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Abstract 42 
 43 

A coupled EnSRF-En3DVar hybrid data assimilation (DA) system is developed for the 44 

operational Rapid Refresh (RAP) forecasting system. The three-dimensional ensemble-45 

variational (En3DVar) hybrid system employs the extended control variable method, and is built 46 

on the NCEP operational Grid-point Statistical Interpolation (GSI) 3DVar framework. It is 47 

coupled with an ensemble square root filter (EnSRF) system for RAP, which provides ensemble 48 

perturbations. Recursive filters (RF) are used to localize ensemble covariance in both horizontal 49 

and vertical within the En3DVar. 50 

The coupled En3DVar hybrid system is evaluated with 3-hour cycles over a 9-day period 51 

with active convection. All conventional observations used by operational RAP are included. 52 

The En3DVar hybrid system is run at 1/3 of the operational RAP horizontal resolution or about 53 

40-km grid spacing, and its performance is compared to parallel GSI 3DVar and EnSRF runs 54 

using the same data sets and resolution. Short-term forecasts initialized from the 3-hourly 55 

analyses are verified against sounding and surface observations. 56 

When using equally weighted static and ensemble background error covariances and 40 57 

ensemble members, the En3DVar hybrid system outperforms corresponding GSI 3DVar and 58 

EnSRF. When the recursive filter coefficients are tuned to achieve a similar height-dependent 59 

localization as in the EnSRF, the En3DVar results using pure ensemble covariance are close to 60 

EnSRF. Two-way coupling between EnSRF and En3DVar did not produce noticeable 61 

improvement over one-way coupling. Downscaled precipitation forecast skill on the 13-km RAP 62 

grid from the En3DVar hybrid is better than those from GSI 3DVar analyses.  63 
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1. Introduction  1 

Three-dimensional variational (3DVAR, Lorenc 1986) and four-dimensional variational 2 

(4DVAR, Le Dimet and Talagrand 1986; Talagrand and Courtier 1987) data assimilation (DA) 3 

methods have been used successfully at operational numerical weather prediction (NWP) centers 4 

for more than two decades (e.g., Parrish and Derber 1992; Courtier et al. 1998; Rabier et al. 2000). 5 

Typically, static, flow-independent background error covariance (BEC) is used in the background 6 

term of the variational cost function. Neglecting the flow dependent nature of the background error 7 

is a key deficiency, especially within a 3DVar framework where the NWP model is not directly 8 

used to incorporate model dynamics into the DA system (e.g., Parrish and Derber 1992; Purser et al. 9 

2003b). This deficiency becomes more severe for mesoscale and convective-scale DA where even 10 

fewer state variables (compared to the full set) are directly observed and large-scale balance 11 

relationships, which are often built into 3DVar systems, become invalid (e.g., Gao et al. 2004; Ge et 12 

al. 2012). While some efforts had been made to build spatially inhomogeneous, anisotropic BEC 13 

into 3DVar frameworks (e.g., Purser et al. 2003a; Wu et al. 2002), major issues exist on how to 14 

determine the flow-dependent covariances and how to efficiently introduce them into a variational 15 

DA framework. 16 

 The ensemble Kalman filter (EnKF) algorithm, as initially developed by Evensen (1994) 17 

and Burgers et al. (1998), offers an alternative to the variational formulation. The EnKF employs 18 

the Monto Carlo sampling approach, where an ensemble of model forecasts is used to provide and 19 

evolve flow-dependent covariances, while the filter updates the ensemble states using an optimal 20 

weight through a least square approach. Many subsequent studies have refined the filter algorithm 21 

by addressing a number of issues that are often related to the sampling error associated with the use 22 

of relatively small ensembles that is necessitated by practical computational constraints (e.g., 23 
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Burgers et al. 1998; Houtekamer and Mitchell 1998; Hamill et al. 2001; Anderson 2001; Whitaker 24 

and Hamill 2002; Evensen 2003). Because of their ability to estimate flow-dependent BECs and to 25 

evolve them through assimilation cycles, and their relative ease of implementation, the ensemble 26 

DA methods (Bishop et al. 2001; Anderson 2001; Hunt et al. 2007; Whitaker and Hamill 2002; 27 

Evensen 1994) have gained much popularity within both the research and operational communities 28 

in recent years. The ensemble filters have been used in operational global forecast systems to 29 

provide ensemble-based BEC (e.g., Raynaud et al. 2011; Bonavita et al. 2012; Hamill et al. 2011b; 30 

Wang et al. 2013) as well as initial conditions for ensemble forecasts (e.g., Houtekamer et al. 2005; 31 

Whitaker et al. 2008; Hamill et al. 2011a). The application of EnKF to mesoscale models has also 32 

enjoyed encouraging successes (e.g., Fujita et al. 2007; Meng and Zhang 2007; Bonavita et al. 33 

2008) while for the convective scale, EnKF has shown great ability in dealing with complex, 34 

nonlinear physical processes (e.g., Tong and Xue 2005) that may even involve two-moment 35 

microphysics parameterization (e.g., Xue et al. 2010; Jung et al. 2012; Putnam et al. 2014). 36 

Accurate representation of microphysical processes is especially important at the convective scale.  37 

While EnKF provides a way of estimating flow-dependent BEC, the estimated covariance 38 

matrix is severely rank deficient due to the much smaller ensemble sizes used compared to the 39 

degrees of freedom of typical NWP model state (Houtekamer and Mitchell 1998; Hamill and 40 

Snyder 2000). The use of much larger ensembles is often computationally impractical while 41 

determining optimal localization that alleviates the rank deficiency problem in concert with 42 

appropriate covariance inflation makes tuning expensive (Anderson 2007; Anderson 2012). Another 43 

approach that can help alleviate this problem is to combine the full-rank static BEC with the rank-44 

deficient ensemble BEC, creating a so-called hybrid1 algorithm. 45 

                                                 
1 In this study, we use the word ‘hybrid’ to refer to a combination of the static and ensemble-derived flow-dependent 
covariances, i.e., the hybrid covariance.  



 

3 
 

Hamill and Snyder (2000) were the first to propose a 3DVar-based hybrid scheme in which 46 

the static BEC in a 3DVar system was replaced by a linear combination of the static and ensemble-47 

derived BEC. The system was tested with a low-resolution quasi-geostrophic model and simulated 48 

data in a perfect model setting. By running the hybrid analysis system multiple times with perturbed 49 

observations, the system is able to provide an ensemble of analyses. It was found that the analysis 50 

performs the best when BEC is estimated almost fully from the ensemble, especially when the 51 

ensemble size was large (100 in their case). When the ensemble is smaller,  the system benefits 52 

from a lesser weighting given to the ensemble-based covariances. Wang et al. (2009) also found that 53 

a hybrid system based on an ETKF is more robust than EnKF for a two-layer primitive equation 54 

model when the ensemble size is small and when the model error is large. The hybrid formulation in 55 

these studies requires explicit evaluation and storage of the ensemble covarianes which is very 56 

expensive for full NWP models.  57 

Lorenc (2003) proposed an elegant, alternative hybrid formulation, in which the control 58 

variables of the regular variational cost function are augmented by extended control variables 59 

(hereafter, ECV), which are preconditioned upon the square root of ensemble covariance. The ECV 60 

formulation involves adding an additional term to the variational cost function for the ECVs which 61 

has a similar form as the original background term, and is therefore relatively easy to implement 62 

based on an existing variational DA framework. Wang et al. (2007) proved that the ECV 63 

formulation is mathematically equivalent to that of Hamill and Snyder (2000). The potential for the 64 

hybrid system to perform better than a pure EnKF when the ensemble size is relatively small makes 65 

it attractive for operational implementation where computational constraint is often a significant 66 

issue. A variational framework used by the hybrid scheme also makes it easier to include additional 67 

equation constraints in the cost function (e.g., Ge et al. 2012; Kleist et al. 2009b). Furthermore, for 68 

observations whose forward operators are non-local, such as those of satellite radiance data, the 69 
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state-space-based covariance localization used in the hybrid formulation is potentially advantageous 70 

(Campbell et al. 2010). As suggested by Lorenc (2003), Buehner et al. (2010a, b), both (traditional) 71 

3DVar and 4DVar can be formulated to use the ensemble covariance with the extended control 72 

variable method, and we call such ensemble-variational formulations En3DVar and En4DVar2, 73 

respectively, or EnVar in general.  74 

Buehner (2005) implemented the ECV hybrid approach within the Canadian operational 75 

global 3DVar framework, and found that the hybrid scheme produced comparable or better 76 

forecasts than those initialized using 3DVar. Buehner et al. (2010a, b) further compared the 77 

performances of the coupled EnKF-En3DVar and EnKF-En4DVar with the pure 3DVar and 4DVar 78 

for global forecasts. Based on the variational DA framework of the Advanced Research WRF 79 

(WRF-ARW, Skamarock et al. 2005) model, Wang et al. (2008a, b) implemented the ECV-based 80 

hybrid, coupling it with an ensemble transform Kalman filter (ETKF, Bishop et al. 2001) that is 81 

used to update the ensemble perturbations (which we call ETKF-En3DVar hybrid). This WRF 82 

hybrid DA system was further applied for tropical cyclone DA (Wang 2011; Li et al. 2012). Most 83 

recently, Zhang and Zhang (2011) coupled a mesoscale EnKF system with WRF 4DVar through the 84 

