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Abstract 40 

An ensemble Kalman filter-variational hybrid data assimilation system based on the grid 41 

point statistical interpolation (GSI) three dimensional variational (3DVar) system was developed.  42 

The performance of the system was investigated using the National Centers for Environmental 43 

Prediction (NCEP) Global Forecast System model. Experiments covered a 6-week Northern 44 

Hemisphere winter period.  Both the control and ensemble forecasts were run at the same, 45 

reduced resolution.  Operational conventional and satellite observations along with an 80 46 

member ensemble were used.  Various configurations of the system including one-way or two-47 

way couplings, with zero or non-zero weights on the static covariance were inter-compared and 48 

compared with the GSI 3DVar system.  It was found that the hybrid system produced more 49 

skillful forecasts than the GSI 3DVar system.  The inclusion of a static component in the 50 

background-error covariance and re-centering the analysis ensemble around the variational 51 

analysis did not improve the forecast skill beyond the one-way coupled system with zero weights 52 

on the static covariance.  The one-way coupled system with zero static covariances produced 53 

more skillful wind forecasts averaged over the globe than the EnKF at the 1-day to 5-day lead 54 

times and more skillful temperature forecasts than the EnKF at the 5-day lead time.  Sensitivity 55 

tests indicated that the difference may be due to the use of the tangent linear normal mode 56 

constraint in the variational system.  For the first outer loop, the hybrid system showed a slightly 57 

slower (faster) convergence rate at early (later) iterations than the GSI 3DVar system.  For the 58 

second outer loop, the hybrid system showed a faster convergence. 59 

 60 

 61 

 62 
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1. Introduction 63 

Variational data assimilation (Var) systems have been in use operationally at the National 64 

Centers for Environmental Prediction (NCEP) and most other numerical weather prediction 65 

(NWP) centers for at least a decade.  Three-dimensional variational (3DVar) systems, such as the 66 

operational global statistical interpolation system (GSI; Wu et al., 2002, Kleist et al. 2009b) 67 

adopted by NCEP, use a background error covariance matrix that is either completely static or 68 

only weakly coupled to the dynamics of the forecast model.  Four-dimensional variational data 69 

assimilation (4DVar) systems that use a tangent-linear version of an often simplified forecast 70 

model implicitly evolve the background error covariance over the assimilation window, starting 71 

from a typically static estimate of the covariance at the beginning of the window (e.g. Courtier et 72 

al. 1994).  In comparison, ensemble Kalman filter (EnKF; e.g., Houtekamer et al. 2005; 73 

Whitaker et al. 2008, Szunyogh et al. 2005) data assimilation systems can utilize fully flow-74 

dependent background error covariances, estimated from an ensemble of short range forecasts 75 

with the full nonlinear forecast model.   76 

A hybrid analysis method has been proposed (e.g., Hamill and Snyder 2000; Lorenc 77 

2003; Etherton and Bishop 2004; Zupanski 2005; Wang et al. 2007a; Wang 2010) and 78 

implemented for regional (e.g., Wang et al. 2008ab; Wang 2011; Zhang and Zhang 2012; Barker 79 

et al. 2012; Li et al. 2012) and global (e.g., Buehner 2005; Buehner et al. 2010ab, Bishop and 80 

Hodyss 2011, Clayton et al. 2012) NWP.  In a hybrid method, the variational framework is 81 

typically used to calculate the analysis increment using an ensemble-based, flow-dependent 82 

estimate of the background-error covariance.  The ensemble can be generated from an EnKF.    83 

Recent studies have suggested that hybrid systems may be optimal by combining the best aspects 84 

of the Var and EnKF systems (e.g., Wang et al. 2007b, 2009; Buehner et al. 2010b; Zhang and 85 
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Zhang 2012).  The potential advantages of a hybrid system as compared to standalone Var and 86 

EnKF systems were summarized in Wang (2010). 87 

A hybrid EnKF-Var data assimilation system was recently developed based on the 88 

operational GSI 3DVar system at NCEP, and was first tested for the Global Forecast System 89 

(GFS).  The resolution of the operational implementation was T254 (triangular truncation at total 90 

wavenumber 254) for the ensemble and T574 for the variational analysis. These results will be 91 

documented in a forthcoming paper.  Here we present the results of experiments conducted with 92 

this system at a reduced spectral resolution of T190 for both the ensemble and the variational 93 

analyses (hereafter single resolution experiments).  The performances of the GSI 3DVar, the 94 

hybrid and the EnKF systems were investigated.   The impacts from three aspects of the 95 

ensemble-variational coupled system were investigated.  These aspects included the weights of 96 

the flow-dependent and static components in the background-error covariance, re-centering the 97 

analysis ensemble around the variational analysis, and the tangent linear normal mode constraint 98 

in the minimization.  This paper will focus on describing the results of the hybrid system 99 

developed based on the GSI 3DVar system.  Formulation, implementation, and results of the 100 

four-dimensional extension of the system called, “Four-dimensional Ensemble-Variational 101 

(4DEnsVar) system”, will be reported in forthcoming papers.  Section 2 describes the GSI 102 

3DVar-based ensemble-variational hybrid data assimilation system (hereafter, GHDA).  Section 103 

3 describes the design of the experiments.  Section 4 discusses the experiment results and section 104 

5 concludes the paper.  105 

 106 

2. GSI 3DVar-based EnKF-variational hybrid data assimilation system 107 
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For the one-way coupled GHDA as shown in Fig. 1a, each cycle consists of the following 108 

three steps:  109 

1) Update the background forecast, using ensemble perturbations to estimate the 110 

background error covariance.  This is achieved by using the augmented control vector (ACV) 111 

method as described below.  Hereafter, GSI with the ACV is denoted as “GSI-ACV”.     112 

2) Update the forecast ensemble to generate the analysis ensemble using an EnKF.   113 

3) Make ensemble and control forecasts to advance the state to the next analysis time.  114 

For a two-way coupled GHDA as shown in Fig. 1b, step 2 is modified by re-centering the 115 

analysis ensemble generated by the EnKF around the control analysis to produce the final 116 

analysis ensemble.  One motivation for such a modification is to allow the EnKF perturbations to 117 

evolve with the trajectory of the control forecast so that the ensemble covariance may potentially 118 

better represent the error statistics of the control forecast.  119 

One component in the GHDA is the “GSI-ACV” (Fig. 1).  Wang (2010) described the 120 

mathematical details on how the ensemble covariance was implemented in the GSI variational 121 

minimization through the ACV, where the minimization was preconditioned upon the full 122 

background error covariance.  Below we briefly describe the formulas following the notation of 123 

