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Abstract 39 

An enhanced version of the hybrid ensemble-3DVAR data assimilation system for the 40 

WRF model is applied to the assimilation of radial velocity (Vr) data from two coastal WSR-41 

88D radars for the prediction of Hurricane Ike (2008) before and during its landfall. In this 42 

hybrid system, flow-dependent ensemble covariance is incorporated into the varitional cost 43 

function using the extended control variable method. The analysis ensemble is generated by 44 

updating each forecast ensemble member with perturbed radar observations using the hybrid 45 

scheme itself. The Vr data are assimilated every 30 minutes for 3 hours immediately after Ike 46 

entered the coverage of the two coastal radars.  47 

The hybrid method produces temperature increments showing rainband structures and 48 

positive increments in the vortex core region, and a warm core throughout the hurricane depth in 49 

the final analysis. In contrast, the 3DVAR produces much weaker and smoother increments with 50 

negative values at the vortex center at lower levels.  Wind forecasts from the hybrid analyses fit 51 

the observed radial velocity better than that from 3DVAR, and the 3-h accumulated precipitation 52 

forecasts from the hybrid are also more skillful. The track forecast is slightly improved by the 53 

hybrid method and slightly degraded by the 3DVAR compared to the forecast from the GFS 54 

analysis. All experiments assimilating the radar data show much improved intensity analyses and 55 

forecasts compared to the experiment without assimilating radar data. The better forecast of the 56 

hybrid indicates that the hybrid method produces dynamically more consistent state estimations. 57 

Little benefit of including the tuned static component of background error covariance in the 58 

hybrid is found.                                                                         59 

                                                                                  60 
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1. Introduction 61 

Tropical cyclones (TCs) are among the most costly forms of natural disaster (Pielke et al. 62 

2008). An accurate TC forecast will require not only a numerical model to realistically simulate 63 

both the TC itself and its environment, but also a data assimilation (DA) system that can 64 

effectively use the observations to accurately estimate the initial TC vortex and the environment 65 

where the TC is embedded in.   66 

To address the TC initialization issue, many previous studies adopted the vortex 67 

relocation and/or bogussing (e.g., Liu et al. 2000; Kurihara et al. 1995; Zou and Xiao 2000) 68 

techniques. While such techniques are non-trivial and have been shown to improve the hurricane 69 

forecast, how to maintain the dynamical and thermo-dynamical coherency of the hurricane and 70 

its environment is probably the biggest challenge with such methods.  71 

Recently, several studies have explored the use of ensemble-based DA methods to 72 

initialize hurricane forecasts and have shown great promise (e.g., Torn and Hakim 2009; Zhang 73 

et al. 2009; Li and Liu 2009; Hamill et al. 2011; Wang 2011; Dong and Xue 2011). The key with 74 

ensemble-based DA is the use of an ensemble to estimate the forecast error statistics in a flow-75 

dependent manner.  Therefore, the observation information will be properly weighted and spread  76 

consistent with the background hurricane forecasts; and perhaps more importantly, the ensemble 77 

covariance can realistically infer the flow-dependent cross-variable error statistics and therefore 78 

update state variables not directly observed in a dynamically and thermodynamically consistent 79 

manner.   80 

One candidate in ensemble-based DA is the hybrid ensemble-variational DA method. It 81 

has been proposed (e.g., Hamill and Snyder 2000; Lorenc 2003; Etherton and Bishop 2004; 82 

Zupanski 2005; Wang et al. 2007b, 2008a; Wang 2010), implemented and tested with real 83 
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numerical weather prediction (NWP) models and real data recently (e.g., Buehner 2005; Wang et 84 

al. 2008b; Buehner et al. 2010ab; Wang 2011; Wang et al. 2011; Whitaker et al. 2011; Kleist et 85 

al. 2011). Compared to a standard variational method (VAR) that typically uses static 86 

background error covariance, ensemble covariance is incorporated into the VAR framework to 87 

provide a flow-dependent estimate of the background error covariance and the ensemble can be 88 

generated by a version of the ensemble Kalman filter (EnKF). Recent studies have suggested that 89 

the hybrid DA systems may represent the “best of both worlds” by combining the best aspects of 90 

the variational and EnKF systems (e.g., Wang et al. 2007a, 2008ab, 2009; Zhang et al. 2009; 91 

Buehner et al. 2010ab; Wang 2010).  While preliminary tests of the hybrid DA system with real 92 

NWP models and data have shown great potential of the method for non-TC forecasts (e.g., 93 

Wang et al. 2008b; Buehner et al. 2010ab) and for forecasts of TC tracks (e.g., Wang 2011; 94 

Whitaker et al. 2011), to the author’s best knowledge, to date there is no published study 95 

applying hybrid DA method to the assimilation of radar data at a convection-allowing resolution 96 

for TC predictions. This study serves as a pilot study applying the hybrid ensemble-3DVAR 97 

system developed for the WRF model (Wang et al. 2008a) to explore its potential for 98 

assimilating radar observation for hurricane forecasts. As a first step of such study, we focus on 99 

assimilating radar radial velocity data. 100 

More specifically, this study applies and explores the WRF ensemble-3DVAR hybrid 101 

system to the assimilation of coastal WSR-88D radar radial velocity data for the prediction of 102 

Hurricane Ike (2008) (Fig. 1). Ike is the third most destructive landfalling hurricane in the 103 

recorded history of United States. Previous studies (e.g., Zhao and Xue 2009) have shown 104 

significant impact of the radar data for this case using ARPS 3DVAR/cloud analysis package. 105 

The remainder of this paper is organized as follows: Section 2 presents the methodology and 106 



5 
 

section 3 discusses the experiment design. The experiment results are discussed in Section 4 107 

while the final section summarizes the main conclusions of this study. 108 

2. Methodology  109 

a. The hybrid ensemble-3DVAR scheme 110 

A diagram of the hybrid DA system is shown in Fig. 2. Similar to Hamill and Snyder 111 

(2000), the following four steps are repeated for each DA cycle: 1. Perform K (K is the ensemble 112 

size) number of ensemble forecasts to generate background forecast fields at the time of analysis; 113 

2. Calculate ensemble forecast perturbations to be used by the hybrid cost function for flow-114 

dependent covariance by subtracting ensemble mean from each member; 3. Generate K 115 

independent sets of perturbed observations by adding random perturbations to the observations;  116 

4. Obtain the analysis increment for each ensemble member through minimization of the hybrid 117 

cost function using one set of perturbed observations. Steps 1 through 4 are repeated for each of 118 

the follow-on cycles, with the ensemble analyses providing initial conditions for step 1. In step 3, 119 

the random perturbations added to the observations are drawn from a Gaussian distribution with 120 

a mean of zero and a standard deviation of the observation error. This is analogous to the 121 

