.

Section 2 briefly summarizes the key components in

GSI minimization, and section 3 provides mathematical

details on how ensemble covariance is incorporated in

the GSI minimization. Section 4 suggests using the ex-

isting GSI capabilities to conduct ensemble covariance

localization and discusses ways to reduce computational

cost. Section 5 summarizes the paper and provides fur-

ther discussion.

2. The GSI minimization algorithm

GSI adopts a 3DVAR cost function as

J(x9
1
) 5 0.5(x9

1
)TB�1

1 (x9
1
)

1 0.5(yo9� Hx9
1
)TR�1(yo9� Hx9

1
), (1)

where x91 is the analysis increment, B1 is the static back-

ground error covariance, yo9 is the innovation vector, H

is the linearized observation operator, and R is the ob-

servation error covariance. A preconditioned conjugate

gradient algorithm is applied for minimizing Eq. (1)

(Derber and Rosati 1989): that is, the minimization is

preconditioned through defining a new variable:

z9
1

5 B�1
1 x9

1
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Then the gradients of the cost function with respect to x91
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After establishing Eqs. (3)–(4), the iterative minimiza-

tion steps are then followed (Derber and Rosati 1989;

Wu et al. 2002) to find the final analysis. In other words,

the GSI minimization is preconditioned on the full

background error covariance, and there is no need to

invert the background error covariance explicitly.

3. Incorporating ensemble covariance in GSI
minimization

The goal of this section is to provide a mathematical

framework to show how the GSI minimization described

in section 2 will be modified to incorporate the ensemble

covariance as part of the background error covariance.

The idea is to follow the same preconditioning of the

original GSI. We first briefly summarize the changes

needed in the GSI cost function, following the method of

Wang et al. 2008a. Then the derivation on how changes

need to be made to fit the GSI minimization outlined in

Eqs. (2)–(4) is given.

As in Wang et al. 2008a, in the hybrid system, the

analysis increment, denoted as x9, is a sum of two terms,

defined as

x9 5 x9
1
1�

K

k51
(a

k 8 xe
k). (5)

The first term, x91, in Eq. (5) is the increment associated

with the GSI static background covariance. The second

term is the increment associated with the flow-dependent

ensemble covariance. In the second term of Eq. (5), xk
e is

the kth ensemble perturbation normalized by (K 2 1)1/2,

where K is the ensemble size. The vectors ak, k 5 1, . . . , K,

denote the extended control variables for each ensemble

member. The open-circle symbol denotes the Schur pro-

duct (element by element product) of the vectors ak and

xk
e. In other words, the second term of Eq. (5) represents

a local linear combination of ensemble perturbations.

The analysis increment x9 is obtained by minimizing

the following hybrid cost function:

J(x9
1
, a) 5 b

1
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2
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As compared with a normal 3DVAR cost function,

a weighted sum of J1 and Je terms in Eq. (6) replaces the

usual background term. Here J1 is the traditional GSI

background term associated with the static covariance

B1. In the term Je, a is a vector formed by concatenating

K vectors ak, k 5 1, . . . , K. The extended control vari-

ables are constrained by a block-diagonal matrix A.

Each of the K blocks contains the same prescribed cor-

relation matrix, which constrains the spatial variation of

ak. In other words, A defines the spatial covariance, here

spatial correlation (since variance is equal to 1) of a. The

term Jo in Eq. (6) is the observation term as in the tra-

ditional 3DVAR except that x9 is replaced by Eq. (5). In

Eq. (6), there are two factors b1 and b2 that define the

weights placed on the static background-error covari-

ance and the ensemble covariance. Note that although

ensemble covariance is not explicitly shown in Eq. (6),

the ensemble covariance was incorporated through the

second term in Eq. (5) during the minimization. To un-

derstand further how ensemble covariance is incorpo-

rated in Eqs. (5)–(6), Wang et al. (2007a) and Wang et al.

(2008a) proved the equivalence of using Eqs. (5)–(6) to

find the analysis to that by replacing the background

error covariance in Eq. (1) with the weighted sum of the

static background error covariance and the ensemble

covariance modulated by the correlation matrix in A.

The same papers also show that A determines the co-

variance localization on the ensemble covariance. For

details please see Wang et al. (2007a) and Eqs. (6)–(8) in

Wang et al. (2008a).

As described by Eqs. (2)–(4), the GSI minimization is

conducted through the conjugate gradient method pre-

conditioned on the full background error covariance.

Next we derive that to minimize the new cost function in

Eq. (6) we can follow the same minimization procedure

used in the original GSI. The key of the new derivation is

that the minimization of the new cost function can be

preconditioned in the same way as shown in Eqs. (2)–(4).

In other words, the same conjugate gradient minimiza-

tion procedure from the original GSI will be followed,

except that we will just need to extend the control var-

iable and extend the background error covariance. Note

also that the second term in Eq. (6) is preconditioned on

A and not on the ensemble covariance. In other words,

similar to the fact that the preconditioning for the first

term in Eq. (6) is with respect to the static covariance,

the added second term in Eq. (6) is preconditioned with

respect to A, which plays a role of constraining the co-

variance of extended control variables that is similar

to that of the static covariance to the original control

variables.