Wang (2010).  Similar notation was used in Lorenc (2003) and Buehner (2005).  In the GHDA, 124 

the analysis increment is defined as 125 

                                         ∑ ° .                                                                 (1) 126 

The first term   is the increment associated with the static covariance.  The second term is the 127 

flow-dependent increment associated with the ensemble covariance.   is the kth ensemble 128 

perturbation normalized by √ 1, where  is the ensemble size. The vectors , 1, , 129 

denote the augmented control vectors for each ensemble member. The symbol ° denotes the 130 
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Schur product.   The analysis increment  is obtained by minimizing the following hybrid cost 131 

function  132 

,  (2).                            133 

The first term on the right hand side is the traditional 3DVar background term with the static 134 

covariance .  The last term is the observational term, which is the same as in a traditional 135 

3DVar system except that  is defined by (1).    136 

In the second term,  is a vector formed by concatenating  unitless vectors, , 137 

1, .  These augmented control vectors are constrained by a block-diagonal matrix, , which 138 

defines the localization applied to the ensemble covariance.  In the current implementation, each 139 

, 1, , is a three-dimensional field located at the model grid points.  Each  varies in 140 

both the horizontal and vertical directions so that the spatial localization is applied both 141 

horizontally and vertically.  The same three-dimensional fields, , are applied for all variables.  142 

In other words, the cross-variable covariance calculated from the ensemble is not modified by 143 

the localization.  Specifically, in eq. (1) the variables on which  are applied include surface 144 

pressure, wind, virtual temperature, relative humidity, cloud water mixing ratio and ozone 145 

mixing ratio.  In GHDA, the vertical covariance localization part ( ) of matrix  is realized 146 

through a recursive filter transformation (Hayden and Purser 1995) with the distance measured 147 

either in scale heights (i.e., natural log of the pressure) or number of model levels (see  in eq. 148 

(16) of Wang 2010 on where the localization is implemented during the minimization).    For the 149 

GFS, the horizontal localization is realized through a spectral filter transform.  Specifically, the 150 

horizontal localization part ( ) of matrix   in eq. (16) of Wang (2010) is converted into the 151 

spectral space by ,  where  represents the transformation from horizontal grid 152 

space to spectral space and  is the inverse spectral transformation.   is a diagonal matrix 153 
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containing the spectral coefficients corresponding to the horizontal localization function 154 

predefined in model grid-space.  No further spectral truncations such as those in Buehner (2005) 155 

are implemented here and the minimization is still conducted with respect to the augmented 156 

control vectors in the model grid space with the full horizontal resolution.   E-folding distances 157 

equivalent to 1600 km and 1.1 scale height (natural log of pressure is equal to 1.1) cut-off 158 

distances in the Gaspari-Cohn (1999) localization function were adopted for the horizontal and 159 

vertical localizations respectively in the current study.   160 

There are two factors 1  and 2  whose inverses define the weights placed on the static 161 

covariance and the ensemble covariance respectively.  In the current implementation, these two 162 

weighting factors satisfy 1.  Wang et al. (2007a) proved that the method of using 163 

augmented control vectors to incorporate ensembles in the variational framework as in eq. (1) 164 

and (2) and the method of directly combining the ensemble covariance with the static covariance 165 

are theoretically equivalent.  Wang et al. (2007a) also described the relationship between the 166 

weighting factors applied on the covariances such as implemented in the current study and in 167 

Wang et al. (2008a) to those applied on the increments such as implemented in Lorenc (2003) 168 

and Buehner (2005).  Note that eq. (2) provides a generic form of the hybrid cost function.  After 169 

plugging in  in eq. (11) of Wang (2010) and  immediately defined after eq. (11) of Wang 170 

(2010) to either equation (6) in Wang (2010) or eq. (2) in this paper, the inverse of  and , and 171 

the weighting factors  and  , do not explicitly appear in the cost function.  For further details 172 

please refer to Wang (2010). 173 

Another component of the GHDA is the ensemble update, which is achieved by using an 174 

EnKF.  An ensemble smoother version (i.e., a version taking into account the four-dimensional 175 

ensemble covariance within the assimilation window) of the square root filter algorithm 176 
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(Whitaker and Hamill 2002) was adopted.  A recent implementation of an EnKF for the GFS was 177 

described more fully in Hamill et al. (2011).  This EnKF code has been efficiently parallelized 178 

following Anderson and Collins (2007) and directly interfaced with the GSI by using the GSI’s 179 

observation operators, pre-processing and quality control for operationally assimilated data.  In 180 

the EnKF, to account for sampling errors due to the limited ensemble members, cut-off distances 181 

of 1600 km in the horizontal direction and 1.1 scale heights in the vertical direction were used 182 

for the localization for all observations except the surface pressure and satellite radiance 183 

observations, where vertical localization was prescribed to be 2.2 and 3.3 scale heights 184 

respectively to account for the non-local nature of these observations.  Temporal localization 185 

using a 16-hour cut-off distance was also implemented1.  To account for the deficiency in the 186 

spread of the first guess ensemble from the EnKF, both multiplicative and additive inflation were 187 

applied in the EnKF.  For the multiplicative inflation, an adaptive algorithm proposed by 188 

Whitaker and Hamill (2012) was adopted which inflated the posterior ensemble in proportion to 189 

the amount of the reduction of the ensemble variance due to the assimilation of observations. 190 

This algorithm resulted in a larger inflation in regions of dense observations.  In this study, the 191 

inflation was performed by relaxing the posterior ensemble variance to 90% of the prior 192 

ensemble variance.  For the additive inflation, the additive noise was drawn from a full year’s 193 

inventory of differences between 48-hour and 24-hour forecasts valid at the same time.  A factor 194 

of 40% was applied to the differences before being added to the posterior ensemble. These 195 

parameters were tuned so that the average background ensemble spread matched the average 196 

background errors.  The additive perturbations were applied to the analysis rather than 197 

                                                            
1 The data assimilation window is defined as extending from 3 hours before to 3 hours after the center of the 
assimilation window.  The bell-shape Gaspari-Cohn localization function tapers from the center of the assimilation 
window and reaches zero16 hours away from the center of the assimilation window.   
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background ensemble so that the flow dependent structure could be established for the additive 198 

perturbations during the 6-hour model integration.  199 

3. Experiment design 200 

The data assimilation cycling experiments were conducted during a 6-week period, 0000 201 