‘perturbed observation method’ employed in the classic ensemble Kalman filter (Evensen 2003). 122 

In the original work of Wang et al. (2008a) testing the hybrid WRF DA system, the ensemble 123 

transform Kalman filter (ETKF) was used to update forecast perturbations.  124 

A brief review on the extended control variable method for incorporating ensemble 125 

covariance into a WRF 3DVAR framework is given here. For detailed discussions, readers are 126 

referred to Wang et al. (2007b, 2008a).  127 

For state vector x, the analysis increment of the hybrid scheme, xʹ, is the sum of two 128 

terms, 129 
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The first term x1ʹ in Eq. (1) is the increment associated with WRF 3DVAR static background 131 

covariance and the second term is the increment associated with flow-dependent covariance. 132 

Here, ak is the extended control variable as defined by Lorenc (2003), xk
e is the kth ensemble 133 

perturbation state vector. The symbol ‘o’ denotes the Schur product (element by element 134 

product) of the vectors ak  and xk
e
.
  135 

The cost function for WRF ensemble-3DVAR hybrid is  136 
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Jb is the traditional WRF 3DVAR background term associated with the static covariance B and 139 

Je is the hybrid term associated with flow-dependent covariance. a is defined as 140 

T T T T
1 2 K( , , , )a a a a . Jo is the observation term associated with observation error covariance R. 141 

The innovation vector yoʹ is defined as, yoʹ = yo – H(xb), where yo is the observation vector, xb is 142 

the background forecast state vector, and H is the linearized observation operator. 143 

            The weights of the static covariance and flow-dependent covariance are determined by 144 

factors β1 and β2 according to relationship  145 

1
11

21




,     (3) 146 

which conserves the total variance.  147 

             As described in Wang et al. (2008a), the ensemble covariance localization, denoted as A, 148 

has horizontal and vertical components. In this study, both the horizontal and vertical 149 

localization are applied. Specifically, the horizontal localization is modeled by a recursive filter 150 
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transform as in Wang et al. 2008a. The vertical localization is implemented by transforming the 151 

extended control variable a in Eq. (2) with empirical orthogonal functions (EOFs). The 152 

correlation matrix, denoted as Cov, from which the EOFs is derived, follows 153 

2

1 2 2
Cov( , ) exp

d
k k

L

 
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 
, (4) 154 

where d is the distance between model levels k1 and k2 and L is the vertical localization radius. 155 

Existing EOF codes in the WRF 3DVAR for modeling the vertical static error covariance is used 156 

for the vertical ensemble covariance localization purpose. 157 

3. Experimental design 158 

a. The WRF model configuration 159 

The Advanced Research WRF (ARW) model version 3 is used in this study (Skamarock 160 

et al. 2008). The model is compressible, three-dimensional, non-hydrostatic, discretized on a 161 

Arakawa C grid with terrain-following mass-based sigma coordinate levels. In this study, the 162 

WRF model is configured with 401x401 horizontal grid points at 5-km grid spacing (Fig. 1), and 163 

41 vertical levels with the model top at 100 hPa. The WRF single-moment six-class scheme 164 

(Hong et al. 2004) is chosen for the explicit microphysics processes. Since the grid resolution 165 

may not fully resolve the hurricane convective features, the Grell-Devenyi cumulus 166 

parameterization scheme (Grell; Devenyi 2002) is included. Other physics  parameterizations 167 

schemes used include the Yonsei University (YSU) (Noh et al. 2003) scheme for planetary 168 

boundary layer parameterization, the 5-layer thermal diffusion model for land surface processes 169 

(Skamarock et al. 2008), the Rapid Radiative Transfer Model (RRTM) longwave (Mlawer et al. 170 

1997), and the MM5 shortwave (Dudhia 1989) radiation parameterization.  171 
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b. The radar data processing 172 

The radial velocity data from coastal WSR-88D radars at Houston, Texas (KHGX) and 173 

Lake Charles, Louisianan (KLCH) are processed using a modified version of the Four 174 

Dimensional Dealiasing Algorithm (James; Houze 2001). The algorithm was originally designed 175 

for Doppler radars in European Alps. The modified algorithm by this study is capable of reading 176 

level-II WSR-88D data and dealiasing the radial velocities.  177 

To dealias radial velocity data, the following steps are performed: First, a wind profile is 178 

created based on model background, rawindsonde, or wind profiler data. The background radial 179 

velocity in radar observation space is calculated from the wind profile, assuming the wind is 180 

horizontally homogeneous. Second, the WSR-88D radial velocity is compared with the 181 

background radial velocity for a gross check. In this step, aliased radial velocity that needs to be 182 

corrected is identified. Third, at each elevation angle, spatial dealiasing is performed. The aliased 183 

velocity Va will be recovered by factored Nyquist velocity Vn,  184 

Vd = Va + 2NVn  ,  (5) 185 

where N is a positive or negative integer whose sign and value are determined by a gate-to-gate 186 

shear threshold of 0.4Vn (James and Houze 2001). After dealiasing is finished, the radial velocity 187 

interpolated to the Cartesian coordinates is thinned to 10 km spacing horizontally and 500 meter 188 

vertically. 189 

Figure 3 shows the processed radial velocity at 0.5o elevation angle for KHGX (Fig. 3a) 190 

and KLCH (Fig. 3b) at 0000 UTC 13 September 2008. These two radars complement each other 191 

by providing scans that are approximately the right angle at the location of Ike’s eye. KHGX 192 

covers almost all of Ike’s eye and eye wall. The outbound radial velocity on the left side of the 193 

eye and inbound radial velocity on the right side of the eye reflect the circulation of the 194 
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hurricane.  KLCH covers only about half of eye and eye wall. The outbound radial velocity on 195 

the front side of the eye and inbound radial velocity on the back side of the eye also reflect the 196 

circulation of the hurricane. 197 

The observation error standard deviation for the radial velocity is set to 2 m s-1 during the 198 

DA. This error value is similar to the values used in (Dowell; Wicker 2009), (Xu; Gong 2003), 199 

and (Xiao et al. 2009Xiao et al. 2009). 200 

c. The data assimilation setup 201 

This paper presents five experiments denoted as NoDA, 3DVARa, 3DVARb, HybridF, 202 

and HybridH (Table 1). Experiments differ based on what, if any, assimilation system is used for 203 

radar data. The experiments are designed to examine the difference of using flow-dependent 204 

versus static background covariance when assimilating the radar data and the impact of DA on 205 

the subsequent forecast.  206 

The NoDA experiment did not assimilate any radar data, instead the WRF model initial 207 

condition at 0300 UTC 13 September 2008 simply comes from the 1ºx1º degree NCEP (National 208 

Centers for Environmental Prediction) operational GFS (Global Forecast System) analysis. The 209 