Denote the new control variable as

x 5
x9

1

a

� �
. (7)

The hybrid increment in Eq. (5) can be expressed as
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where diag is an operator that turns a vector into a di-

agonal matrix where the nth diagonal element is given

by the nth element of the vector (Wang et al. 2007a). We

further denote D 5 [diag(x1
e) . . . diag(xK

e )] and C 5 (I, D),

where I is an identity matrix. Then the hybrid increment

becomes

x9 5 x9
1

1 Da 5 (I, D)
x9

1

a

� �
5 Cx. (9)

Denote the new background error covariance as

B 5

1

b
1

B
1

0

0
1

b
2
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BBB@
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As in the original GSI, the hybrid is preconditioned by

defining a new variable:

z 5 B�1x 5
b
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2
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In the rest of the derivation, we will show that $zJ 5

B$xJ and therefore the minimization for the hybrid cost

function can follow the same conjugate gradient method

used by the original GSI described in section 2.

First, we derive the gradient of the hybrid cost func-

tion with respect to

x5
x9

1

a

� �
.

The gradients of the new cost function with respect to

the original control variables $x91
J and the extended

control variables $a J are given as
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2
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Therefore, using Eqs. (9)–(13), we obtain
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Next we derive the gradient of the hybrid cost function

with respect to z. The gradients of the new cost function

with respect to b1B�1
1 x91 and b2A21a are given by
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Using Eqs. (9), (10), (11), (15), and (16), we obtain

$
z
J 5

$
b1B

�1
1 x91

J

$
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J

 !
5 x 1 BCTHTR�1(HCx� yo9). (17)

Comparing $xJ in Eq. (14) and $zJ in Eq. (17), we thus

obtain

$zJ 5 B$xJ. (18)

As in the original GSI minimization described in section

2, using Eqs. (14) and (18), the same procedure of con-

jugate gradient minimization procedure can be followed.

As discussed in section 2, there is no need to invert both

B1 and A explicitly. The main differences of the hybrid

system relative to the original GSI system are that 1) in

the calculation of $xJ in Eq. (14) extra calculation of

gradient with respect to the extended control variable

is needed and 2) in the calculation of $z J [Eq. (18)] the

extended background error covariance associated with

the matrix A is needed.

4. Modeling of the error covariance of the extended
control variable A and thoughts to reduce
computational cost

In Eq. (18), the background error covariance consists

of two components, the original B1 and the error co-

variance A that constrains the extended control variable.

As discussed in section 3, effectively A conducts the

covariance localization on the ensemble covariance. In

the original GSI, B1 is approximated by the recursive

filter transform (Hayden and Purser 1995; Wu et al.

2002; Purser et al. 2003a,b). The recursive filter capa-

bility in GSI can also be used to approximate A, which is

different from Buehner (2005) in which the correlation

was modeled with a truncated spectral expansion. Note

that A is a block diagonal matrix with K identical sub-

matrices. Each submatrix will be approximated by the

same recursive filter transform. As discussed in Wang

et al. 2008a, the parameters in the recursive filter will

determine the correlation length scale in A and there-

fore prescribe the covariance localization length scale

for the ensemble covariance.

The number of extended control variables is equal to

the dimension of the model space where the covariance
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localization is applied times the number of ensemble

members. Because with a relatively long localization

scale the extended control variables a are spatially smooth

fields, the extended control variables and the recursive

filter transform associated with A can both be on a coarser

grid. A large savings in computational cost is expected

without loss of accuracy. A similar idea was suggested by

Wang et al. (2008a) and was adopted by Buehner (2005)

in which the extended control variable was in a severely

truncated spectral space and by Yang et al. (2009) in the

context of the local ensemble transform Kalman filter.

Wang et al. (2007c) showed that the number of iterations

during the minimization in the hybrid system for the

Weather and Forecasting Model (WRF) in which the

ensemble covariance is incorporated is less than that of

the original WRF variational system in which the static

background error covariance is used, suggesting a faster

convergence in the minimization of the hybrid system in

which ensemble covariance and static covariance were

assigned zero weights than in the original VAR system

with only the static covariance. They also found that

the number of iterations is not sensitive to the length of

the covariance localization scales. Such tests will be

conducted for the GSI-based hybrid data assimilation

system.

5. Summary and discussion

The popularity of GSI and the potential advantages of

the hybrid ensemble–GSI relative to GSI and a pure

ensemble Kalman filter suggest a need to develop the

hybrid ensemble–GSI system. Different from the hybrid

system in Buehner (2005) and Wang et al. (2008a,b), in

the widely used GSI the minimization procedure is pre-

conditioned upon the full background error covariance

(Derber and Rosati 1989). A framework to define how to

incorporate the ensemble covariance in GSI is therefore

provided. Possible ways to reduce computational cost are

also discussed. The method can be applied in the varia-

tional system with similar preconditioning.

The improvement in the accuracy of the analysis ob-

tained from a hybrid method over a standard variational

approach may depend on how accurately the short-

range ensemble forecasts used in the hybrid estimate the

flow-dependent forecast error covariance. The current

operational ensemble may not optimize for this appli-

cation, and alternative ensemble-generation methods such

as the ensemble Kalman filter–based method may need to

be explored.
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