UTC 15 December 2009 ~ 1800 UTC 31 January 2010.  The operationally available 202 

observations including conventional and satellite data were assimilated every 6 hours. A list of 203 

types of the operational conventional and satellite data are found on the NCEP website2.  The 204 

operational NCEP Global Data Assimilation System (GDAS) consisted of an “early” and a 205 

“final” cycle.  During the “early” cycle, observations assimilated had a short cutoff window.  The 206 

analyses were then repeated later including the data that had missed the previous “early” cutoff 207 

to provide the “final” analyses for the 6-h forecast which was used as the first guess of the next 208 

“early” cycle.  As a first test of the newly developed hybrid system, only observations from the 209 

“early” cycle were assimilated. The same observation forward operators and satellite bias 210 

correction algorithms as in the operational GSI 3DVar system were used.  The quality control 211 

decisions from the operational GDAS were adopted for all experiments.  The GFS model was 212 

configured the same way as the operational GFS except that the horizontal resolution was 213 

reduced to T190 to accommodate the sensitivity experiments using limited computing resources. 214 

The model contained 64 vertical levels with the model top layer at 0.25 hPa.  An 80-member 215 

ensemble was run following the operational configuration.  A digital filter (DFI; Lynch and 216 

Huang 1992) was applied during the GFS model integration for all experiments following the 217 

operational configuration.   For all of the experiments presented in this work, the same model 218 

                                                            
2 http://www.emc.ncep.noaa.gov/mmb/data_processing/prepbufr.doc/table_2.htm and 
table18.htm. 
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configuration was adopted, and the same observations were ingested, except that the EnKF 219 

excluded satellite derived precipitation rates.  This exclusion was because the proper observation 220 

space vertical covariance localization adopted by the EnKF for observation types such as the 221 

precipitation rates was still under research.  Earlier work by Treadon et al. (2002) also reported 222 

little impact of satellite derived rain rates assimilated by the GSI 3DVar system on the global 223 

forecasts.  Verification was conducted using data collected during the last 4 weeks of the 224 

experiment period.   225 

Since the operational static covariance was derived from GFS forecasts at higher 226 

resolution, both the correlation length scales and the magnitude of the error variances of the 227 

control variables were tuned for the lower resolution experiments.  The tuning was achieved by 228 

incrementally changing the correlation length scale and the error variance by 10% and running 229 

the standalone GSI 3DVar system over the 6-week period until the performance of the GSI 230 

3DVar system converged.  The final, tuned static covariance, whose error variance and 231 

horizontal length scales were 20% larger than the operational covariance, was used in the 232 

following experiments. 233 

A few sensitivity tests were conducted for the hybrid system.  Both one-way and two-234 

way coupling experiments were conducted.  Additionally, two different sets of background 235 

covariance weighting factors ( 0   0.5) were adopted.  The former used 0% static 236 

background error covariance and 100% ensemble covariance, and the latter used a blend of 50% 237 

static and 50% ensemble background error covariances.  The impact of applying the tangent 238 

linear normal mode balance constraint (TLNMC) during the variational minimization where the 239 

background ensemble was purely from the ensemble covariance was also investigated.  The one-240 

way coupled system with and without the use of the TLNMC was compared with the EnKF.  In 241 
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addition, the impact of the inclusion of an ensemble covariance on the minimization convergence 242 

rates was investigated.  For all of the GSI 3DVar and the GHDA experiments, two outer loops 243 

were used following the operational configuration.  Table 1 lists the experiments conducted 244 

along with naming conventions. 245 

 246 

4. Results 247 

a. Comparison of various configurations of the hybrid system and the GSI 3DVar system 248 

1). FITS OF ANALYSES TO OBSERVATIONS 249 

A series of experiments assimilating a single observation were conducted to verify that 250 

the GSI-ACV ingested the flow-dependent ensemble covariance properly.  In contrast to the GSI 251 

3DVar whose increment was quasi-isotropic, flow-dependent increments similar to Fig. 4 of 252 

Wang et al. (2008a) were found for the GSI-ACV (not shown).    In this subsection, the 253 

ensemble-variational coupled experiments with various configurations (3DEnsVar1way, 254 

3DEnsVar2way and Hybrid1way0.5 in Table 1) and the GSI 3DVar experiment are compared.  255 

Figure 2 shows the root-mean-square fit of the analysis to rawinsonde observations 256 

averaged over the experiment period. The analyses from 3DEnsVar1way and 3DEnsVar2way fit 257 

the observations similarly.  The analyses from 3DEnsVar1way and 3DEnsVar2way fit the 258 

temperature observations more (less) closely than GSI3DVar above (below) 550 hPa3.  The 259 

analyses from 3DEnsVar1way and 3DEnsVar2way fit the wind observations more (less) closely 260 

than GSI3DVar above (below) 850 hPa.  The analyses from Hybrid1way0.5 fit the observations 261 

more closely than GSI3DVar throughout all vertical levels. Compared to 3DEnsVar1way and 262 

                                                            
3 Note that the fit of the analyses to observations assimilated is not a measure of the accuracy of 
the analyses. 
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3DEnsVar2way, the analyses using 50% static and 50% ensemble covariances (Hybrid1way0.5) 263 

fit the observations less (more) closely above (below) 250 hPa.   Wang et al. (2008b) found that 264 

analyses from 3DVar for the Weather Research and Forecast (WRF) model fit the observations 265 

more closely than the WRF Ensemble Transform Kalman Filter (ETKF)-3DVar hybrid.  The 266 

relative difference of the fits of the analysis to observations between the hybrid and 3DVar 267 

algorithms may therefore be dependent on the specific configuration of the data assimilation and 268 

forecast system.  In general, the fit of the analyses to observations is determined by the combined 269 

effects of the relative magnitude of the background and observation error variance, the degrees 270 

of freedom and the accuracy of the background error covariance, and the accuracy of the 271 

background forecast.  To confirm the impact of the magnitude of the background error variance 272 

and the degrees of freedom of the background error covariance, the fits of the analyses to 273 

observations from differently configured GSI3DVar experiments were compared.  In these 274 

experiments, the background error variance and the correlation length scale were varied.  It was 275 

found that for smaller background error variances or larger correlation scales, the analyses 276 

tended to fit the observations less (not shown).   277 

2). VERIFICATION OF FORECASTS 278 

The root mean square errors (RMSEs) of wind and temperature forecasts verified against 279 

the rawinsonde data at different forecast lead times over the globe were calculated.  As shown in 280 