6-hourly GFS analyses also provide the lateral boundary conditions (LBCs). 210 

The “3DVARb” experiment assimilated the radar data using the traditional 3DVAR 211 

method where the static background covariance is adopted.  The static covariance is generated 212 

and further tuned as followed.  The NMC method (Parrish; Derber 1992) was first employed to 213 

generate the static background covariance statistics based on 12-h and 24-h WRF model 214 

forecasts, starting at 00 UTC and 12 UTC every day, during the period from 01 to 15 September 215 

2008. The experiment using the static covariance generated by the above procedure without 216 

further tuning is denoted as 3DVARa.  Because the default correlation length scales derived from 217 
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the NMC method reflects mostly large-scale error structures, their direct use may not be 218 

appropriate for storm-scale radar DA (Liu et al. 2005). The horizontal correlation length scale of 219 

the static covariance is reduced by a factor of 0.3 in experiment 3DVARb and this factor is found 220 

to be optimal through experimentations.  The 3DVAR experiments contains three stages (Fig. 221 

4a): (1) a single 6-h spinup forecast initialized from the GFS analysis at 1800 UTC, September 222 

12, to produce an initial first guess at 0000 UTC, September 13 for radar DA cycles; (2) 223 

assimilation of radial velocity data from KHGX and KLCH radars every 30 minutes for 3 hours; 224 

(3) a 21-h deterministic forecast initialized by the analysis at the end of the assimilation cycles in 225 

(2). The WRF model boundary conditions for all three stages are also provided by the 226 

operational GFS analyses at 6 hourly intervals. Experiment 3DVARb serves as a base line for 227 

evaluating the performance of the hybrid method. 228 

Experiments HybridF and HybridH are identical except that the different weighting 229 

factors β1 and β2 are used in Eq. (2). For HybridF, the full weight is assigned on the flow-230 

dependent ensemble covariance (using β1 = 0.001 and β2 = 1.001). For HybridH, the static 231 

covariance and the flow-dependent ensemble covariance are equally weighted (β1 = 0.5 and β2 = 232 

0.5), i.e., only half of the flow-dependent covariance is used, hence the ‘H’ in the name. The 233 

horizontal correlation scale of static covariance in HybridH is also reduced by a factor of 0.3 as 234 

in 3DVARb. Meanwhile, HybridH uses the same flow dependent covariance localization as 235 

HybridF, which will be discussed in detail in section 4.a. 236 

Each of the hybrid experiments, HybridF and HybridH, has 40 ensemble members. 237 

Similar to the 3DVAR experiments, the hybrid experiments have three stages (Fig. 4b): (1) 6-h 238 

ensemble forecasts to spin up a first guess ensemble and provide flow-dependent covariance at 239 

the beginning of the radar DA cycles. The initial and boundary conditions for each member are 240 
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the GFS analysis plus correlated random perturbations following Torn et al. (2006) and Wang et 241 

al. (2008a,b); (2) assimilation of perturbed radial velocity data from KHGX and KLCH radars 242 

every 30 minutes for 3 hours by variationally minimizing the hybrid cost function, according to 243 

the description given in the previous section (see also Fig. 2); (3) a 21-h deterministic forecast 244 

initialized from the ensemble mean analysis at the end of the DA cycles in (2). To generate the 245 

random perturbations in (1), the random-cv facility in the WRF 3DVAR system is employed 246 

(Barker et al. 2004). First, a random control variable vector is created with a normal distribution 247 

having a zero mean and unit standard deviation. Then the perturbation control variable vector is 248 

transformed to the model space to obtain perturbations to the model state variables including the 249 

horizontal wind components, pressure, potential temperature, and mixing ratio of water vapor. 250 

The perturbation standard deviations are roughly 1.9 m s-1 for the horizontal wind components, 251 

0.6 K for temperature, 0.3 hPa for model pressure perturbation, and 0.9 g kg-1 for water vapor 252 

mixing ratio and these values are based on the NMC-method-derived background error statistics.    253 

The relaxation method of Zhang et al. (2004) is used for ensemble covariance inflation. 254 

The inflated ensemble perturbation x'new is a weighted average of prior perturbation x'f and 255 

posterior perturbation x'a, x'new = (1 – b) x'f + b x'a, the relaxation coefficient, denoted as b, is set 256 

to 0.5. 257 

4. Results and discussion  258 

The analysis increment of the first DA cycle, the cycling process, the final analysis fields, 259 

and the deterministic forecasting results will be presented and discussed in this section. The 260 

subsection organization roughly follows the experiment flow charts in Fig. 4. 261 
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a. Single observation test for vertical localization 262 

Before complete DA experiments are performed, the vertical covariance localization in 263 

the hybrid scheme is tested by assimilating a single radial velocity observation. Figure 5 shows 264 

the wind speed increment produced by HybridF analyzing a single radial velocity observation 265 

located 3176 m above sea level at 0000 UTC 13 September 2008. The innovation (i.e., the 266 

observed radial velocity minus forecast ensemble mean valid at 0000 UTC 13 September) for 267 

this observation is -38.63 m s-1. Without the vertical localization, nonzero increment reaches the 268 

top of the model with relatively noisy increments at the upper levels (Fig. 5a). The horizontal and 269 

vertical localization radii of 60 and 3 km, respectively, are used in hybrid experiment HybridF 270 

(and in HybridH), and were arrived at after a range of localization scales was tested. Figure 5b 271 

shows that with such localizations, the analysis increment is limited to the region within a radius 272 

from the observation location, mitigating negative effects of unreliable distant covariance that 273 

are unavoidable with a limited-sized ensemble.  This single observation test verifies the 274 

correctness of our implementation of the vertical localization. 275 

b. Wind increments 276 

To see the differences in analyzing the radar data using flow-dependent and static 277 

covariances, the analysis increments from the 3DVAR and hybrid experiments after the first 278 

analysis time are compared. We first look at the wind increments and will look at indirectly 279 

related cross-variable increments in the next subsection. 280 

Figure 6 shows the wind analysis increments at 850 hPa, at 0000 UTC 13 September 281 

2008, the time of first analysis for 3DVARa, 3DVARb, HybridF, and HybridH. The increment in 282 

3DVARa using the default NMC-method-derived static covariance shows cyclonic and anti-283 

cyclonic increment patterns of rather large scales (Fig. 6a); the cyclonic increment circulation is 284 
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centered almost 2 degrees off the observation hurricane center to the southsoutheast, while at the 285 

hurricane center location the wind increment is mostly easterly. To the north the increment 286 

circulation shows an anti-cyclonic pattern. Such cyclonic and anti-cyclonic increments are also 287 

found in a previous studies assimilating radar radial velocity data using WRF 3DVAR (e.g., Xiao 288 

et al. 2007), but are clearly unrealistic, and do not reflect the fact that a strong vortex exists 289 

where the background strongly underestimate the strength of the vortex. The default background 290 

error covariance derived from the NMC method is unaware of the hurricane vortex and its spatial 291 

correlation scales mostly reflect synoptic scale error structures. The net result is the 292 

inappropriately large amount of smoothing of the radar data in the data dense region and 293 

inappropriately large spreading of the information outside the data coverage region. The radar 294 

data, being collected at high spatial resolution, should be analyzed using much smaller spatial 295 

correlation scales. This had been pointed out in Liu et al. (2005) and the use of smaller 296 

correlation scales for radar data is a common practice in the ARPS 3DVAR system (e.g., 297 