WRF hybrid DA framework (hence EnKF-En4DVar hybrid but they called it E4DVar), and Zhang 85 

et al. (2013) further compared the performances of EnKF-En3DVar (they called it E3DVar) and 86 

EnKF-En4DVar hybrid for mesoscale applications. Mizzi (2012) reported results testing the GSI-87 

based En3DVar hybrid, using ETKF, local ensemble transform Kalman filter (LETKF), and the 88 

regular EnKF for ensemble perturbation updating, respectively, and WRF-ARW as the prediction 89 

model, for a hurricane period. In general, the introduction of flow-dependent ensemble covariance 90 
                                                 
2 Here, En4DVar is an extension of the traditional 4DVar scheme to include the use of ensemble-derived background 
error covariance through the extended control variable method. The scheme still involves the use of an adjoint model. 
Liu et al. (2008) proposed an alternative algorithm that does not involve the use of a model adjoint, and En4DVar was 
used to refer to their algorithm. In Liu and Xiao (2013)  their algorithm is renamed 4DEnVar, to better differentiate the 
algorithm from traditional 4DVar. Our current usage is also consistent with the conventions used by papers at the recent 
WMO Data Assimilation Symposium of Maryland, United States in October 2013. 
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into 3DVar or 4DVar improves the forecast results. In fact, for the NCEP operational Global 91 

Forecasting System (GFS), an EnKF-En3DVar hybrid DA system (Whitaker et al. 2011; Hamill et 92 

al. 2011b) based on an EnKF and the operational Grid-Point Statistical Interpolation (GSI) 3DVar 93 

(Kleist et al. 2009a) was developed and operationally implemented in 2012, replacing GSI 3DVar. 94 

Wang et al. (2013) reported the testing results from the GSI-based En3DVar hybrid system for GFS 95 

at a reduced resolution. 96 

It has been a general decision at NCEP that the hybrid DA approach will be applied to its 97 

regional models as well, including the North America Mesoscale (NAM) model and the recently 98 

implemented (on 1 May 2012) Rapid Refresh (RAP) system, the replacement to the Rapid Update 99 

Cycle (RUC, Benjamin et al. 2004). Towards this end, an EnKF system was recently established for 100 

the RAP and tested at a reduced resolution by Zhu et al. (2013, hereafter Z13) using the operational 101 

observation data stream of RAP. The same as for the GFS EnKF system, the ensemble square-root 102 

filter (EnSRF) algorithm of Whitaker and Hamill (2002) was used in Z13. As one of the 103 

deterministic ensemble filter algorithms, EnSRF avoids sampling issues associated with the use of 104 

“perturbed observations” (Whitaker and Hamill 2002; Tippett et al. 2003).  105 

In Z13, short-range (up to 18 hours) forecasts from 3-hourly EnSRF analyses over a 9-day 106 

period were found to be consistently better than forecasts from corresponding GSI 3DVar analyses, 107 

in terms of both model state forecasts and precipitation forecast skill scores. The primary goal of 108 

this current work is to extend the work Z13 by establishing and testing a coupled EnSRF-En3DVar 109 

hybrid DA system for RAP that can potentially be implemented operationally. As the first step, we 110 

test and evaluate the hybrid DA system running at 1/3 of the native resolution of operational RAP; 111 

running the EnSRF DA system at this reduced resolution is dictated by the limited operational 112 

computing resources in the near future. Moreover, running the En3DVar hybrid analyses at the 113 

same resolution facilitates easy and direct comparisons with the EnSRF results, and also provides us 114 
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with a benchmark for a future dual-resolution implementation. With a dual-resolution 115 

implementation, the En3DVar analyses will be run at a higher resolution, using the reduced-116 

resolution ensemble perturbations (as is with the operational GFS hybrid DA system). In this paper, 117 

we focus on documenting and comparing the results obtained from all three systems, i.e., the GSI 118 

3DVar, EnSRF and En3DVar hybrid, at the reduced, 40-km grid spacing. 119 

The rest of the paper is organized as follows. The coupled EnSRF-En3DVar hybrid system 120 

for RAP is first described in section 2. Experimental setup and testing results are discussed in 121 

sections 3 and 4, respectively. Downscaled precipitation forecasts on the 13 km RAP grid, starting 122 

from interpolated 40-km En3DVar hybrid, EnSRF and GSI 3DVar analyses, are compared in 123 

section 5. Finally, section 6 provides conclusions and additional discussions. 124 

2. GSI-based EnSRF-En3DVar hybrid system for Rapid Refresh 125 

a) The Rapid Refresh System 126 

The operational hourly-updated RUC system was designed to improve short-range weather 127 

forecasting through frequent updating of initial conditions with the latest observations (Benjamin et 128 

al. 2004). The RAP is a replacement of the RUC system and is based on the non-hydrostatic WRF-129 

ARW dynamic core (Skamarock et al. 2005). RAP became operational at NCEP on May 1, 2012 130 

using the GSI 3DVar as the data assimilation system. In February, 2014, the system was upgraded 131 

to incorporate BEC derived from ensemble perturbations from the 80-member GFS EnSRF system 132 

that feeds the operational hybrid En3DVar DA system of the GFS model.  The GSI is an unified DA 133 

framework for both global and regional models (Kleist et al. 2009a). The horizontal grid spacing of 134 

RAP is ~13 km and has 50 vertical levels extending up to 10 hPa at the model top. Compared to the 135 

RUC, the RAP system is capable of assimilating more observations, including satellite radiance 136 

data, and has a larger domain which covers the entire North America. The physics options used by 137 
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the operational RAP include the Grell-G3 cumulus parameterization, Thompson microphysics, 138 

RRTM longwave radiation, Goddard shortwave radiation, MYJ turbulent mixing, RUC-Smirnova 139 

land-surface model. Details on these schemes can be found in Benjamin et al. (2009).  140 

As with the RUC, the RAP employs a digital filter initialization (DFI) to reduce high-141 

frequency noise during the initial period of model integration. In the operational RAP system, twice 142 

DFI (TDFI) (Lynch and Huang 1992), which applies the DFI twice, once on the  adiabatic 143 

backward time integration and once on the full-physics forward time integration, is used. 144 

Considering that for high-resolution applications where diabatic processes are more important, 145 

adiabatic integration can introduce significant errors,  Z13 chose to employ the digital filter 146 

launching (DFL) procedure (Lynch and Huang 1994) instead in their EnSRF system for RAP. DFL 147 

applies the DFI only once, on the forward integration time series. In this study, the same procedure 148 

is followed by the EnSRF and En3DVar hybrid experiments. In our tests with 3-hourly cycles 149 

reported in this paper, the DFL employs a 40-minute filter window centered at 20 minutes of 150 

forecast time, and used Dolph filter (Lynch 1997) with a cutoff half width of 20 minutes.  151 

b) The coupled EnSRF-En3DVar hybrid system for RAP 152 

As mentioned earlier, our En3DVar hybrid system is based on the operational GSI 3DVar 153 

system for RAP and it uses the operational data stream of RAP. To facilitate direct comparisons 154 

with the RAP EnSRF and GSI 3DVar systems as reported in Z13, we run our hybrid tests also at the 155 

reduced resolution of ~40 km grid spacing with 3-hourly assimilation cycles instead of the ~13 km 156 

grid spacing and hourly cycles of the operational RAP. The use of the reduced-resolution EnSRF 157 

system is due to the expected constraint in available operational computational resources. The 158 

choice of 3-hourly cycles is to enable us to run a larger number of experiments and for more rapid 159 

prototyping of the system. The running of the continuously cycled experiments over a 9-day period 160 



 

8 
 

is computationally expensive in terms of both CPU and storage requirements. Extensive 161 

experimentation and tuning were required to arrive at quasi-optimal configurations of the RAP 162 

EnSRF system, including configurations of covariance inflation and localization. For future 163 

operational implementation, it is desirable to run the En3DVar at the native RAP resolution, while 164 

using lower-resolution EnSRF perturbations in a dual-resolution model to save computational cost. 165 