Figure 3, the forecasts produced by the various configurations of the ensemble-variational 281 

coupling experiments (3DEnsVar1way, 3DEnsVar2way and Hybrid1way0.5) are more skillful 282 

than that of the GSI3DVar experiment (similar results were found at 6-hour lead time).  Relative 283 
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to the variation of the errors in the vertical, which determines the range on the x-axis4, the 284 

improvement of temperature forecasts relative to GSI3DVar increases whereas the improvement 285 

of wind forecasts decreases from the 24-hour to 120-hour lead time.  Figure 4 shows the RMSEs 286 

of the wind and temperature forecasts verified against the rawinsonde data at the 72-hour lead 287 

times over the Northern Hemisphere (NH) extratropics, Tropics and Southern Hemisphere (SH) 288 

extratropics.  Relative to the variation of errors in the vertical, the improvement relative to 289 

GSI3DVar is larger over the extratropics than the Tropics.   290 

The variously configured ensemble-variational coupling experiments were also inter-291 

compared amongst each other.  Figures 3 and 4 show that in general the performance of the two-292 

way coupled system (3DEnsVar2way) is not better than the one-way coupled system 293 

(3DEnsVar1way)5.  The inclusion of the static covariance with a 50% weight (Hybrid1way0.5) 294 

does not improve the performance beyond the use of the full ensemble covariance 295 

(3DEnsVar1way).  Reducing the weight on the static covariance from 50% to 25% does not 296 

improve the performance beyond 3DEnsVar1way (not shown).  Earlier studies (e.g., Wang et al. 297 

2007b) suggested that the optimal weight placed on the static covariance depended on the 298 

relative quality of the static and ensemble covariance estimates. For example, Wang et al. 299 

(2007b) showed that when the size of the ensemble was decreased, the optimal weight applied on 300 

the static covariance was increased.  It is expected that for the GHDA with a smaller ensemble 301 

size or with the ensemble run at a lower resolution than the control forecast (hereafter dual-302 

resolution experiment), the inclusion of the static covariance would have a positive impact.  303 

                                                            
4 At different lead times, the magnitude and range of the errors in general increase.  Such 
measure provides an assessment of the improvement relative to the range of the errors at the 
corresponding lead times.  
5 The difference between one-way and two-way 3DEnsVar in the mid-troposphere in Fig. 3e was 
not significant as when the number of samples was reduced the difference became smaller. 
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Research on comparing the hybrid under the single and dual-resolution configurations and the 304 

impact of the static covariance in these configurations is being conducted.  Our initial results 305 

showed that for a dual resolution configuration using an 80-member ensemble where the EnKF 306 

was run at a half of the resolution of the deterministic 3DVar, the combination of the static and 307 

ensemble covariances significantly improved the performance relative to using the ensemble 308 

covariance alone, and the hybrid improved upon the 3DVar with the dual resolution 309 

configuration (not shown).  It is also expected that in the dual-resolution configuration, re-310 

centering the coarser resolution analysis ensemble around the higher resolution control analysis 311 

(i.e., two-way coupling) would improve the forecast than without re-centering (i.e., one-way 312 

coupling) since the higher resolution control analysis is supposed to provide more accurate 313 

analyses.   314 

Analyses of wind, temperature and specific humidity from ECMWF were used as 315 

independent verifications (available from http://tigge.ecmwf.int).  Forecast lead times at and 316 

beyond 72-hour were chosen to reflect that it would be more appropriate to use the analyses to 317 

verify longer forecasts than short forecasts.   Consistent with Fig. 3, the forecasts from various 318 

ensemble-variational coupling configurations generally fit the ECMWF analyses more closely 319 

than those from GSI3DVar.  Relative to the variation of the errors in the vertical, the 320 

improvement of temperature forecasts increases or remains similar whereas the improvement of 321 

wind and specific humidity forecasts decreases from the 72-hour to 120-hour lead time (not 322 

shown).  Further verification with respect to different parts of the globe (Figure 5) shows that 323 

relative to the variation of errors in the vertical, the improvement relative to GSI3DVar is larger 324 

over the extratropics than the Tropics for wind and temperature forecasts, consistent with the 325 

verification against the rawinsonde observations.   For specific humidity forecasts, the 326 
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improvement relative to GSI3DVar in the Tropics is comparable to or larger than the 327 

extratropics.   Also consistent with the verification against rawinsonde observations, the 328 

inclusion of the static covariance with a 50% weight (Hybrid1way0.5) and the use of two-way 329 

coupled hybrid (3DEnsVar2way) generally do not further improve the performance beyond the 330 

one-way coupled system with a full ensemble covariance (3DEnsVar1way).   331 

 332 

b.         Verification of background ensemble spread 333 

 As mentioned in section 2, both multiplicative and additive inflation were implemented 334 

in the EnKF to alleviate the deficiency of the ensemble in accounting for system errors.  In this 335 

section, the relationship of the 6-hour background ensemble spread to the 6-hour background 336 

forecast error is evaluated.  Figure 6 shows the square root of the ensemble variance plus the 337 

observation-error variance, and the root-mean-square fit of the first guess to the rawinsonde 338 

observation.   For the theory behind the use of the above metrics to verify the ensemble spread, 339 

please refer to Gelb (1974, Eqs. 9.1-15, Page 318), Houtekamer et al. (2005), Wang et al. 340 

(2008b) and Whitaker et al. (2008).  For both temperature and wind forecasts, the ensemble is 341 

under-dispersive in the lower and upper troposphere and is over-dispersive in the middle of the 342 

troposphere.  The same pattern is found for other configurations of the hybrid system (not 343 

shown).  A similar pattern was found in Whitaker et al. (2008) where the EnKF was tested in 344 

GDAS at T62 resolution assimilating only conventional observation and in Wang et al. (2008b) 345 

where the ensemble Transform Kalman filter (ETKF; Wang and Bishop 2003, Wang et al. 2004; 346 

2007b) was used to produce the ensemble for the WRFVAR based hybrid system.  The fact that 347 

the vertical structures of the spread and skill do not match suggests that the multiplicative 348 

inflation and additive noise methods that aim to parameterize system errors are deficient and 349 
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therefore do not correctly represent the vertical structure of the actual system errors.  In both 350 

system error parameterizations, there is only one tunable parameter.  It is possible that the 351 

spread-skill consistency may be improved if more level dependent tunable parameters are 352 

introduced on the additive noise methods.  The ensemble spread is also decaying during the first 353 