Schenkman et al. 2011). 298 

In 3DVARb, the default horizontal spatial correlation scale is reduced by a factor of 0.3. 299 

The resulting wind increment now shows a more or less symmetric cyclonic pattern around the 300 

observed center of Ike (Fig. 6b). Compared with 3DVARa, the large increments are more limited 301 

to the region of vortex in 3DVARb, and the increment is consistent with the inbound and 302 

outbound radial velocity couplets associated with the hurricane vortex as observed by KHGX 303 

and KLCH radars (Fig. 3). Such results are more realistic.  304 

In HybridF with full weight given to the flow-dependent covariance, the wind increment 305 

also shows a cyclonic pattern centered around the eye of Ike (Fig. 6c), but the increment 306 

circulation is less axisymmetric, reflecting the contribution of spatially inhomogeneous flow-307 
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dependent covariance. When equal weights are placed on the ensemble covariance and static 308 

covariance in HybridH, the wind increments show a pattern that is close to that of 3DVARb, but 309 

the increment magnitude is between those of the HybridF and 3DVARb (Fig. 6d).  310 

c. Temperature increments 311 

Because radar radial velocity is the only data type assimilated in this study, any 312 

increment in temperature is the result of balance relationship applied (if any) and/or due to cross-313 

covariance in the background error. Figure 7 shows the 850 hPa temperature increments for 314 

3DVARb, HybridF, and HybridH after assimilating radial velocity data for the first cycle. For 315 

3DVARb, negative temperature increments are found in the vortex region, and the magnitude is 316 

largest near the hurricane enter (Fig. 7a). Physically, enhanced hurricane vortex circulation 317 

should be accompanied by warming of the vortex core region, to give a warmer core vortex; 318 

hence the 3DVAR temperature increment is inconsistent with expected hurricane structures. The 319 

negative increment is expected of the 3DVAR, because the increment is obtained through a 320 

balance relationship between temperature and wind and this relationship reflects the thermal 321 

wind relation. More specifically, the ‘balanced temperature’ increment Tb at a vertical level k, in 322 

WRF 3DVAR is related to the stream function ψ by a regression relation, Tb(k) = Σ1 G(l,k) ψ(l), 323 

where G is the regression coefficient and the summation is over the vertical index l.  Such a 324 

regression relation derived using the NMC-method generally reflects hydrostatic, geostrophic, 325 

and thermal wind relations (Barker et al. 2004). A colder core at 850 hPa is consistent with an 326 

enhanced cyclonic circulation at the 700 hPa seen in Fig. 6. Note that at this distance, the lowest 327 

radar beams do not reach below 850 hPa, hence the enhancement of wind is larger above 850 328 

hPa. Therefore the cyclonic wind increment increases with height in the lower atmosphere. We 329 

note that negative temperature increment is also seen in the low-level eye region of analyzed 330 
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hurricanes in previous studies using Airborne Doppler radar data and WRF 3DVAR (e.g., Xiao 331 

et al. 2009)  332 

 Different from 3DVAR, the temperature increment obtained in HybridF shows positive 333 

increments in the eye region (Fig. 7b) and spiral patterns in the eye wall and outer rainband 334 

regions. Such much more realistic structures are the result of temperature-wind cross covariances 335 

derived from the ensemble, which have knowledge of the vortex as a tropical cyclone.  In 336 

addition, the magnitude of the temperature increments in HybridF is an order of magnitude larger 337 

than that of 3DVARb; the temperature increment in the 3DAR analysis of Xiao et al. (2009) for 338 

Hurricane Jeanne (2004) was also weak, reflecting the relative weak thermal wind relationship in 339 

3DVAR. 340 

As the wind increment, the temperature increment from HybridH is in-between those of 341 

HybridF and 3DVARb (Fig. 7c). The magnitude is about half that of HybridF. The structure of 342 

the increment resembles that of HybridF more but the eye region has negative instead of positive 343 

increments. From this aspect, HybridH is poorer than HybridF. 344 

d. Innovation statistics for Vr and minimum sea level pressure in DA cycles 345 

The behaviors of 3DVARb, HybridH, and HybridF are further compared by examining 346 

the fit of their analyses and forecasts to Vr observations during the DA cycles. The fit is defined 347 

as the root mean square difference (RMSD) between the model state and observations, after the 348 

model state is converted to the observed quantities; and such difference is also called observation 349 

innovation.  Figure 8 shows the RMSDs for Vr and minimum sea level pressure (MSLP) from 350 

HybridH, HybridF and 3DVARb.  Vr data of  both KHGX and KLCH are used in the innovation 351 

calculation and for the hybrid, the ensemble mean is used. In all three experiments, the RMSD 352 

for Vr is reduced significantly by the analysis within each cycle and the largest reduction occurs 353 
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in the first analysis cycle at 0000 UTC when the observation innovations are the greatest. In later 354 

cycles, the innovations for the analyses remain roughly between 2.5 and 3.5 m s-1, which is 355 

reasonable given the 2 m s-1 expected observation error. The 30-minute forecasts following each 356 

analysis generally increase the Vr innovation by about 2 m s-1, reaching 4-5 m s-1 levels. In 357 

general, HybridH produces analyses that fit Vr observations tightest while HybridF the least and 358 

3DVARb is in-between. Similar is true of the 30-minute forecasts. It is interesting that the 359 

innovations for HybridH are not generally in-between HybridF and 3DVARb, as we saw earlier 360 

for the wind and temperature increment fields.  We note that such results are possible and can 361 

occur, for example, when the observed value is closer to the value of HybridH, that may be in-362 

between the values of HybridF and 3DVAR. The observation innovation statistics can help us to 363 

see if the DA system is doing about the right things, but being ‘verification’ against the same set 364 

of observations that is also used in the DA, it cannot really tell us the true quality of the analyses. 365 

True measures of the analysis quality require verifications against independent observations or 366 

verification of subsequent forecasts, which will be presented later. 367 

Figure 8b shows the fit of the analysis and forecast MSLPs to the best track data from the 368 

National Hurricane Center. The best track MSLP is more or less constant during this 3 hour 369 

period, being at about 952 hPa. At the beginning of DA cycling (0000 UTC 13 September), the 370 