The implementation and testing of the dual-resolution coupled hybrid system for RAP will be done 166 

in the future. 167 

A one-way coupled EnSRF-En3DVar hybrid system is made up of four key steps: 1) GSI-168 

based observation processing that includes both quality control and calculation of a full set of 169 

observation innovations; 2) EnSRF analyses using the innovations calculated by the GSI and the 170 

background ensemble forecasts to yield an ensemble of analyses; 3) An En3DVar analysis using the 171 

background ensemble forecasts from the EnSRF cycle for flow-dependent covariance estimation; 172 

and 4) carrying out ensemble forecasts from the EnSRF ensemble analyses and a single control 173 

forecast from the En3DVar hybrid analysis to the next analysis time. 174 

 Fig.  1 shows a flowchart for both one-way and two-way coupled EnSRF-En3DVar 175 

analysis-forecast cycle as employed in this paper. For 1-way coupled En3DVar, the EnSRF system 176 

provides the background ensemble forecast perturbations to the ECV-based En3DVar hybrid 177 

variational analysis, but does not re-center the EnSRF analyses on the En3DVar analysis. Two-way 178 

coupling includes an additional step that re-centers the EnSRF analysis ensemble on the En3DVar 179 

control analysis (the thick black arrows and bold black box in Fig.  1). The two-way coupling 180 

implicitly assumes that the En3DVar control analysis is better than the EnSRF ensemble mean 181 

analysis, and the re-centering should help prevent the divergence between the EnSRF and En3DVar 182 

analyses so that the ensemble perturbations can sample the control forecast uncertainty well. 183 
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Divergence between the two systems tends to become more serious when continuous cycles are run 184 

for a long period of time. 185 

As pointed out earlier, the GSI-based En3DVar hybrid analysis is achieved using the ECV 186 

method (Wang 2010).  Within this framework, the analysis increment  x  is a sum of two terms, 187 

defined as 188 

'
1

1

( )
K

k k
k

 


 x x a x    ,             (1) 189 

where 1x  is the analysis increment associated with static BEC B and the second term on the right 190 

hand side is the increment associated with the ensemble covariance. '
kx  is the kth ensemble 191 

background perturbation normalized by 1K  , where K  is ensemble size. Vectors ( 1, , )k k K a  192 

in the second term are the extended control variables. Analysis increment  x  is obtained by 193 

minimizing the following cost function: 194 
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  (2) 195 

which gives the solutions of partial increment 1x  and ECV a . Vector a  is formed by 196 

concatenating K vectors ka . Compared to a traditional 3DVar cost function, a weighted sum of bJ  197 

and oJ  is replaced by the sum of weighted bJ  and eJ  terms and oJ , where bJ  is the traditional 198 

background term associated with static covariance B , oJ  is the observation term as in traditional 199 

3DVar. eJ  is the additional term associated with flow-dependent covariance for the ECV. 200 

Weighting factors 1   and 2  are placed in front of bJ  and eJ  terms, respectively, and they are 201 

constrained by  202 

1 2

1 1
1

 
  ,        (3) 203 
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to conserve the total variances in current GSI hybrid implementation. 204 

The ECVs are constrained by a block-diagonal matrix A , which defines the ensemble 205 

covariance localization (Lorenc 2003; Wang et al. 2007). In the GSI-based En3DVar hybrid 206 

implementation, the horizontal and vertical covariance localizations, or the effects of matrix A in 207 

Eq. (2), are achieved by applying recursive filter transforms (Hayden and Purser 1995), analogous 208 

to the treatment of B in Eq. (2). The parameters in the recursive filter will determine the correlation 209 

length scale in A  as a precondition and therefore prescribe the covariance localization length scale 210 

for the ensemble covariance. The vertical covariance localization scale (CLS) is measured in either 211 

scaled height (the natural log of pressure) or the number of model levels while the horizontal CLS is 212 

measured either in kilometers or number of grid points in GSI. In this study, the natural log of 213 

pressure is used for the vertical, and kilometer is used for the horizontal localization. 214 

Apart from the variational minimization of the En3DVar hybrid cost function given by Eq. 215 

(2), a major component of the overall coupled EnSRF-En3DVar hybrid DA system is an ensemble 216 

DA system that provides the perturbations. In our case, the EnSRF system used is the one described 217 

in Z13. The configuration settings follow the control experiment of Z13. To facilitate fair 218 

comparisons between the En3DVar hybrid and EnSRF experiments, the CLSs in the En3DVar 219 

hybrid system are specified to match the CLSs used by the EnSRF as closely as possible in the 220 

control experiments, and the vertical and horizontal scales are measured in the natural log of 221 

pressure and kilometers, respectively. The e-folding distance from the Gaspari and Cohn (1999) 222 

localization function is  2 0.3 GCS  (where GCS  is cut-off radii in the EnSRF), while an e-folding 223 

distance from the recursive filter is 2 2 RFS  (Barker et al. 2004; Wang et al. 2008b) (where RFS  is 224 

recursive filter covariance localization length scale). Thus, to keep the same e-folding distance for 225 
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both EnSRF and En3DVar, the cut-off radii in the EnSRF GCS  can be converted to the recursive 226 

filter localization length scale RFS  in hybrid according to  227 

.   (4) 228 

3.  Experiment designs 229 

a. Model, observations, ensemble configuration and verification techniques 230 

The test period, model domains and boundary conditions used in this study are the same as 231 

in Z13. DA experiments at ~40 km grid spacing are run in continuous 3-hourly cycles throughout 232 

the 9-day retrospective testing period from May 8 to 16, 2010; the cycles start at 0000 UTC 8 May 233 

2010 and end at 2100 UTC 16 May 2010. The 40 km model domain (as shown in Fig. 2) covers 234 

North America with 207x207 grid points. A slightly smaller domain at ~13 km grid spacing, as 235 

indicated by the bold rectangle in Fig. 2a, is used for forecasts at the native RAP resolution and for 236 

precipitation verification. The domains have 50 vertical levels. Eighteen-hour deterministic 237 

forecasts (after applying DFL) are launched every three hours from the En3DVar hybrid control 238 

analyses as well as EnSRF ensemble mean analyses on the 40 km domain. Three-hourly ensemble 239 

forecasts are produced within the assimilation cycles of EnSRF, which are fed into the En3DVar 240 

control analysis (Fig.  1). Two outer loops and 50 iterations, the same as in operational RAP GSI 241 

3DVar, were utilized for all the En3DVar and GSI 3DVar experiments. The 13 km deterministic 242 

forecasts start from interpolated 40 km analyses at 0000 and 1200 UTC for precipitation forecast 243 

evaluation. The lateral boundary conditions for both grids come from operational GFS forecasts. 244 

Perturbations created using the random-CV method in the WRF 3DVar (Barker et al. 2004) are 245 

added to GFS forecast boundary conditions for the ensemble forecasts and to the GFS analysis 246 

initial condition at 0000 UTC May 8, 2010 to start the initial ensemble of EnSRF.  247 

SRF  0.15SGC / 2
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The observations used in this study are the same as those used in the operational RAP except 248 

for the exclusion of satellite radiance data. The realtime RAP system collects data from 1.5 h before 249 

and 0.5 h after the time of analysis. However, for 0000 and 1200 UTC it waits half an hour longer 250 

for more data (such as sounding data) to arrive. In our tests, the data sets assimilated at 3 hourly 251 

intervals are the data sets collected and used by the operational hourly RAP system; as a result, 252 

observations that arrived in realtime outside the 2 hours (2.5 hours for 0000 and 1200 UTC) 253 

windows are not used. They include surface observations (land reporting stations, mesonets, ships, 254 

and buoys, etc.), upper air observations (radiosondes, aircrafts, wind profilers, VAD data and 255 

satellite retrieval winds) and GPS precipitable water (PW), the same as in Z13 except for the 256 

exclusion of PW data there. The exclusion of the PW data in Z13 was due to an initial problem with 257 

the EnSRF code, which has since been fixed. The distributions of most major observation types are 258 

shown in Fig. 2. The satellite radiance data are not included in the experiments reported here 259 

because our preliminary tests suggested that the bias correction remains an important issue within 260 

the system that would require careful treatment for positive impacts. Our most recent tests with the 261 

radiance data using the EnSRF show small positive impacts, and the results will be reported 262 

separately in the future. Initial studies of EnKF for NCEP GFS global model also excluded satellite 263 

radiance data (Whitaker et al. 2008). 264 

The short-range deterministic forecasts from the En3DVar, EnSRF ensemble mean and GSI 265 

3DVar analyses are verified against surface and sounding observations.  The Model Evaluation 266 

Tools (MET) developed by the Developmental Testbed Center (DTC) (Brown et al. 2009) are 267 

employed here. MET contains comprehensive verification metrics for both deterministic and 268 

probabilistic forecasts. Root-mean square error (RMSE) is used as the primary verification metric 269 

for the 40 km deterministic forecasts here. The RMSEs for temperature (T), relative humidity (RH), 270 

and wind components U and V are calculated against upper air soundings, and those for surface 271 
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pressure P, 2-m RH, 2-m T and 10-m U and V are calculated against surface observations.  272 

The statistical significance of RMSEs is determined by using bootstrap resampling (Candille 273 

et al. 2007; Buehner and Mahidjiba 2010; Schwartz and Liu 2014). The RMSEs from all cycles are 274 

randomly selected 3000 times, and for these samples, the mean is calculated, along with a two-275 

tailed 90% confidence interval from 5% to 95%. To determine whether the improvements from 276 

En3DVar on GSI 3DVar are statistically significant, the mean RMSE differences between En3DVar 277 

and GSI 3DVar together with a 90% confidence interval are computed and plotted in each figure. 278 

The RMSE differences from all cycles are also randomly selected 3000 times, and for these 279 

samples, a two-tailed 90% confidence interval from 5% to 95% is calculated. The same technique is 280 

also applied to the differences between En3DVar experiments and EnSRF_Ctl to determine whether 281 

the improvement of En3DVar over EnSRF is statistically significant. That the bounds of a 90% 282 

confidence interval between the forecast pair are all lower than zero means RMSEs from the first 283 

experiment are always lower than the second one at the 90% confidence level, therefore the 284 

improvement from the first experiment over the second one is statistically significant at the 90% 285 

confidence level. Conversely, that zero is included within the bounds of the 90% confidence level 286 

denotes statistically insignificant situations (Schwartz and Liu 2014; Xue et al. 2013). 287 