6 hours of model integration, which suggests that other methods to account for the system errors 354 

should be explored. For example, one can explore the use of multiple parameterizations, 355 

stochastic physics (Buizza et al. 1999) and Stochastic Kinetic energy backscatter schemes 356 

(Shutts 2005) to account for model errors.  It is expected that the performance of the GHDA will 357 

be further improved when the deficiency of the ensemble spread is further alleviated. 358 

 359 

c.         Impact of TLNMC balance constraint  360 

Imbalance between variables introduced during data assimilation can degrade the 361 

subsequent forecasts.  The TLNMC was implemented in the GSI minimization to improve the 362 

balance of the initial conditions.   Kleist et al. (2009a) showed that the impact of the TLNMC 363 

resulted in substantial improvement in the forecasts initialized by the GSI 3DVar system.  In the 364 

GHDA, the static background error covariance as shown by Wang et al. (2007a; 2008a) was 365 

effectively replaced by or was weighted with the flow-dependent ensemble covariance.   The 366 

mass-wind relationship in the increment associated with the ensemble was defined by the 367 

multivariate covariance inherent in the ensemble perturbations.  The background ensemble 368 

covariance could also become more balanced due to the 6-hour spin up during the forecast steps 369 

of the data assimilation cycling.   On the other hand, the covariance localization applied on the 370 

ensemble covariance could degrade balance (e.g., Lorenc 2003; Kepert 2009; Holland and Wang 371 

2013).  The impact of the TLNMC on the ensemble increment was therefore investigated.  372 
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Experiments configured to be the same as GSI3DVar and 3DEnsVar1way, but without the use of 373 

the TLNMC were conducted.  Figure 7 shows that the TLNMC yields significantly positive 374 

impact for forecasts from both GSI3DVar and 3DEnsVar1way over the globe, especially after 1-375 

day forecast lead time.   Relative to the vertical variation of the errors, the impact of the TLNMC 376 

on GSI3DVar and 3DEnsVar1way is comparable.  Figure 8 shows the impact of the TLNMC 377 

decomposed into the extratropics and tropics at the 120-hour lead time.  The TLNMC shows 378 

positive impact in both NH and SH extratropics, and mostly neutral impact in the tropics except 379 

the positive impact for GSI3DVar at the middle to lower levels. At the 120-hour lead time, the 380 

positive impact of the TLNMC is comparable between the NH and SH extratropics.  At shorter 381 

lead times (e.g., 72-hour, not shown), the positive impact of the TLNMC is larger in the SH than 382 

the NH extratropics.   383 

d.         Measure of imbalance 384 

The mean absolute tendency of surface pressure (Lynch and Huang 1992) is a useful 385 

diagnostic for showing the amount of imbalance for an analysis generated by a data assimilation 386 

system.  Figure 9a shows the mean absolute surface pressure tendency calculated using the GFS 387 

output at every model integration time step (two minutes) for 3DEnsVar1way with and without 388 

the use of the TLNMC, and GSI3DVar with and without the use of the TLNMC up to the 9-hour 389 

lead time.  A representative case during the experiment period was selected.  For both GSI3DVar 390 

and 3DEnsVar1way, applying the TLNMC results in more balanced analyses and forecasts 391 

throughout the 9-hour period.  The analyses generated by GSI3DVar are more balanced than 392 

3DEnsVar1way especially when the TLNMC is not applied.   393 

Note that for all of the experiments, following the operational configuration of the GFS, a 394 

digital filter was applied during the model integration.  In this study, the digital filter was 395 
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configured so that its impact on the forecasts started from the second hour of the model 396 

integration.  Figure 9b shows the mean absolute surface pressure tendency for the same case as 397 

in Figure 9a except that the DFI is turned on at the second hour of the model integration.  For all 398 

experiments, the use of the DFI improves the balance of the forecasts starting from the second 399 

hour.  Since the hourly GFS output where DFI was applied at the second hour was readily 400 

available for the whole experiment period, the hourly surface pressure tendency averaged over 401 

the experiment period was calculated and summarized before and after the second hour (Table 402 

2).  For both GSI3DVar and 3DEnsVar1way, applying the TLNMC results in more balanced 403 

forecasts even after the DFI is applied. However, the difference is smaller compared to when the 404 

DFI is not used. The analyses generated by GSI3DVar are still more balanced than 405 

3DEnsVar1way after the DFI is applied, although the difference is smaller compared to when the 406 

DFI is not used. 407 

Note that although the imbalance decreases quickly after the DFI is applied, errors due to 408 

the imbalance can grow with time and lead to a difference in the forecast accuracy at longer lead 409 

time as seen in Figure 8.  As described in section 2, the covariance localization transform was 410 

performed on the augmented control variables and these control variables were used to modulate 411 

the ensemble perturbations in the space of surface pressure, wind, virtual temperature, relative 412 

humidity, cloud water and ozone mixing ratios.  As discussed in Kepert (2009) and Clayton et al. 413 

(2012), covariance localization conducted in a space such as stream function and velocity 414 

potential can potentially better preserve balance.  Further investigation of applying the 415 

localization on different variable spaces and their interaction with the TLNMC is left for future 416 

study. 417 

 418 
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e. Impact on convergence during the variational minimization 419 

 In addition to the description in section 2, the detailed formula to implement the 420 

ensemble covariance, the covariance localization and the weighting factors in the GSI 421 

minimization are found in Wang (2010).  Different from Lorenc (2003) and Buehner (2005), the 422 

weighting factors in the GHDA were applied on the penalty terms associated with the static and 423 

ensemble covariances rather than the increments.  Different from Lorenc (2003), Buehner 424 

(2005), and Wang et al. (2008a), the covariance localization in the GHDA was implemented to 425 

be in compliance with the full background covariance preconditioning in the GSI.  Please refer to 426 

Wang (2010) for details.  To investigate the impact of the inclusion of the ensemble covariance 427 

in the GSI minimization, the convergence rates of 3DEnsVar1way, and Hybrid1way0.5 were 428 

compared with that of GSI3DVar.  Figure 10 shows the level of convergence measured by the 429 

ratio of the gradient norm relative to the initial gradient norm during the variational minimization 430 

averaged over the experiment period.  For the first outer loop, 3DEnsVar1way and 431 