MSLP is about 23 hPa  higher than the best track estimate. The reduction of MSLP by HybridF 371 

is slightly larger than those of HybridH and 3DVARb in the first analysis. Later on, the reduction 372 

by 3DVARb is minimal. Significant reduction in MSLP occurred at 0200 UTC for HybridF, and 373 

at 0100 and 0130 UTC for HybridH while in all other cycles the reduction by analysis is 374 

minimal. Most of the reduction in MSLP in all cases are actually achieved through adjustment 375 

during the forecasting process, with more than 15 hPa reduction achieved during the first 376 
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analysis cycle between 0000 and 0030 UTC. This is not surprising because wind is the only 377 

parameter directly measured, and pressure analysis increments are only achieved through balance 378 

relationships and/or cross covariance, which are apparently weak.  379 

We note in general, the MSLP decreases faster in the forecast stages in the hybrid 380 

experiments than in 3DVARb. This is consistent with the fact that the hybrid method tends to 381 

build a warmer vortex core, and warmer temperature tends to induce a lower surface pressure 382 

due to hydrostatic balance. A stronger vortex circulation will also induce lower central pressure 383 

due to cyclostrophic balance. During the final 3 cycles, there is clearly over-deepening of the 384 

central pressure in HybridH in the forecast stages, resulting in a fall of MSLP that is about 5.5 385 

hPa too low compared to best track. The final analysis MSLP in HybridF is about 2.0 hPa too 386 

low, which should be within the uncertainty range of MSLP best track data. 387 

Overall, errors in the maximum surface wind (MSW) and MSLP are greatly reduced after 388 

assimilating radar data in all DA experiments. At 0300 UTC 13 September, the end of the DA 389 

cycles, the best track MSW and MSLP are 47.5 m s-1 and 951 hPa respectively. For 3DVARb, 390 

HybridF, and HybridH, after assimilating radar radial wind, the MSW errors are 1, 0.8, and 2.7 391 

m s-1 and the MSLP errors are 0.2, 1.9, and 5.6 hPa, respectively. In contrast, for NoDA 392 

experiment without assimilating radar data, the MSW error is 9 m s-1 and MSLP error is 29 hPa.  393 

e. The analyzed hurricane structures 394 

We examine next the structure of the hurricane at the end of the DA cycles by plotting 395 

fields at the surface and in vertical cross sections through the analyzed hurricane center. Figure 9 396 

shows the analyzed mean sea level pressure and surface wind vectors for NoDA, 3DVARb, 397 

HybridF and HybridH. Compared with NoDA (Fig. 9a), the analyzed vortex circulations are 398 

stronger and the minimum sea level pressure is much lower in 3DVARb, HybridF, and HybridH 399 
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(Fig. 9b-d). The low level flow also shows convergence towards the eye wall; such primary 400 

hurricane circulations (Willoughby 1990) are captured well by the assimilation of radar radial 401 

velocity data. 402 

Figure 10 shows the vertical cross sections of horizontal wind speed and potential 403 

temperature for all four experiments. The locations of cross sections are through the analyzed 404 

hurricane center and the maximum wind speed as indicated by the thick lines in Fig. 9. The 405 

hurricane eye is much wider and the intensity is much weaker in NoDA than in the three radar 406 

DA experiments.  Given the inner eye pressure deficit, the warm core should extend through the 407 

depth of the troposphere based on the hydrostatic approximation (Haurwitz 1935). Compared 408 

with the hybrid experiments, 3DVARb shows an unrealistic weak cold core structure at the lower 409 

levels. With the downward extruding potential temperature contours in HybridF and HybridH 410 

throughout the depth of the plotted domain (Fig. 10c, d), the warm core structure is clear. 411 

The warm core structure is seen even more clearly in the vertical cross sections of 412 

horizontal temperature anomaly, which is the deviation from the mean at the pressure levels (Fig. 413 

11). The temperature anomaly in NoDA is very small (less than 2 K, Fig. 11a) while that in 414 

3DVARb, HybridF and HybridH exceeds 8 K, with the maximum anomaly found between 300 415 

and 500 hPa levels (Fig. 11b-d).  Such temperature anomalies are expected in hurricanes at 416 

similar intensities.  Zhu et al. (2004) obtained a maximum anomaly of about 8 K in an 84-h 417 

forecast of Hurricane Bonnie (1988) with a MSLP of about 955 hPa. In observational studies, the 418 

strength of hurricane warm core has been shown to negatively correlate with MSLP (Halverson 419 

et al. 2006; Hawkins; Imbembo 1976). 420 

The near-zero or negative temperature anomaly below 700 hPa is clear in Fig. 11b for 421 

3DVARb. This is related to the negative 3DVARb temperature increment discussed earlier.  In 422 
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HybridF and HybridH, the positive anomaly extends to the surface (Fig. 11c and 11d). In the 423 

latter two, the maximum anomaly is found to be at the inner edge of hurricane eye wall at about 424 

400 hPa, which should be associated with the eye wall warming (LaSeur and Hawkins 1963; 425 

Holland 1997).  426 

f. The track and intensity forecasts 427 

To further evaluate the quality of analyses produced by different DA methods, 428 

deterministic forecasts initialized from the (ensemble mean in the hybrid cases) analyses at 0300 429 

UTC 13 September, the end of the DA cycles, are launched.  The track forecasts are compared in 430 

Figure 12a. The center of hurricane is defined as the location of MSLP. The initial track errors at 431 

0300 UTC are less than 20 km for all four experiments. By 0000 UTC 14 September, the track 432 

errors are 98, 117, 84, 64 km for NoDA, 3DVARb, HybridF and HybridH respectively. The 433 

mean track errors based on the hurricane positions at 6-h interval during the period from 0300 434 

UTC 13 to 0000 UTC 14 September are 41, 57, 41, and 34 km for NoDA, 3DVARb, HybridF, 435 

and HybridH respectively. Given that our DA experiments do not include environmental 436 

observations, the main effect on the track should come from the changes to the structure and 437 

intensity of the analyzed hurricane. 438 

Figure 12b shows the intensity forecasts in terms of MSLP, together with the best track 439 

MSLP. At 0300 UTC 13 September, the MSLP errors are 28, 0.2, 2.0, and 5.5 hPa for NoDA, 440 

3DVARb, HybridF and HybridH respectively. NoDA has the largest MSLP error throughout the 441 

forecast. The MSLP error in 3DVARb is smaller at the initial time, but becomes larger than those 442 

of HybridF and HybridH at the later forecast times. Overall, the forecast MSLP in the two hybrid 443 

experiments is closer to the best track MSLP than that of 3DVARb. None of the forecasts 444 

capture the slight deepening during the first 3 hours of forecast. 445 
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g. Verification of forecasts against Vr observations 446 

The wind forecasts are further verified against observed radar radial velocity data.  Figure 447 