For the 12-hourly forecasts on the 13 km grid, the Gilbert skill score (GSS) (Gandin and 288 

Murphy 1992), also known as the equitable threat score (ETS), and frequency bias (BIAS) are used 289 

to verify precipitation forecasts against NCEP Stage IV precipitation data (Lin and Mitchell 2005). 290 

The error and skill scores are aggregated over all forecasts within the 9-day test period. The same 291 

evaluation procedure was used in Z13 although they only presented the GSSs. 292 

b. Assimilation experiments 293 

Experiments performed in this study are listed in Table 1. First, well-tuned En3DVar hybrid 294 
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1-way (Hybrid1W_Ctl) and 2-way coupled (Hybrid2W_Ctl), EnSRF (EnSRF_Ctl) control and GSI 295 

3DVar (GSI3DVar) experiments are compared. The EnSRF control experiment, EnSRF_Ctl, uses 296 

40 ensemble members and corresponds to experiment EnKF_CtrHDL from Z13 except for 297 

additional GPS PW data in this study, and uses a single suite of physics parameterizations in the 298 

ensemble to keep the setup simple (so that the EnSRF, GSI 3DVar and the En3DVar experiments 299 

all use the same set of physics in the forecast model). The En3DVar hybrid control experiment 300 

assigns equal weights ( 21/ 0.5  ) to the static and ensemble BECs. The EnSRF codes and 301 

configurations are the same as the EnSRF control experiment in Z13, except for the exclusion of 302 

GPS PW data there. A combination of static and adaptive covariance inflation is applied in EnSRF 303 

as in Z13. 304 

There are mainly two sets of tunable parameters in the En3DVar hybrid scheme. One set is 305 

the covariance weighting factors, which define the weights placed on the BECs. Four sensitivity 306 

experiments test the relative weights given to the static and ensemble BECs, with 21/  =0.1, 0.5, 307 

0.9, 1.0 (Hybrid01, Hybrid05, Hybrid09, Hybrid10) corresponding to 10, 50, 90, 100% weight 308 

given to the ensemble BEC, respectively.  309 

The other set of tunable parameters includes the horizontal and vertical CLSs applied to the 310 

covariances. For weighting factor 21/  =0.5 with 1-way coupling, we test three horizontal CLSs 311 

=192, 300 and 356 km in Hybrid_HS, Hybrid1W_Ctl, and Hybrid_HL, respectively (corresponding 312 

to cut-off radii of 700, 1095, 1300 km according to Eq. (4)); three vertical CLSs = -0.1, -0.3 and -313 

0.5 (corresponding to cut-off radii of 0.36, 1.1 and 1.8 according to Eq. (4)) are tested in 314 

Hybrid_VS, Hybrid1W_Ctl and Hybrid_VL, respectively. The minus sign is due to the use of ln(p) 315 

as the length measure. To facilitate the comparison with control experiment Hybrid1W_Ctl, the 316 

mean domain-average RMSE difference, defined as  317 
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D = 
*

1

1
( )

N
k k

Hybrid Benchmark
k

RMSE RMSE
N 

  ,     (5) 318 

where N  is the total number of cycles and k refers to the kth cycle, is calculated between experiment 319 

*Hybrid ; the benchmark experiment is Hybrid1W_Ctl here and *Hybrid   refers to one of  320 

En3DVar sensitivity experiments. 321 

All CLSs used in the En3DVar hybrid experiments described above are constant with 322 

height. However, the cut-off radii used in the well-tuned EnSRF control experiment of Z13 323 

(EnKF_CtrHDL in their paper) are height- and observation-type dependent based on the vertical 324 

position of the observations. These localization settings are shown in Fig.  3.  The horizontal cut-off 325 

radius  at the model top is 1.5 times the value at the surface for all state variables; as shown in 326 

Fig.  3a,  increases from 700 km at the surface to 1050 km at the model top. The vertical cut-off 327 

radius  is not only height dependent, but also observation-type dependent. For RH and T 328 

observations (solid line in Fig.  3b), the vertical cut-off radii at the model top and surface are set to a 329 

quarter of 1.1 and half of 1.1, respectively. For wind observations (dash line in Fig.  3b),   is 330 

twice as large as that for RH and T observations. For surface pressure observations and GPS PW 331 

data (which are most strongly linked to low-level moisture), their vertical localization radii are set 332 

to a constant value of 1.6. These settings were used in the control experiment of Z13, and their 333 

choices were guided by the correlation scales found in the NMC-method-derived error statistics 334 

used by GSI 3DVar and were further tuned based on sensitivity experiments.  335 

In the En3DVar system, height-dependent localization is straightforward to implement, but 336 

not observation-type-dependent localization, because unlike the serial EnSRF scheme, En3DVar 337 

analyzes all observations simultaneously and the localization is performed in the state instead of the 338 

observation space (Campbell et al. 2010). Theoretically, if the localization treatment was the same 339 

for the EnSRF ensemble mean analysis as for the En3DVar analysis and when the ensemble-derived 340 

rcut

rcut

ln(pcut )

ln(pcut )
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covariance is used at 100%, the results from the two algorithms should be very close. We observed 341 

differences between such EnSRF and En3DVar analyses in our experiments, and want to see if 342 

localization is the main cause for these differences. We are interested in finding out if the height- 343 

and observation-dependent covariance localization treatments would potentially improve the 344 

performance of En3DVar as in EnSRF. These are examined in the next four experiments 345 

(EnSRF_Con, Hybrid_Con, Hybrid_HD and Hybrid3G), all performed with 100% ensemble 346 

covariance and all used one-way coupling. 347 

EnSRF_Con and Hybrid_Con use constant horizontal and vertical localization radii which 348 

are close to the corresponding cut-off radii used by EnSRF_Ctl at the model top. Unlike the other 349 

En3DVar experiments, the ensemble perturbations for Hybrid_Con were provided by EnSRF_Con 350 

instead of EnSRF_Ctl for consistency.  351 

In Hybrid_HD, the height-dependent horizontal CLSs are chosen to match the height-352 

dependent cut-off radii of EnSRF_Ctl closely, while the vertical CLSs for all variables are chosen to 353 

be the same as that for wind observations in EnSRF_Ctl (Table 1).   354 

The only way to apply different localization to different observations in En3DVar is to break 355 

the analysis into multiple steps, with each step analyzing a sub-set or a sub-group of observations. 356 

To do this, the corresponding EnSRF analysis that provides the ensemble perturbations also needs 357 

to be broken up into multiple steps and the EnSRF and En3DVar need to be run in alternating order. 358 

Doing so significantly increases the overall computational costs for operational implementation 359 

since the disk I/O associated with the reading and writing of ensembles and with the cost function 360 

minimizations are done multiple times per analysis cycle but is doable in a research mode. Towards 361 

this end, experiments EnSRF3G and Hybrid3G are run, where each analysis is broken into 3 steps, 362 

with each step analyzing one of the three groups of observations consisting of 1) RH and T, 2) U 363 

and V, 3) and PS and GPS PW data, respectively. Within each step, the EnSRF ensemble analysis is 364 
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followed by an En3DVar hybrid analysis step using the latest EnSRF-updated ensemble 365 

perturbations. 366 

Because the EnSRF includes both static and adaptive covariance inflation (Z13), it is 367 

difficult to maintain the same amount and effects of inflation when each EnSRF analysis is broken 368 

into three steps. Applying the static inflation every EnSRF sub-step can over-inflate the covariance, 369 

while applying it only in the last step would change the overall behavior of the filter. Because our 370 

primary goal here is to determine if the difference between the EnSRF and En3DVar analyses (with 371 

100% ensemble covariance) is primarily caused by the observation-based localization, to avoid the 372 

above issue, we run EnSRF3G without any covariance inflation and examine the RMSE differences 373 

between the EnSRF and En3DVar analyses. We just need to find out if the En3DVar hybrid 374 

analyses are closer to the EnSRF analyses when observation-type dependent localization is similarly 375 

used in the En3DVar through the split-step procedure.  376 

The mean domain average absolute RMSE difference, defined as  377 

*
1

1 N
k k

Hybrid Benchmark
k

DB RMSE RMSE
N 

   ,     (6) 378 

is used to measure how close the En3DVar and EnSRF analyses are. The differences between 379 

Hybrid_Con and EnSRF_Con, Hybrid_Con and EnSRF_Ctl, Hybrid_HD and EnSRF_Ctl, 380 

Hybrid3G and EnSRF3G (Table 2) will be calculated to examine the impacts of constant 381 

localization, height-dependent localization, and observation-dependent localization, respectively. 382 

The statistical significance of DB is also determined by using bootstrap resampling. The DBs at 383 

cycles are randomly selected 3000 times. For this sample, a mean is calculated, along with a two-384 

tailed 90% confidence interval from 5% to 95%. If the error bars from the experiments pair do not 385 

overlap, the differences between En3DVar and EnSRF are significantly reduced at the 90% 386 

confidence level.  387 
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4. Results of experiments 388 

a. GSI 3DVar, EnSRF and En3DVar hybrid control experiments 389 

The RAP system had been run experimentally in real-time for several years at the NOAA 390 