Hybrid1way0.5 shows a slightly slower convergence rate at early iterations and a slightly faster 432 

convergence rate at later iterations than GSI3DVar.  For the second outer loop, 3DEnsVar1way 433 

and Hybrid1way0.5 shows faster convergence than GSI3DVar.  In the current experiments, the 434 

maximum iteration steps were 100 and 150 for the first and second outer loops for all 435 

experiments.  The same numbers were used in the operational system. The minimization was 436 

terminated at the maximum iteration step in most cases.  Figure 10 also shows that the iterations 437 

are terminated at the similar level of the ratio of gradient norms for the GSI3DVar, 438 

3DEnsVar1way and Hybrid1way0.5 experiments.  The convergence rate is not sensitive to 439 

whether a 100% or a 50% weight are applied on the ensemble covariance.  For the experiments 440 



 

20 
 

conducted in this study, the cost of the hybrid and EnKF analysis updates were comparable and 441 

were about twice that of the GSI 3DVar update.  442 

       443 

f. Comparison of 3DEnsVar with EnKF 444 

Figure 11 shows the root mean square error of the wind and temperature forecasts 445 

verified against rawinsonde data at different forecast lead times over the globe for EnKF and 446 

3DEnsVar1way.  3DEnsVar1way was selected given its generally better performance than the 447 

other configurations of the ensemble-variational coupling system.  Here, the EnKF forecasts 448 

were single forecasts from the EnKF mean analyses rather than the mean of the ensemble 449 

forecasts.  Figure 11 shows that wind forecasts from 3DEnsVar1way fit the observations better 450 

than EnKF.  For temperature forecasts, 3DEnsVar1way fit the observations averaged over the 451 

globe similarly to EnKF at shorter lead times and fit the observations more closely than EnKF at 452 

longer lead times (e.g., 120-hour).  Further decomposition of the RMSEs into NH and SH 453 

extratropics and Tropics shows that such differences are mostly from the NH extratropics (Figure 454 

12).  In the SH extratropics, 3DEnsVar1way shows consistent improvement over EnKF only for 455 

the wind forecasts.  No consistent, appreciable difference between EnKF and 3DEnsVar1way is 456 

found in the tropics.  The relative performance between EnKF and 3DEnsVar1way verified 457 

against the ECMWF analyses shows similar results to those results verified against the 458 

observations (not shown).  As in Whitaker et al. (2008), EnKF performs generally better than 459 

GSI3DVar. Since EnKF supplies the ensemble covariance to the hybrid system, the better 460 

performance of EnKF relative to GSI3DVar also explains why the hybrid system is better than 461 

the GSI 3DVar system.  462 
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There were several methodological and implementation differences between EnKF and 463 

3DEnsVar1way:  (1) 3DEnsVar1way adopted “model space” covariance localization where the 464 

localization was applied on the covariance of the model space vector.  In comparison, EnKF 465 

adopted “observation space” localization where the localization was applied on the covariance 466 

between observation space vector and the model state vector.  Campbell et al. (2010) suggested 467 

such a difference could lead to performance differences when observations representing 468 

integrated measures were assimilated.  To alleviate the potential problems associated with the 469 

observation space localization when integrated measures were assimilated, EnKF adopted larger 470 

vertical localization scales for satellite radiance and surface pressure observations (section 2).  471 

(2) EnKF assimilated observations sequentially whereas 3DEnsVar1way assimilated all 472 

observations simultaneously. A recent study by Holland and Wang (2013) suggested that the 473 

simultaneous/sequential assimilation in combination with different covariance localization 474 

methods could lead to performance differences in the ensemble based data assimilation. (3) The 475 

ensemble smoother version of EnKF was adopted where effectively the four-dimensional 476 

ensemble covariance was utilized during the 6-hour assimilation window.  The current 3DVar-477 

based hybrid experiments used the three-dimensional ensemble covariance centered at the 478 

middle of the assimilation window and therefore did not account for the temporal dimension of 479 

the error covariance.   (4) The hybrid adopted two outer loops to treat nonlinearity during the 480 

variation minimization whereas the EnKF did not apply an equivalent procedure.  (5) The 481 

TLNMC was applied during the minimization of the hybrid whereas EnKF did not apply an 482 

equivalent procedure.   483 

An in-depth investigation and understanding of the contribution of the aforementioned 484 

factors to the performance differences between EnKF and 3DEnsVar1way are needed in future 485 



 

22 
 

work.  A preliminary investigation by comparing experiments of the hybrid with one outer loop 486 

and two outer loops 6showed no appreciable degradation of 3DEnsVar1way with only one outer 487 

loop (not shown).  An extension of the current hybrid system where the four-dimensional 488 

ensemble covariance was utilized during the 6-hour assimilation window (i.e. like the four-489 

dimensional ensemble-variatioanl (4DEnsVar) system in Buehner et al. 2010a) showed 490 

appreciable improvement relative to the current three-dimensional hybrid system (to be shown in 491 

forthcoming papers).   Therefore, the aforementioned factor 3 did not explain the difference 492 

between the 3DEnsVar1way and EnKF experiments seen in Figures 11 and 12.   Further 493 

comparisons were conducted between EnKF and 3DEnsVar1way with and without the use of the 494 

TLNMC.  Figures 7 and 8 show that the performance of 3DEnsVar1way is degraded when the 495 

TLNMC is withheld.  Comparing the experiments of 3DEnsVar1way withholding the TLNMC 496 

(3DEnsVar1way_nbc) with EnKF shows that after withholding the TLNMC, the EnKF and the 497 

3DEnsVar1way_nbc performed similarly (Fig. 13).  This result suggests that the TLNMC 498 

implemented in the variational minimization of 3DEnsVar1way (although the DFI is already 499 

applied for both 3DEnsVar1way and the EnKF experiments) could be one cause as to the better 500 

forecast performance of 3DEnsVar1way than EnKF as seen in Fig. 11.  Consistently, Table 2 501 

shows that during the model integration after the DFI is applied the EnKF forecast is less 502 

balanced than the 3DEnsVar1way forecast where the TLNMC is implemented.   503 

 504 

5. Conclusion and discussion 505 

A GSI 3DVar-based ensemble-variational hybrid data assimilation system was 506 

developed.  In the hybrid system, flow-dependent ensemble covariances were estimated from an 507 

                                                            
6 Note that since this is only 3DVar (not 4DVar), only the non-linear observation operators are 
re-linearized as part of the outer loop, not the forecast model. 
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EnKF-generated ensemble and incorporated in the variational minimization by extending the 508 

control variables. The performance of the system was investigated with the NCEP GFS model 509 

where both the single control forecast and the ensemble forecasts were run at the same, reduced 510 

resolution.  An 80 member ensemble was utilized.  The experiments were conducted over a 511 