13 shows the root mean squared errors (RMSEs, strictly it is RMSD because observations also 448 

contain error) of forecast against observed Vr for 3DVARb, HybridF and HybridH. Compared to 449 

the best track estimation of wind speed, the radar Vr observations are more reliable. At the initial 450 

time of 0300 UTC, the RMSE of 3.5 m s-1 from HybridF is slightly larger than those from 451 

HybridH (2.6 m s-1) and 3DVARb (2.8 m s-1). After the first hour, the HybridF wind forecast fits 452 

the observed radial wind best, especially after 6 hours of forecast where the error in 3DVARb 453 

grows much faster and reaching 14.8 m s-1 compared to the 8-9 m s-1 in the hybrid cases.  The 454 

much faster error growth in 3DVARb, even though at the initial time its fit to Vr observations is 455 

comparable to that of HybridH and better than HybridF,  suggests that other model fields in the 456 

3DVARb analysis are dynamically less consistent with the wind field than in the hybrid cases.  457 

The slight better forecast in HybridF than in HybridH at 6 hours suggests the fully flow-458 

dependent covariance during the assimilation cycles is beneficial.  459 

h. Evaluation of rainfall forecasts 460 

Rainfall forecasts are evaluated by calculating equitable threat scores (ETSs) of 3-h 461 

accumulated precipitation against NCEP Stage IV precipitation analyses (Fig. 14). For the 462 

thresholds of 5, 10, and 25 mm/3 hr and all forecast lead times, the hybrid experiments have  463 

higher ETSs than 3DVARb. Furthermore, the improvement of the hybrid over 3DVARb 464 

increases with precipitation threshold, indicating again the superior quality of the hybrid DA 465 

method. In addition, HybridF has slightly higher ETS scores than HybridH for most times and 466 

thresholds. The ETS of the hybrid experiments is higher than the NoDA for larger threshold and 467 

longer forecast lead times.  By further looking at the precipitation patterns, it is found that the 468 
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precipitation forecasts of HybridF more closely match the observed convective spiral band 469 

patterns in the inner core region while 3DVARb produces too much precipitation in the southeast 470 

quadrant in the outer band region (the region is within the reflectivity coverage of coastal radars, 471 

from which the Stage IV precipitation is estimated, c.f. Fig. 1) and the radius of the inner core 472 

eye wall appears larger than observed (Fig. 15). In comparison, the precipitation pattern from 473 

NoDA case is poorer than the DA experiments especially for inner rain bands. 474 

5. Summary and conclusions 475 

In this study, the WRF hybrid ensemble-3DVAR data assimilation (DA) system (Wang et 476 

al. 2008a,b) is applied for the first time to the assimilation of radial velocity data for a landfalling 477 

hurricane.  More specifically, radial velocity data from two operational WSR-88D radars along 478 

the Gulf of Mexico coast are assimilated over a three-hour period for Hurricane Ike (2008) after 479 

it moved into the ranges of the two radar, using an enhanced version of the WRF hybrid DA 480 

system. Different from Wang et al. (2008a,b) that employed an ensemble transformation Kalman 481 

filter to generate the analysis ensemble, we employ in this study the ‘perturbed observation’ 482 

method used in Hamill and Snyder (2000), which corresponds to the stochastic approach used in 483 

the classic stochastic ensemble Kalman filters (Burgers et al. 1998; Houtekamer and Mitchell 484 

1998; Evensen, 2003). Further, we applied vertical localization based on empirical orthogonal 485 

functions while continuing to use recursive filters for horizontal localization for the flow-486 

dependent ensemble-estimated background error covariance. The flow-dependent ensemble 487 

covariance is incorporated into the 3D variational framework by using the extended control 488 

variable method.  489 

The radial velocity data are assimilated every 30 minutes over a 3 hour period. Results 490 

mainly from five experiments are presented. A forecast experiment without assimilating any 491 
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radar data is first carried out to serve as a baseline against which the radar-assimilating 492 

experiments are compared; this forecast experiment (NoDA) started directly from the operational 493 

GFS analysis at 0300 UTC 13 September 2008, which contained too weak a hurricane vortex.  494 

The four radar DA experiments used the WRF 3DVAR using the static covariance derived from 495 

the NMC method (3DVARa), the WRF 3DVAR using further tuned static covariance 496 

(3DVARb), the hybrid DA system with purely flow-dependent background covariance 497 

(HybridF), as well as half static and half flow-dependent covariance (HybridH), respectively. In 498 

the tuned 3DVAR experiment (3DVARb) as well as HybridH, the horizontal spatial correlation 499 

scale in the static covariance derived from the NMC-method is reduced by a factor of 0.3 to 500 

produce much more realistic wind increments than the default scale (in 3DVARa). The results of 501 

analyses and forecasts from the five experiments are inter-compared and verified against best 502 

track data, radar wind measurements and precipitation data. The main conclusions are 503 

summarized in the following. 504 

(1) When using the default background error covariance derived from the NMC method 505 

(experiment 3DVARa), WRF 3DVAR produces unrealistic wind increments from radial velocity 506 

(Vr) data of two Doppler radars having good coverage of the hurricane vortex. With a reduced 507 

spatial covariance correlation scale (in 3DVARb), the wind increments properly reflect the 508 

hurricane primary circulation.  509 

(2) The largest wind increments are obtained in the first few analysis cycles. The 510 

increments of the hybrid scheme with full flow-dependent covariance (in HybridF) produce a 511 

less axisymmetric increment circulation than 3DVARb and HybridH.  512 

(3) HybridF produces the most realistic temperature increments with positive values at 513 

the hurricane center, corresponding to the warm core structure, while 3DVARb produces much 514 
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weaker and smoother temperature increments that are negative at the center of hurricane. At the 515 

end of assimilation cycles, negative temperature anomalies are found below 700 hPa in the eye 516 

region of 3DVARb analysis while the hybrid analyses show deep warm core structures. 517 

(4) All three DA experiments are able to create analyses that fit the Vr data well, and the 518 

error reduction by analysis is the largest in the first analysis cycle. The analysis fit to Vr 519 

observations is the closest in HybridH and the least close in HybridF in general during the DA 520 

cycles. Most of the minimum sea level pressure (MSLP) reduction is achieved through model 521 

adjustment during the forecast step of the assimilation cycles, and the MSLP is within 2.5 hPa of 522 

the best track value after 4 analysis cycles of 30 minute interval. HybridH over-analyzes the final 523 

MSLP by about 5.6 hPa while those of 3DVARb and HybridF are within 0.2 and 1.9 hPa of the 524 

best track data, respectively. 525 

(5) The hybrid experiments improve the Ike track forecast slightly, over the track forecast 526 

by NoDA starting from the GFS analysis. 3DVARb slightly degrades the track forecast. All radar 527 