Earth System Research Laboratory (ESRL) before being officially implemented at NCEP in May 391 

2012. In this study, we borrow from a recent configuration of the experimental 13-km RAP for our 392 

40-km grid spacing tests.  393 

In this section, we present and compare the results from the En3DVar hybrid 1-way 394 

(Hybrid1W_Ctl) and 2-way coupled (Hybrid2W_Ctl), EnSRF (EnSRF_Ctl) control experiments, 395 

and those of the GSI 3DVar (GSI3DVar) experiment. Similar to Z13, single observation tests were 396 

first performed to examine the general behaviors of the En3DVar system and compare to the EnSRF 397 

results. The tests used the analysis of  EnSRF_Ctl after 5 days of 3-hourly cycles as background and 398 

the analysis increments appear reasonable. To save space, the results are not shown here. 399 

The RMSEs of the 3-hour forecasts at different height levels verified against sounding data 400 

are shown in Fig.  4. These forecasts were launched from the GSI 3DVar, EnSRF ensemble mean, 401 

and En3DVar hybrid analyses. The RMSE for each pressure level was calculated by averaging 402 

values obtained from all cycles within a layer 50 hPa above and below that pressure, except for the 403 

lowest and topmost levels. The RMSEs of EnSRF_Ctl are overall lower than those of GSI 3DVar 404 

except for the temperature at the upper levels where the error can be ~0.1 K greater. The 405 

performances of one-way and two-way coupled En3DVar hybrid schemes are very close. With half 406 

static and half flow-dependent covariances in these experiments, Hybrid1W_Ctl and Hybrid2W_Ctl 407 

outperform GSI 3DVar, and are also generally better than EnSRF_Ctl except for RH above 500 hPa, 408 

V at 100 hPa, and T below 900 hPa.  409 
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The average RMSEs for all levels over the entire domain are shown in Fig.  5 for forecast 410 

hours 3 through 18. Generally, both EnSRF and En3DVar hybrid significantly outperform GSI 411 

3DVar for all the variables throughout the forecast period at the 90% confidence level (the intervals 412 

of error differences do not include zero). For RH, the average RMSEs of En3DVar hybrid are 413 

slightly higher than those of EnSRF_Ctl by 9 hours, which appears to be related to the larger errors 414 

at 3 hours at the upper levels (Fig.  4a). The RMSEs become slightly smaller after 9 hours. 415 

However, the improvement of En3DVar hybrid over EnSRF for RH is not statistically significant. 416 

For T and U, the domain-averaged RMSEs of En3DVar hybrid are significantly and consistently 417 

smaller than those of GSI 3DVar and EnSRF throughout the forecast period (Fig.  5). For V, the 418 

errors of the En3DVar and EnSRF are very similar and are all clearly lower than those of GSI 419 

3DVar. The reason that En3DVar performs better than EnSRF for U may relate to the dominance of 420 

the east-west flows that may increase the validity of the static covariance. Overall, the En3DVar 421 

hybrid out-performs GSI 3DVar and EnSRF for T and V for the 18 hours of the forecast.  422 

Fig.  6 shows the average RMSEs for 3-18 hour forecasts against surface observations. For 2 423 

m T and 10 m U, the EnSRF and En3DVar outperform the GSI 3DVar at all forecast hours 424 

significantly, with the EnSRF significantly outperforming the En3DVar hybrid at most forecast 425 

hours. For 2 m RH and 10 m V, EnSRF occasionally underperforms GSI 3DVar slightly, but at most 426 

forecast hours it is better. The En3DVar hybrid schemes improve over EnSRF further, enough to 427 

ensure better or equal performance than GSI 3DVar for all hours, and more clearly so for RH. For 428 

surface pressure, EnSRF underperforms GSI 3DVar initially, but becomes better after 9 hours; 429 

throughout the forecast period, the En3DVar hybrid outperforms both GSI 3DVar and EnSRF 430 

significantly. In general, there is little difference between the 1-way and 2-way En3DVar hybrid 431 

schemes. If the cycles were run for a much longer time period, a larger divergence between the 432 

EnSRF and En3DVar hybrid may develop in a 1-way coupling mode. In that case, 2-way coupling 433 
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would then show a bigger advantage. When the En3DVar hybrid runs at a higher resolution than the 434 

EnSRF in a dual-resolution mode, there may also be more benefit from 2-way coupling. 435 

Overall, the En3DVar hybrid schemes significantly outperform GSI 3DVar for all the 436 

variables at all forecast hours for sounding and surface observations. Compared to EnSRF, their 437 

performances are comparable, or even better for some variables. The results indicate the benefit of 438 

combining the static and flow-dependent covariances. In the next section, the sensitivity to the 439 

covariance weighting factors is examined. 440 

Finally, one may have concern that the 9-day cycled assimilation period is not long enough 441 

for the ensemble DA system to spin up (over the course of evaluating and testing our EnSRF and 442 

En3DVar hybrid systems, we had run over 100 cycled experiments so extending the experiment 443 

period would be expensive). To answer this question, we examine how the short-range forecast 444 

errors evolve through the 9-day period. Fig.  7 shows the domain-averaged 3-hour forecast RMSEs 445 

verified against sounding data at 0000 and 1200 UTC through the test period. We can see that the 446 

relative performances of GSI3DVar, EnSRF and En3DVar hybrid do not change much throughout 447 

the 9-day period, even in the earlier days. These results indicate that the ensemble system had spun-448 

up rather quickly.  449 

b. Sensitivity to covariance weighting factors 450 

We perform a set of four 1-way-coupled En3DVar hybrid experiments with 21  =0.1, 0.5, 451 

0.9 and 1.0, which are the weights given to the ensemble covariance. The one with 21   =0.5, 452 

called Hybrid05 here, is the same as experiment Hybrid1W_Ctl discussed earlier (Table 1). The 3 453 

hour forecast RMSEs at different height levels verified against sounding data are shown in Fig.  8 454 

for these four experiments, GSI 3DVar, and EnSRF_Ctl. It can be seen that the En3DVar hybrid 455 

and EnSRF schemes generally outperform GSI 3DVar, except for RH from 700 to 400 levels for 456 
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Hybrid09 and Hybrid10, i.e., the hybrid scheme with 90 or 100% ensemble covariances. 457 

Introducing 10% static covariance into the En3DVar hybrid framework reduces the error slightly 458 

(comparing Hybrid09 to Hybrid10 for RH), and further increasing it to 50% brings the RH errors 459 

below those of GSI 3DVar at all levels (Fig.  8a).   460 

The average RMSEs for all levels over the entire domain are shown in Fig. 9  for forecast 461 

hours 3 through 18. All En3DVar hybrid experiments significantly outperform GSI 3DVar for all 462 

variables throughout the entire forecast period at the 90% confidence level, except for the RH of 463 

Hybrid10 after 9 hours. The errors of Hybrid05 are about the lowest among all En3DVar hybrid 464 

experiments, while errors of Hybrid10 are the greatest and significantly worse than those of 465 

EnSRF_Ctl. RMSE differences between Hybrid01 and EnSRF_Ctl are generally smaller than those 466 

between Hybrid09 and EnSRF_Ctl for T, U and V.  467 

Overall, introducing 10% ensemble covariance into the variational framework in Hybrid01 468 

has a much larger impact (compare Hybrid01 to GSI) than adding 10% static covariance into the 469 

En3DVar hybrid framework (compare Hybrid09 to Hybrid10), and the errors of Hybrid01 are 470 

generally between those of Hybrid05 and GSI and are closer to those of Hybrid05, especially for 471 

wind fields.  Hybrid05 gives the smallest errors on average.  472 

It can also be noticed from Fig.  8 that EnSRF_Ctl outperforms Hybrid10, except for wind 473 

between 500 and 200 hPa levels. As pointed out earlier, if covariance localization treatments were 474 

the same in EnSRF and Hybrid10, their results should be very close given that the ensemble 475 

covariance is used at 100% in both cases. The use of height- and observation-type-dependent 476 

covariance localization in the EnSRF but not in the En3DVar hybrid is suspected to be the main 477 

cause of the differences. It had been found to help improve the EnSRF results in Z13 but is not used 478 

within the En3DVar hybrid. In the following section, we examine whether doing something similar 479 

within the En3DVar hybrid framework can improve the En3DVar hybrid results too. 480 
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c. Sensitivity to ensemble covariance localization  481 

In Z13, several tests with the horizontal and vertical covariance localizations were 482 

performed. In this paper, the EnSRF experiment uses the same configuration as experiment 483 

EnKF_CtrlHDL of Z13, with height- and observation-type-dependent localization radii. For the 484 

En3DVar analysis, covariance localization also requires tuning. Because En3DVar realizes 485 

covariance localization in the state or grid point space, it is impossible to use observation-type-486 

dependent localization unless different observations are analyzed separately.  487 

In this section, we first look at the experiments that use smaller or larger horizontal and 488 

vertical CLSs than those used in Hybrid1W_Ctl. For weighting factor 21/  =0.5, we test three 489 

horizontal CLSs, =700, 1095 and 1300 km (in Hybrid_HS, Hybrid1W_Ctl, and Hybrid_HL, 490 

respectively) and three vertical CLSs = 0.36, 1.1 and 1.8 (for Hybrid_VS, Hybrid1W_Ctl and 491 