Northern Hemisphere winter month period assimilating the NCEP operational conventional and 512 

satellite data.  Various configurations including one-way and two-way couplings, with zero and 513 

non-zero weights on the static covariance were compared with a GSI 3DVar experiment.  514 

Verification of forecasts showed that the coupled system using these various configurations 515 

produced more skillful forecasts than the GSI 3DVar system.  For wind and temperature 516 

forecasts, the improvement relative to the GSI 3DVar system was larger over the extratropics 517 

than the Tropics.  For specific humidity forecasts, the improvement in the Tropics was 518 

comparable to or larger than the extratropics.  It was found that including a non-zero static 519 

covariance (Hybrid1way0.5) or using a two-way coupled configuration (3DEnsVar2way) did not 520 

improve beyond the one-way coupled system with the use of zero weight on the static covariance 521 

(3DEnsVar1way).  3DEnsVar1way produced more skillful wind forecasts than EnKF for the 1-522 

day to 5-day lead times and more skillful temperature forecasts at later lead times (e.g., 120-523 

hour) averaged over the globe.  Further decomposition of the RMSEs into NH and SH 524 

extratropics and Tropics showed that such differences were mostly from the NH extratropics.  In 525 

the SH extratropics, the 3DEnsVar1way experiment showed a consistent improvement over the 526 

EnKF only for the wind forecasts.  No consistent, appreciable difference between EnKF and 527 

3DEnsVar1way was found in the tropics.  The spread of the first guess ensemble was evaluated 528 

and it was found that the ensemble was under-dispersive in the lower and upper troposphere and 529 

was over-dispersive in the middle of the troposphere. Further, the impacts of the tangent-linear 530 
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normal-mode balance constraint (TLNMC) implemented in the variational minimization were 531 

studied.  It was found that similar to the impact of TLNMC on the GSI 3DVar system, the 532 

balance constraint showed positive impacts on 3DEnsVar1way at longer forecast lead times, 533 

especially in the extratropics.  The impact of the TLNMC was further diagnosed by using the 534 

mean absolute tendency of the surface pressure.  For both GSI3DVar and 3DEnsVar1way, 535 

applying the TLNMC resulted in more balanced analyses.  The analyses generated by GSI3DVar 536 

were more balanced than the analyses of 3DEnsVar1way.  The EnKF analysis was less balanced 537 

than 3DEnsVar1way when the TLNMC was applied for the latter.  Further comparisons between 538 

EnKF and 3DEnsVar1way with and without the use of the TLNMC suggested that the TLNMC 539 

could be one cause as to the better performance of 3DEnsVar1way as compared to EnKF.  The 540 

convergence rates during the variational minimization were compared between the GSI3DVar 541 

and hybrid experiments.   For the first outer loop, the hybrid showed a slightly slower 542 

convergence rate at early iterations and a slightly faster convergence rate at later iterations than 543 

GSI3DVar.  For the second outer loop, the hybrid showed a faster convergence than GSI3DVar. 544 

The convergence rate was not sensitive whether a 100% or a 50% weight was applied on the 545 

ensemble covariance.  546 

In this study, results for the GSI 3DVar-based ensemble-variational hybrid system were 547 

presented.  An extension of the system where a four-dimensional ensemble is used in the 548 

variational minimization (e.g., Buehner et al. 2010ab), including formulations and 549 

implementation in the GSI and tests with real observation data will be reported in forthcoming 550 

articles.  Research on comparing the hybrid under single and dual-resolution configurations and 551 

the  impact of the static covariance in such configurations are being conducted and will be 552 
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reported in future papers.  Further studies on optimally determining the weights on the static and 553 

ensemble covariances are needed (e.g., Bishop and Satterfield 2013) 554 

 555 

Acknowledgements.  The study was supported by NOAA THOPREX grant NA08OAR4320904, 556 

NASA NIP grant NNX10AQ78G and NOAA HFIP grant NA12NWS4680012.  Ting Lei is 557 

acknowledged for his assistances on plots.  The authors thank our many collaborators at EMC, in 558 

particular John Derber, Russ Treadon, Bill Lapenta, and Steve Lord and discussion with Tom 559 

Hamill. 560 

 561 

 562 

 563 

 564 

 565 

 566 

 567 

 568 

 569 

 570 

 571 

 572 

 573 

 574 

 575 



 

26 
 

References 576 

Anderson, J. L., and N. Collins, 2007:  Scalable Implementations of Ensemble Filter Algorithms 577 

for Data Assimilation. Journal of Atmospheric and Oceanic Technology, 24, 1452-1463. 578 

 579 

Barker, D. and co-authors, 2012: The Weather Research and Forecasting (WRF) model’s 580 

community variational/ensemble data assimilation system: WRFDA. Bulletin of the 581 

American Meteorological Society, 93, 831-843. 582 

 583 

Bishop, C. H., and D. Hodyss, 2011: Adaptive Ensemble Covariance Localization in Ensemble 584 

4D-VAR State Estimation. Mon. Wea. Rev., 139, 1241-1255. 585 

 586 

Bishop, C. H. and E. A. Satterfield, 2013: Hidden error variance theory 1: Exposition and 587 

analytic model. Mon. Wea. Rev., in press. 588 

Buehner, M., 2005: Ensemble-derived stationary and flow-dependent background-error 589 

covariances: evaluation in a quasi-operational NWP setting. Quart. J. Roy. Meteor. Soc., 131, 590 

1013-1043.  591 

−, P. L. Houtekamer, C. Charette, H. L. Mitchell, and B. He, 2010a: Intercomparison of 592 

Variational Data Assimilation and the Ensemble Kalman Filter for Global Deterministic 593 

NWP. Part I: Description and Single-Observation Experiments. Mon. Wea. Rev., 138, 1550-594 

1566. 595 



 

27 
 

−, --, --, --, and --, 2010b: Intercomparison of Variational Data Assimilation and the Ensemble 596 

Kalman Filter for Global Deterministic NWP. Part II: One-Month Experiments with Real 597 

Observations. Mon. Wea. Rev., 138, 1567-1586. 598 

Buizza, R. , M. Miller, and T. N. Palmer, 1999: Stochastic simulation of model uncertainties. 599 

Quart. J. Roy. Meteor. Soc., 125, 2887–2908. 600 

 601 

Campbell, W. F., C. H. Bishop, and D. Hodyss, 2010: Vertical covariance localization for 602 

satellite radiances in Ensemble Kalman filters. Mon. Wea. Rev., 138, 282-290. 603 