DA experiments produce MSLP forecasts that are generally within 8 hPa of the best track data, 528 

with 3DVARb predicting the weakest hurricane among the DA experiments. The NoDA 529 

experiment from GFS analysis starts with an error of nearly 30 hPa in MSLP and ends with an 530 

error of a little over 10 hPa when Ike was much weaker after landfall.  531 

(6) The most interesting is that the fit of forecast radial velocity to radar observations 532 

during the first 6 hours of forecast is much worse with 3DVARb than with HybridF and 533 

HybridH, having RMSEs of about 14.8, 8.5 and 9.3 m s-1 for the three, respectively, at the 6-hour 534 

forecast, even though the final analysis of 3DVARb fits the observations closer than that of 535 

HybridF (about 2.8 and 3.5 m s-1, respectively). The forecast results indicate that the overall 536 

quality of hybrid analyses is better than that of 3DVARb, producing more dynamically consistent 537 
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state estimations that lead to later slower error growth during forecast.  The forecast error of 538 

HybridF is slightly lower than that of HybridH starting from hour three. In the absence of 539 

independent observations for verification during the data assimilation period, the quality of an 540 

analysis is best measured by the accuracy of the ensuring forecast. 541 

(7) The equitable threat scores (ETSs) for 3-hour accumulated precipitation forecasts in 542 

the hybrid experiments are higher than those of 3DVARb for the thresholds and lead times 543 

considered, and the improvement increases with precipitation threshold, indicating again the 544 

superior quality of the hybrid DA method.  Among the hybrid experiments, HybridF produced 545 

slightly better ETSs than HybridH most times.   546 

(8) The results of this study also show positive impacts of assimilating radar data for 547 

hurricane initialization, and the hybrid-method-analyzed hurricane has kinematic and 548 

thermodynamic structures that are consistent with tropical cyclone conceptual models. 549 

 Finally a point worth noting:  the inclusion of static background covariance in HybridH 550 

in general did not improve the results over HybridF; i.e., the use of flow-dependent covariance in 551 

full in general gives better results. Earlier studies suggested that the optimal combination of the 552 

static and flow-dependent covariance depends on their relative quality (Hamill and Snyder 2000; 553 

Wang et al. 2007a). Our results suggest that for hurricanes and radar data, there is little benefit of 554 

including static covariance because static covariance is not capable of appropriately reflecting 555 

the mesoscale and convective-scale nature of hurricanes, and because of the dominant scales of 556 

motion that radar data measure.   557 

We also note that this study represents the first attempt of applying a variational-558 

ensemble hybrid data assimilation method to hurricane and radar data assimilation. While the 559 

results are positive and encouraging, more robust conclusions will need to be drawn by testing 560 
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the method on many more cases. Other observational data should also be assimilated together to 561 

improve the hurricane environment as well. These are topics for future research.  562 
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Figure Captions 729 

Fig. 1. The WRF model domain and National Hurricane Center best track positions for Hurricane 730 

Ike (2008) from 1800 UTC 12 to 0000 UTC 14 September 2008. Also indicated are the 731 

Houston, Texas (KHGX) and Lake Charles, Louisiana (KLCH) WSR-88D radar 732 

locations (asterisks) and maximum range (300 km for radial velocity and 460 km for the 733 

reflectivity) coverage circles.  734 

Fig. 2. Schematic diagram of the hybrid ensemble-3DVAR forecast-analysis cycle for a 735 

hypothetical three-member ensemble. Each member assimilates the observations 736 

containing a different set of perturbations. 737 

Fig. 3.  The radial velocity (interval of 20 m s-1) at 0.5o elevation angle from (a) KHGX and (b) 738 

KLCH WSR-88D radars at 0000 UTC 13 September 2008. Black dot is for NHC best-739 

track position of Hurricane Ike (2008) at this time. Asterisks are for radar locations. 740 

Fig. 4. The flow charts for (a) NoDA experiment, (b) 3DVAR experiments (3DVARa and 741 

3DVARb), and (b) hybrid experiments (HybridF and HybridH). 742 

Fig. 5. The vertical cross section of the wind speed increment (interval of 5 m s-1) using a 743 

single KHGX radar radial velocity data located at (28.4oN, 93.7oW, 3176 m) with an 744 

innovation of -38.63 m s-1 using the configurations of experiment HybridF but (a) 745 

without and (b) with vertical localization at 0000 UTC 13 September 2008. 746 

Fig. 6. The 700 hPa wind analysis increments (m s-1) for (a) 3DVARa, (b) 3DVARb, (c) 747 

HybridF, and (d) HybridH at 0000 UTC 13 September 2008. 748 

Fig. 7. The 850 hPa temperature analysis increments for (a) 3DVARb (at intervals of 0.3 K), 749 

(b) HybridF (at intervals of 0.7 K), and (c) HybridH (at intervals of 0.3 K), at 0000 750 

UTC 13 September 2008. 751 
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Fig. 8. The forecast and analysis (sawtooth pattern during DA cycling) of (a) RMSD of radial 752 

velocity (m s-1), and (b) the minimum sea level pressures (hPa) together with the 753 

NHC best track estimate, for 3DVARb, HybridF, and HybridH from 0000 to 0300 754 

UTC 13 September 2008. 755 

Fig. 9. The analyzed sea level pressure (interval of 5 hPa, solid contours) and the surface 756 

wind vectors (m s-1) for (a) NoDA, (b) 3DVARb, (c) HybridF, and (d) HybridH at 757 

0300 UTC 13 September 2008. The thick solid line indicates the vertical cross section 758 

location in Fig. 10 and Fig. 11. 759 

Fig. 10. Vertical cross sections of analyzed horizontal wind speed (interval of 10 m s-1, 760 

shaded) and potential temperature (interval of 5 K, solid contours) for (a) NoDA, (b) 761 

3DVARb, (c) HybridF, and (d) HybridH, at 0300 UTC 13 September 2008. 762 

Fig. 11. Vertical cross sections of analyzed temperature anomalies (interval of 2 K) for (a) 763 

NoDA, (b) 3DVARb, (c) HybridF, and (d) HybridH, at 0300 UTC 13 September 764 

2008. 765 

Fig. 12. Deterministic forecast hurricane (a) tracks and (b) minimum sea level pressure (hPa) 766 

by NoDA, 3DVARb, HybridF, and HybridH as compared to NHC best track 767 

estimates from 0300 UTC 13 through 0000 UTC 14 September 2008. 768 

Fig. 13. Deterministic forecast RMSEs of Vr (m s-1) by 3DVARb, HybridF, and HybridH 769 

from 0300 to 0900 UTC 13 September 2008. 770 

Fig. 14. The equitable threat scores for 3 h accumulated forecast precipitation by NoDA, 771 