Hybrid_VL, respectively). The domain-averaged forecast RMSE differences between 3 hour 492 

forecasts and those of Hybrid1W_Ctl are shown in Fig.  10.  When the CLSs increase or decrease 493 

from those of control experiment, the En3DVar hybrid performs worse for almost all variables, 494 

except for T when the horizontal CLS is increased (Fig.  10). However, even though reduced CLSs 495 

are not preferred according to Fig.  10, the RH errors are reduced at levels above 800 hPa when 496 

using reduced CLSs (not shown), suggesting that we may be able to benefit from the use of 497 

observation-type and/or height-dependent CLSs, as in the case of EnSRF (Z13). Doing so may also 498 

help further improve the En3DVar hybrid performance. 499 

For a fair comparison with EnSRF, EnSRF_Con and Hybrid_Con, which use the same 500 

constant horizontal and vertical cut-off radii/length scales, are compared when ensemble covariance 501 

is used at 100%. As shown in Fig.  11, the significantly greater RMSEs of EnSRF_Con than 502 

EnSRF_Ctl suggest the height- and observation-type-dependent localization is a key reason for 503 

improving the performance of EnSRF. To see the effect of height-dependent localization 504 
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(observation-type-dependent localization is not possible in a single step analysis) on En3DVar, we 505 

introduce it into Hybrid_HD which uses 100% ensemble covariance. As shown in Fig.  11, 506 

Hybrid_HD outperforms Hybrid_Con and is much closer to EnSRF_Ctl for RH, U and V. For wind, 507 

Hybrid_HD is even slightly better than EnSRF_Ctl at the middle levels (Fig.  11) while 508 

Hybrid_Con is poorer than EnSRF_Ctl at all levels. For RH, EnSRF_Ctl still has smaller RMSEs 509 

than hybrid_HD above 700 hPa. The greater RMSEs from EnSRF_Con suggest that the smaller 510 

localization radii used in EnSRF_Ctl at the higher levels are beneficial. 511 

The cutoff radii used in the EnSRF_Ctl are also observation-type dependent. As discussed 512 

earlier, since the En3DVar algorithm analyzes all observations simultaneously by variational 513 

minimization in the state space, making it impossible to apply observation-type-dependent 514 

localization within a single analysis step. Experiments EnSRF3G and Hybrid3G break each analysis 515 

cycle into three sub-steps of coupled EnSRF-En3DVar analyses, with each step analyzing a sub-516 

group of observations that share the same height-dependent localization scales. Here, we use the 517 

absolute RMSE differences between pairs of En3DVar and EnSRF experiments (Table 2) together 518 

with the 90% confidence interval as determined by the bootstrap resampling procedure to determine 519 

the statistical significance of the differences. When the error bars from different experiment pairs do 520 

not overlap, the RMSE differences between En3DVar and EnSRF are considered statistically 521 

significant. As shown in Fig. 12, the RMSE differences between Hybrid_HD and EnSRF_Ctl 522 

(labeled 1GHD) are reduced, by about 1/4 to 1/3 for RH, U and V, compared to the differences 523 

between Hybrid_Con and EnSRF_Ctl (labeled 1GC1). The reduction in the difference is smaller but 524 

still statistically significant for T. When constant localization is used in both EnSRF_Con and 525 

Hybrid_Con, the differences (labeled 1GC2) are also reduced compared to 1GC1 case, although the 526 

differences are slightly larger than the 1GHD case.  527 
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When observation-type-dependent localization is used in Hybrid3G and EnSRF3G, the 528 

differences between them (3DHD) are even smaller for RH, U and V. For RH (which has the largest 529 

RMSE difference between En3DVar and EnSRF according to Fig.  11a), the RMSE difference of 530 

RH is about 0.5% versus the 1.25% for the constant localization case. The reductions for T, U and V 531 

are smaller but still evident. Clearly, the differences between En3DVar and EnSRF are much 532 

smaller when height- and observation-type-dependent localization is used in both algorithms, 533 

especially for humidity. 534 

Fig.  13 shows the RMSE differences together with the 90% confidence interval at different 535 

height levels. In reference to Fig.  11, those levels where domain average absolute RMSE 536 

differences between Hybrid_HD and EnSRF_Ctl (1GHD) are greater than those between 537 

Hybrid_Con and EnSRF_Ctl (1GC1) correspond to the levels where Hybrid_HV outperforms 538 

Hybrid_Con, given that EnSRF_Ctl is generally the best among the three experiments. The RMSE 539 

differences of 1GC2 are also smaller than 1GC1, but the constant localization degrades the 540 

performance of EnSRF and En3DVar for almost all the variables and at all levels in reference to 541 

Fig. 11. For 3GHD, the average absolute RMSE differences are the smallest for RH at all levels, for 542 

T above 800 hPa and for U and V above 600 hPa. For U and V, the 3GHD differences are slightly 543 

larger below 700 hPa than 1GHD and clearly smaller than 1GC1. These results show that when 544 

similar height- and observation-type-dependent covariance localization is used in the En3DVar 545 

framework using 100% ensemble covariance, differences between EnSRF and En3DVar are 546 

significantly reduced, and such localization treatment generally brings the En3DVar results closer to 547 

the better EnSRF results. The reduction in the RMSE differences for RH is greater than those for T, 548 

U and V. Because the humidity field tends to contain smaller scale structures than other fields, it 549 

appears to benefit from tighter localization more when using height- and observation-type-550 

dependent localization. However, because there are still differences between the EnSRF and 551 
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En3DVar algorithms, some differences still exist between their results, as indicated by the green 552 

bars in Fig.  12. When the ensemble covariance is used at 50%, height-dependent localization did 553 

not improve the En3DVar hybrid results as much as in the 100% case (not shown).  554 

In summary, the use of height-dependent localization in the En3DVar hybrid framework 555 

when using full ensemble covariance improves the resulting model forecasts at almost all levels and 556 

forecast hours. Height- and observation-type-dependent localizations used in EnSRF are responsible 557 

for about half of the differences between the EnSRF and the En3DVar with full ensemble 558 

covariance. Unfortunately, observation-type-dependent localization is difficult or expensive to 559 

implement with the En3DVar algorithm. 560 

5. Precipitation forecast skills on 13-km grid 561 

In this section, precipitation forecasts on the 13 km grid initialized from the 40 km GSI 562 

3DVar, EnSRF_Ctl ensemble mean, Hybrid1WCtl and Hybrid2WCtl analyses (Table 3) are 563 

compared. Considering extensive CPU and storage requirements, we launched the forecasts only 564 

twice a day at 00 and 12 UTC. The precipitation forecasts are verified against the NCEP Stage IV 565 

precipitation data. GSSs calculated for the 0.1, 1.25 and 2.5 mm h-1 thresholds are calculated as in 566 

Z13. 567 

The GSSs and BIASs for the forecasts are shown in Fig.  14. Both EnSRF and En3DVar 568 

hybrid outperform GSI 3DVar on average for all forecast hours and thresholds shown. EnSRF13 569 

has higher GSSs than Hybrid for 0.1 mm h-1 after 3 hours. For greater thresholds of 1.25 and 2.5 570 

mm h-1, forecasts of Hybrid1W13 are comparable to EnSRF13 by 7 hours, and are better than 571 

Hybrid2W13 during the first four hours, which is consistent with the domain-averaged RMSEs of 572 

RH shown in Fig.  5a. Fig.  14 show that EnSRF generally has the highest positive BIASs. The 573 

hybrid schemes have the lowest BIASs in the first 5 hours, and values between those of GSI 3DVar 574 
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and EnSRF after 5 hours. The BIAS differences are relatively small and BIAS is always positive for 575 

both thresholds examined.  576 

From sensitivity experiments, we learned that the constant localization used in En3DVar 577 

hybrid is one of the reasons for the deterioration of humidity forecasts compared to EnSRF. To help 578 

further understand the impact of localization on precipitation forecast skill, the forecasts on the 13 579 

km grid initialized from EnSRF_Ctl and EnSRF_Con ensemble mean, and Hybrid_Con analyses are 580 

also compared. Without height- and observation-type-dependent localization in EnSRF13Con, its 581 

GSSs are lower than those of EnSRF13 in the first 9 hours and are close to those of 582 

Hybrid1W13Con from 4 to 7 hours, for the 0.1 mm h-1 threshold (Fig. 15), indicating the role of 583 

height- and observation-type-dependent localization. The differences among the experiments are 584 

smaller for larger thresholds (not shown).  585 

6. Summary and discussions 586 

In this paper, a coupled EnSRF-En3DVar hybrid data assimilation system based on the 587 

NCEP operational GSI variational framework is established and tested for the Rapid Refresh (RAP) 588 

forecasting system. It uses a recently developed, well-tuned, 40-member EnSRF system, as 589 

documented in Z13, to update and provide the ensemble perturbations. A 9-day spring period 590 

starting from May 8, 2010 that contains active convection is used to examine the performance of the 591 

system through comparisons with parallel experiments using EnSRF and GSI 3DVar. The En3DVar 592 

hybrid, EnSRF and GSI 3DVar experiments use the same observational data sets as the operational 593 

RAP system except for the exclusion of satellite radiance data. The experiments are performed at a 594 

reduced resolution of ~40 km grid spacing with 3-hourly assimilation cycles rather than at the 595 

native 13 km grid spacing with hourly cycles of the operational RAP. The systems are evaluated 596 

based on forecast RMSEs verified against surface observations and upper air sounding data for 3 to 597 
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18 hour forecasts. The effects of static and ensemble covariance weighting factors and covariance 598 

localization configurations are examined through sensitivity experiments. 599 

With equal weighting for the ensemble and static covariances, the En3DVar hybrid scheme 600 

outperforms GSI 3DVar for all standard variables at all levels with statistical significance, and is 601 

slightly better than EnSRF, especially for later forecast hours, except for moisture during the earlier 602 

forecast hours. Apparently, the En3DVar hybrid scheme benefits from the combined use of static 603 

and ensemble covariances. Introducing 10% flow-dependent covariance into the standard 3DVar 604 

framework has a much bigger positive impact than including 10% static covariance in the En3DVar 605 

framework. The forecasts from En3DVar analyses with 100% ensemble covariance and constant 606 

covariance localization scales are worse than those from pure EnSRF analyses using height- and 607 

observation-type-dependent covariance localization, especially for relative humidity. The height-608 

dependent localization scheme in which the horizontal localization cut-off radii increase with 609 

height, and the observation-type-dependent localization scheme in which the cut-off radii for 610 

relative humidity and temperature observations are set to be smaller than those for winds led to 611 

smaller forecast RMSEs for the pure EnSRF, especially at the high and low levels. Using similar 612 

height-dependent localization, En3DVar with 100% ensemble covariance became much closer to 613 

pure EnSRF. When using similar observation-type-dependent covariance localization in En3DVar, 614 

by running the coupled EnSRF-En3DVar analyses in three steps with each analyzing a subset of 615 

observation variables (in a similar way as in EnSRF), the results of En3DVar, with 100% ensemble 616 

covariance, become even closer to those of EnSRF. The benefit of height- and observation-type-617 

dependent localization is negligible when the ensemble covariance is used at 50%. The multi-step 618 

EnSRF-En3DVar analysis procedure is, unfortunately, not very practical due to much increased 619 

computational costs. It is straightforward for pure EnSRF because the algorithm is serial, where 620 

observations are assimilated sequentially. 621 
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Previous studies (e.g., Hamill and Snyder 2000; Wang et al. 2008b) had found that the 622 

En3DVar hybrid system is more robust than EnSRF when the ensemble size is small or model error 623 

is large. In our study, the EnSRF, En3DVar hybrid 1-way and 2-way using 20 instead of 40 624 

ensemble members for control experiments were also run and compared. In such a case, EnSRF and 625 

En3DVar are both degraded, but the En3DVar hybrid is now consistently better than EnSRF for all 626 

variables and all forecast hours (not shown). That indicates a larger benefit of the static covariance 627 

when the ensemble is small, agreeing with earlier findings. While further specific tuning of the 20-628 

member EnSRF may improve the results somewhat, we do not expect the general conclusion to 629 

change.  630 

Deterministic forecasts were launched on a 13 km grid from interpolated 40-km En3DVar 631 

hybrid control, EnSRF ensemble mean and GSI 3DVar analyses at 0000 and 1200 UTC of each 632 

day. Hourly accumulated precipitation is better predicted in the En3DVar hybrid and EnSRF 633 

experiments than GSI 3DVar, but for light precipitation, En3DVar hybrid does not perform as well 634 

as EnSRF, which is consistent with the slightly worse humidity forecasts of En3DVar. When 635 

constant covariance localization is used in EnSRF, its precipitation forecast skills become closer to 636 

those of En3DVar using 100% ensemble covariance, indicating the covariance localization 637 

difference between the EnSRF and En3DVar as a key cause for the performance differences. 638 

Despite the encouraging results, the En3DVar hybrid system we have established for RAP 639 

still has much room for further improvement. Adding satellite and radar data and examining their 640 

impacts are among the desired tasks, as is a dual-resolution implementation where the En3DVar is 641 

run at the native RAP resolution. These aspects are being pursued and the results will be reported in 642 

future papers. A further refined and tested version, initially in a dual-resolution mode coupling a 13 643 

km En3DVAR with a 40 km EnSRF, will likely become operational in the future, replacing the 644 

GFS EnSRF system used in the recently implemented operational RAP hybrid DA system. 645 
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List of figures 848 

Fig.  1. Flowchart of a full GSI-based EnSRF-En3DVar hybrid data assimilation cycle, with one-849 

way or two-way coupling between the EnSRF (upper portion) and En3DVar hybrid control 850 

analysis (lower portion denoted En3DVar). The thick upward pointing arrow indicates the 851 

feedback of the En3DVar hybrid analysis to the EnSRF in the two-way coupling procedure, 852 

when the En3DVar hybrid control analysis is used to replace the ensemble mean of the EnSRF 853 

analyses. 854 

Fig. 2. Example of the horizontal distributions of observation at 0000 UTC May 14: (a) sounding 855 

(circles) and profile (pluses), (b) surface stations over land and for ships, buoys, etc., (c) 856 

aircraft observations, (d) satellite retrieval winds, and (e) GPS precipitable water (PW) data. 857 

The small box in (a) is the domain used by 13 km forecasts. (a)-(d) are adopted from Z13. 858 

Fig.  3. Profiles of (a) horizontal and (b) vertical cut-off radii for the EnSRF control experiment. 859 

The horizontal axis is the cut-off radius of a given observation at a particular vertical position 860 

given in pressure. The vertical axis is the vertical position of observations given by the 861 

pressure 862 

Fig.  4. Mean 3-hour forecast RMSEs at different height levels verified against sounding data for (a) 863 

RH, (b) T, (c) U, and (d) V for the labeled experiments. Error bars represent the two-tailed 864 

90% confidence interval (5% on the left and 95% on the right) using the bootstrap distribution 865 

method. 866 

Fig.  5. The 9-day and domain-averaged forecast RMSEs verified against sounding data (upper 867 

panel in each frame) and the 90% confidence interval of the RMSE differences between 868 

En3DVar hybrid experiments and GSI 3DVar/EnSRF_Ctl (lower panel) for (a) RH, (b) T, (c) 869 

U, and (d) V, for different forecast hours.  870 
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Fig.  6. The 9-day and domain-averaged forecast RMSEs verified against surface observations 871 

(upper panel in each frame) and the 90% confidence interval of the RMSE differences 872 

between En3DVar hybrid experiments and GSI 3DVar/EnSRF_Ctl (lower panel) for (a) 873 

surface pressure, (b) 2-m RH, (c) 2-m temperature, (d) 10-m U, and (e) 10-m V for different 874 

forecast hours. The horizontal axis is forecast hour. The error bars in domain-averaged 875 

forecast RMSEs represent the two-tailed 90% confidence interval. 876 

Fig.  7. Domain-averaged 3-hour forecast RMSEs (upper panels in each frame) verified against 877 

sounding data at 0000 and 1200 UTC through test period and the 90% confidence interval of 878 

RMSE differences (lower panel of each frame) between the En3DVar hybrid and EnSRF 879 

experiments and GSI 3DVar for (a) RH, (b) T, (c) U, and (d) V. 880 

Fig.  8. Mean 3-hour forecast RMSEs at different height levels verified against sounding data for (a) 881 

RH, (b) T, (c) U, and (d) V for experiments GSI 3DVar, Hybrid01, Hybrid05, Hybrid07, 882 

Hybrid10 and EnSRF_Ctl. 883 

Fig.  9. The same as Fig.  5, except for experiments GSI 3DVar, Hybrid01, Hybrid05, Hybrid07, 884 

Hybrid10 and EnSRF_Ctl. 885 

Fig.  10. Mean absolute forecast RMSE differences between different experiments and 886 

Hybrid1W_Ctl, verified against sounding data, for 3-hour forecast averaged over the 9-day 887 

forecast period over the entire model domain. 888 

Fig.  11. The same as Fig.  4 but for experiments EnSRF_Ctl, EnSRF_Con, Hybrid_HD and 889 

Hybrid_Con. 890 

Fig.  12. Nine-day and domain-averaged absolute 3-hour forecast RMSE differences verified 891 

against sounding data, where 1GC1 means difference between Hybrid_Con and EnSRF_Ctl, 892 

1GC2 means difference between Hybrid_Con and EnSRF_Con, 1GHD means difference 893 
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between Hybrid_HD and EnSRF_Ctl, and 3GHD means difference between Hybrid3G and 894 

EnSRF3G. The error bars represent the two-tailed 90% confidence interval. 895 

Fig.  13. Nine-day and domain-averaged absolute RMSE differences between Hybrid_Con and 896 

EnSRF_Ctl (labeled 1GC1), Hybrid_Con and EnSRF_Con (labeled 1GC2), Hybrid_HD and 897 

EnSRF_Ctl (labeled 1GHD), Hybrid3G and EnSRF3G (labeled 3GHD) for (a) RH, (b) T, (c) 898 