3DVARb, HybridF, and HybridH at thresholds (a) 5 mm, (b) 10 mm, and (c) 25 mm, 772 

verified against NCEP Stage-IV precipitation analyses valid at 0600, 0900, 1200, and 773 

1500 UTC 13 September 2008. 774 
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 775 

Fig. 15 Three-hour accumulated precipitation (mm) by (1st column) NCEP Stage-IV 776 

precipitation analyses, (2nd column) NoDA, (3rd column) 3DVARb, and (4th 777 

column) HybridF valid at (top) 0600 and (bottom) 0900 UTC 13 September 2008. 778 

 779 

 780 

 781 

 782 

 783 

 784 

 785 

 786 
 787 
 788 
 789 
 790 
 791 
 792 
 793 
 794 
 795 
 796 
 797 
 798 
 799 
 800 
 801 
 802 
 803 
 804 
 805 
 806 
 807 
 808 
 809 



37 
 

 810 
 811 

Table 1. List of experiments 812 

Experiment                               Description 

  NoDA No radar data assimilation. WRF model initial condition interpolated 

from NCEP 1ox1o analysis 

  3DVARa Radar DA using WRF 3DVAR with static covariance from NMC 

method 

  3DVARb Same as 3DVARa, except the horizontal spatial correlation in the static 

covariance is multiplied by 0.3. 

  HybridF Radar DA using hybrid method with full weight given to flow 

dependent covariance, with β1 = 0.001 and β2 = 1.001 in Eq. (1) 

  HybridH Hybrid method with equal weight given to static covariance (which is 

the same as 3DVARb) and flow-dependent covariance, with β1 = 0.5 

and β2 = 0.5 in Eq. (1) 
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 829 

 830 

 831 

 832 

Fig. 1. The WRF model domain and National Hurricane Center best track positions for 833 
Hurricane Ike (2008) from 1800 UTC 12 to 0000 UTC 14 September 2008. Also 834 
indicated are the Houston, Texas (KHGX) and Lake Charles, Louisiana (KLCH) WSR-835 
88D radar locations (asterisks) and maximum range (300 km for radial velocity and 460 836 
km for the reflectivity) coverage circles.  837 
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 845 

 846 

 847 

Fig. 2. Schematic diagram of the hybrid ensemble-3DVAR forecast-analysis cycle for a 848 
hypothetical three-member ensemble. Each member assimilates the observations 849 
containing a different set of perturbations. 850 
 851 
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 862 

 863 
 864 

 865 
Fig. 3.  The radial velocity (interval of 20 m s-1) at 0.5o elevation angle from (a) KHGX and (b) 866 
KLCH WSR-88D radars at 0000 UTC 13 September 2008. Black dot is for NHC best-track 867 
position of Hurricane Ike (2008) at this time. Asterisks are for radar locations. 868 
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 877 

 878 

 879 

 880 
 881 

Fig. 4. The flow charts for (a) NoDA experiment, (b) 3DVAR experiments (3DVARa 882 
and 3DVARb), and (b) hybrid experiments (HybridF and HybridH). 883 
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 895 

 896 

 897 

 898 
Fig. 5. The vertical cross section of the wind speed increment (interval of 5 m s-1) 899 
using a single KHGX radar radial velocity data located at (28.4oN, 93.7oW, 3176 m) 900 
with an innovation of -38.63 m s-1 using the configurations of experiment HybridF but 901 
(a) without and (b) with vertical localization at 0000 UTC 13 September 2008. 902 
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 919 

         920 

 921 

Fig. 6. The 700 hPa wind analysis increments (m s-1) for (a) 3DVARa, (b) 3DVARb, 922 
(c) HybridF, and (d) HybridH at 0000 UTC 13 September 2008. 923 
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 927 

 928 

 929 

 930 

Fig. 7. The 850 hPa temperature analysis increments for (a) 3DVARb (at intervals of 931 
0.3 K), (b) HybridF (at intervals of 0.7 K), and (c) HybridH (at intervals of 0.3 K), at 932 
0000 UTC 13 September 2008. 933 
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 951 

 952 

 953 

 954 

 955 

Fig. 8. The forecast and analysis (sawtooth pattern during DA cycling) of (a) RMSD 956 
of radial velocity (m s-1), and (b) the minimum sea level pressures (hPa) together with 957 
the NHC best track estimate, for 3DVARb, HybridF, and HybridH from 0000 to 0300 958 
UTC 13 September 2008. 959 
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 972 

 973 

 974 

 975 

 976 

Fig. 9. The analyzed sea level pressure (interval of 5 hPa, solid contours) and the 977 
surface wind vectors (m s-1) for (a) NoDA, (b) 3DVARb, (c) HybridF, and (d) 978 
HybridH at 0300 UTC 13 September 2008. The thick solid line indicates the vertical 979 
cross section location in Fig. 10 and Fig. 11. 980 
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 988 

 989 

 990 

  991 

Fig. 10. Vertical cross sections of analyzed horizontal wind speed (interval of 10 m s-992 
1, shaded) and potential temperature (interval of 5 K, solid contours) for (a) NoDA, 993 
(b) 3DVARb, (c) HybridF, and (d) HybridH, at 0300 UTC 13 September 2008.  994 
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 1001 

 1002 

 1003 

 1004 

Fig. 11. Vertical cross sections of analyzed temperature anomalies (interval of 2 K) 1005 
for (a) NoDA, (b) 3DVARb, (c) HybridF, and (d) HybridH, at 0300 UTC 13 1006 
September 2008. 1007 
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 1016 

Fig. 12. Deterministic forecast hurricane (a) tracks and (b) minimum sea level 1017 
pressure (hPa) by NoDA, 3DVARb, HybridF, and HybridH as compared to NHC best 1018 
track estimates from 0300 UTC 13 through 0000 UTC 14 September 2008. 1019 
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 1022 

 1023 

 1024 

 1025 

Fig. 13. Deterministic forecast RMSEs of Vr (m s-1) by 3DVARb, HybridF, and 1026 
HybridH from 0300 to 0900 UTC 13 September 2008. 1027 
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 1036 
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 1038 

 1039 

Fig. 14. The equitable threat scores for 3 h accumulated forecast precipitation by 1040 
NoDA, 3DVARb, HybridF, and HybridH at thresholds (a) 5 mm, (b) 10 mm, and (c) 1041 
25 mm, verified against NCEP Stage-IV precipitation analyses valid at 0600, 0900, 1042 
1200, and 1500 UTC 13 September 2008. 1043 
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 1061 

 1062 

Fig. 15 Three-hour accumulated precipitation (mm) by (1st column) NCEP Stage-1063 

IV precipitation analyses, (2nd column) NoDA, (3rd column) 3DVARb, and (4th 1064 

column) HybridF valid at (top) 0600 and (bottom) 0900 UTC 13 September 1065 

2008.  1066 
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