U, and (d) V at different height levels. The error bars represent the two-tailed 90% confidence 899 

interval.  900 

Fig.  14. Average precipitation GSSs and BIASs of 13-km forecasts as a function of forecast length 901 

for thresholds (a) (b) 0.1 mm h-1, (c) (d) 1.25 mm h-1, and (e) (f) 2.5 mm h-1 for control 902 

experiments. 903 

Fig. 15. The same as Fig. 14, but for EnKF13, EnKF13Con and Hybrid13Con. 904 
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 906 

Fig.  1. Flowchart of a full GSI-based EnSRF-En3DVar hybrid data assimilation cycle, with one-907 
way or two-way coupling between the EnSRF (upper portion) and En3DVar hybrid control analysis 908 
(lower portion denoted En3DVar). The thick upward pointing arrow indicates the feedback of the 909 
En3DVar hybrid analysis to the EnSRF in the two-way coupling procedure, when the En3DVar 910 
hybrid control analysis is used to replace the ensemble mean of the EnSRF analyses. 911 
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 913 

 914 

 915 
Fig. 2. Example of the horizontal distributions of observation at 0000 UTC May 14: (a) sounding 916 
(circles) and profile (pluses), (b) surface stations over land and for ships, buoys, etc., (c) aircraft 917 
observations, (d) satellite retrieval winds, and (e) GPS precipitable water (PW) data. The small box 918 
in (a) is the domain used by 13 km forecasts. (a)-(d) are adopted from Z13. 919 

(a) (b) (c)

(d) (e)
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 920 
Fig.  3. Profiles of (a) horizontal and (b) vertical cut-off radii for the EnSRF control 921 
experiment. The horizontal axis is the cut-off radius of a given observation at a particular 922 
vertical position given in pressure. The vertical axis is the vertical position of observations 923 
given by the pressure. 924 
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 925 

Fig.  4. Mean 3-hour forecast RMSEs at different height levels verified against sounding data for (a) 926 
RH, (b) T, (c) U, and (d) V for the labeled experiments. Error bars represent the two-tailed 90% 927 
confidence interval (5% on the left and 95% on the right) using the bootstrap distribution method.  928 
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 929 
 930 
Fig.  5. The 9-day and domain-averaged forecast RMSEs verified against sounding data (upper 931 
panel in each frame) and the 90% confidence interval of the RMSE differences between En3DVar 932 
hybrid experiments and GSI 3DVar/EnSRF_Ctl (lower panel) for (a) RH, (b) T, (c) U, and (d) V, 933 
for different forecast hours. Error bars represent the two-tailed 90% confidence interval (5% at the 934 
bottom and 95% on the top) using the bootstrap distribution method.  935 
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 937 
Fig.  6. The 9-day and domain-averaged forecast RMSEs verified against surface observations 938 
(upper panel in each frame) and the 90% confidence interval of the RMSE differences between 939 
En3DVar hybrid experiments and GSI 3DVar/EnSRF_Ctl (lower panel) for (a) surface pressure, (b) 940 
2-m RH, (c) 2-m temperature, (d) 10-m U, and (e) 10-m V for different forecast hours. The 941 
horizontal axis is forecast hour. The error bars in domain-averaged forecast RMSEs represent the 942 
two-tailed 90% confidence interval. 943 

944 
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 945 
Fig.  7. Domain-averaged 3-hour forecast RMSEs (upper panels in each frame) verified against 946 
sounding data at 0000 and 1200 UTC through test period and the 90% confidence interval of RMSE 947 
differences (lower panel of each frame) between the En3DVar hybrid and EnSRF experiments and 948 
GSI 3DVar for (a) RH, (b) T, (c) U, and (d) V. 949 
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 951 

Fig.  8. Mean 3-hour forecast RMSEs at different height levels verified against sounding data for (a) 952 
RH, (b) T, (c) U, and (d) V for experiments GSI 3DVar, Hybrid01, Hybrid05, Hybrid07, Hybrid10 953 
and EnSRF_Ctl. Error bars represent the two-tailed 90% confidence interval (5% on the left and 954 
95% on the right) using the bootstrap distribution method.  955 
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 956 

Fig.  9. The same as Fig.  5, except for experiments GSI 3DVar, Hybrid01, Hybrid05, Hybrid07, 957 
Hybrid10 and EnSRF_Ctl.  958 
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 960 
Fig.  10. Mean absolute forecast RMSE differences between different experiments and 961 
Hybrid1W_Ctl, verified against sounding data, for 3-hour forecast averaged over the 9-day forecast 962 
period over the entire model domain.  963 
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 965 
 966 

Fig.  11. The same as Fig.  4 but for experiments EnSRF_Ctl, EnSRF_Con, Hybrid_HD and 967 
Hybrid_Con. 968 
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 970 
Fig.  12. Nine-day and domain-averaged absolute 3-hour forecast RMSE differences verified 971 
against sounding data, where 1GC1 means difference between Hybrid_Con and EnSRF_Ctl, 1GC2 972 
means difference between Hybrid_Con and EnSRF_Con, 1GHD means difference between 973 
Hybrid_HD and EnSRF_Ctl, and 3GHD means difference between Hybrid3G and EnSRF3G. The 974 
error bars represent the two-tailed 90% confidence interval. 975 

 976 
 977 



 

54 
 

 978 
Fig.  13. Nine-day and domain-averaged absolute RMSE differences between Hybrid_Con and 979 
EnSRF_Ctl (labeled 1GC1), Hybrid_Con and EnSRF_Con (labeled 1GC2), Hybrid_HD and 980 
EnSRF_Ctl (labeled 1GHD), Hybrid3G and EnSRF3G (labeled 3GHD) for (a) RH, (b) T, (c) U, and 981 
(d) V at different height levels. The error bars represent the two-tailed 90% confidence interval.982 
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 985 

Fig.  14. Average precipitation GSSs and BIASs of 13-km forecasts as a function of forecast length 986 
for thresholds (a) (b) 0.1 mm h-1, (c) (d) 1.25 mm h-1, and (e) (f) 2.5 mm h-1 for control experiments.987 
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 988 

Fig. 15. The same as Fig. 14, but for EnSRF13, EnSRF13Con and Hybrid13Con.  989 
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Table 1. List of data assimilation experiments. In the horizontal and vertical localization columns,  990 
↗	means increasing with height. 991 

Experiment 
group 

Experiment 
(including 
alternative names) 

Ensemble 
covariance 
weighting 
factor   
( 21/  ) 

Horizontal 
cut-off 
radius for 
hybrid/EnSR
F (km) 

Vertical cut-off 
radius for 
hybrid/EnSRF in 
ln(p)  

Ensem
ble 
size 

EnSRF-
En3DVar 
Coupling 

Control 
experiments 

GSI3DVar  N.A. 

EnSRF_Ctl 
 

- 700 ↗ 	1050 RH and T: 1.1/4 ↗ 
1.1/2 
U and V: 1.1/2 ↗ 1.1 
PS and PW: 1.6 

40 - 

Hybrid1W_Ctl 
/Hybrid05 

0.5 ~1095 1.1 40 1-way 

Hybrid2W_Ctl 0.5 ~1095 1.1 40 2-way 

Sensitivity 
experiments 
on 
covariance 
weighting 
factors 

Hybrid01 0.1 ~1095 1.1 40 1-way 

Hybrid09 0.9 ~1095 1.1 40 1-way 

Hybrid10 1.0 ~1095 1.1 40 1-way 

Sensitivity 
experiments 
on 
localization 
scales 

Hybrid_HS 0.5 ~701 1.1 40 1-way 

Hybrid_HL 0.5 ~1300 1.1 40 1-way 
Hybrid_VS 0.5 ~1095 0.36 40 1-way 

Hybrid_VL 0.5 ~1095 1.8 40 1-way 

Sensitivity 
experiments 
on height- 
and 
observation-
type- 
dependent 
localization 
scales 

EnSRF_Con - 1095 1.1 40 - 
Hybrid_Con 
(Perturbations 
from 
EnSRF_CON) 

1.0 ~1095 1.1 40 1-way 

Hybrid_HD 1.0 700 ↗ 	1050 1.1/2 ↗ 1.1 40 1-way 

Hybrid3G 1.0 700 ↗ 	1050 RH and T: 1.1/4 ↗ 
1.1/2 
U and V: 1.1/2 ↗  1.1 
PS and PW: 1.6 
(observations are 
assimilated in 3 
groups) 

40 1-way 

EnSRF3G - 700 ↗ 	1050 RH and T: 1.1/4 ↗	
1.1/2 
U and V: 1.1/2  ↗	1.1 
PS and PW: 1.6 
(observations are 
assimilated in 3 
groups) 

40 - 

 992 
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Table 2. list of mean domain average absolute RMSE difference pair 993 

Name Hybrid* Benchmark 

1GC1 Hybrid_Con EnSRF_Ctl 

1GC2 Hybrid_Con EnSRF_Con 

1GHD Hybrid_HD EnSRF_Ctl 

3GHD Hybrid3G EnSRF3G 

 994 

  995 
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Table 3. List of precipitation forecast name and corresponding data assimilation experiments on 40 996 
km grid 997 

Precipitation forecast name Data assimilation experiment 

EnSRF13 EnSRF_Ctl 

Hybrid1W13 Hybrid1W_Ctl 

Hybrid2W13 Hybrid2W_Ctl 

EnSRF13Con EnSRF_Con 

Hybrid13Con Hybrid_Con 

 998 