Clayton, A. M., A. C. Lorenc and D. M. Barker, 2012: Operational implementation of a hybrid 604 

ensemble/4D-Var global data assimilation system at the Met Office.  Q. J. Roy. Meteor. Soc., 605 

submitted.  606 

Courtier, P., J. N. Thèpaut and A. Hollingsworth 1994: A strategy for operational 607 

implementation of 4D-Var, using an incremental approach. Quart.J. Roy. Meteor. Soc., 120, 608 

1367- 1387. 609 

Dee, D. P. and Uppala, S., 2009:  Variational bias correction of satellite radiance data in the 610 

ERA-Interim reanalysis. Q. J. R. Meteor. Soc., 135, 1830–1841. 611 

Derber, J. C. and W. S. Wu, 1998: The use of TOVS cloud-cleared radiances in the NCEP SSI 612 

analysis system. Mon. Wea. Rev., 126, 2287-2299. 613 

Etherton, B. J., and C. H. Bishop, 2004: Resilience of Hybrid Ensemble/3DVAR Analysis 614 

Schemes to Model Error and Ensemble Covariance Error. Mon. Wea. Rev., 132, 1065-1080. 615 

 616 



 

28 
 

Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three 617 

dimensions. Quart. J. Roy. Meteor. Soc., 125, 723–757. 618 

 619 

Gelb, A., 1974: Applied Optimal Estimation. MIT Press, 374 pp. 620 

 621 

Hamill, T. M., and C. Snyder, 2000: A hybrid ensemble Kalman filter-3D variational analysis 622 

scheme. Mon. Wea. Rev., 128, 2905-2919. 623 

 624 

−, J. S. Whitaker, M. Fiorino, and S. J. Benjamin, 2011:  Global ensemble predictions of 2009's 625 

tropical cyclones initialized with an ensemble Kalman filter.  Mon. Wea. Rev., 139, 668-688. 626 

Hayden, C. M., and R. J. Purser, 1995: Recursive filter objective analysis of meteorological 627 

fields: applications to NESDIS operational processing.  J.  Applied Meteorology, 34, pp. 3–628 

15. 629 

Holland, B., and X. Wang, 2013: Effects of sequential or simultaneous assimilation of 630 

observations and localization methods on the performance of the ensemble Kalman filter . Q. 631 

J. R. Meteo. Soc., 139, 758-770.   632 

Houtekamer, P., H. L. Mitchell, G. Pellerin, M. Buehner, M. Charron, L. Spacek, and B. Hansen, 633 

2005: Atmospheric data assimilation with an ensemble Kalman filter: results with real 634 

observations. Mon. Wea. Rev., 133, 604-620. 635 

 636 

Kepert, J. D. 2009:  Covariance localisation and balance in an Ensemble Kalman Filter. Q J 637 

Roy Meteor Soc 135: 1157-1176. 638 



 

29 
 

Kleist, D. T., D. F. Parrish, J. C. Derber, R. Treadon, R. M. Errico, and R. Yang, 2009a: 639 

Improving incremental balance in the GSI 3DVAR analysis system. Mon. Wea. Rev., 137, 640 

1046-1060. 641 

--, --, --, --, W. Wu and S. Lord, 2009b: Introduction of the GSI into NCEP global data 642 

assimilation system. Wea. Forecasting, 24, 1691-1705. 643 

Li, Y., X. Wang and M. Xue, 2012: Assimilation of radar radial velocity data with the WRF 644 

ensemble-3DVAR hybrid system for the prediction of hurricane Ike (2008) . Mon. Wea. Rev. 645 

, 140, 3507-3524. 646 

Lorenc, A. C.  2003: The potential of the ensemble Kalman filter for NWP – a comparison with 647 

4D-VAR. Quart. J. Roy. Meteor. Soc., 129, 3183-3203. 648 

Lynch, P., and X.-Y. Huang, 1992: Initialization of the HIRLAM model using a digital filter. 649 

Mon. Wea. Rev., 120, 1019-1034. 650 

Shutts, G. J., 2005: A kinetic energy backscatter algorithm for use in ensemble prediction 651 

systems. Quart. J. Roy. Meteor. Soc., 131, 3079-3102. 652 

Szunyogh, I., E. J. Kostelich, G. Gyarmati, D. J. Patil, B. R. Hunt, E. Kalnay, E. Ott and J. A. 653 

York, 2005: Assessing a local ensemble Kalman filter: perfect model experiments with the 654 

NCEP global model. Tellus, 57A, 528-545. 655 

 656 



 

30 
 

Treadon, R. E., H. L. Pan, W. S. Wu, Y. Lin, W. S. Olson, and R. J. Kuligowski, 2002: Global 657 

and regional moisture analyses at NCEP. Proc. ECMWF Workshop on Humidity Analysis, 658 

Reading, United Kindom, ECMWF, 33-47. 659 

Wang, X., and C. H. Bishop, 2003: A comparison of breeding and ensemble transform Kalman 660 

filter ensemble forecast schemes. J. Atmos. Sci., 60, 1140-1158.  661 

Wang, X., C. H. Bishop, and Simon J. Julier, 2004: Which is better, an ensemble of positive-662 

negative pairs or a centered spherical simplex ensemble? Mon. Wea. Rev., 132, 1590-1605.  663 

Wang, X., 2010: Incorporating ensemble covariance in the Gridpoint Statistical Interpolation 664 

(GSI) variational minimization: a mathematical framework. Mon. Wea. Rev., 138, 2990-665 

2995. 666 

--, 2011: Application of the WRF hybrid ETKF-3DVAR data assimilation system for hurricane 667 

track forecasts. Wea. Forecasting, 26, 868-884 668 

 669 

−, C. Snyder, and T. M. Hamill, 2007a: On the theoretical equivalence of differently proposed 670 

ensemble/3D-Var hybrid analysis schemes. Mon. Wea. Rev., 135, 222-227. 671 

−, T. M. Hamill, J. S. Whitaker and C. H. Bishop, 2007b: A comparison of hybrid ensemble 672 

transform Kalman filter-OI and ensemble square-root filter analysis schemes. Mon. Wea. 673 

Rev., 135, 1055-1076. 674 

−, D. Barker, C. Snyder, T. M. Hamill, 2008a: A hybrid ETKF-3DVAR data assimilation 675 

scheme for the WRF model. Part I: observing system simulation experiment. Mon. Wea. 676 

Rev., 136, 5116-5131. 677 



 

31 
 

−, −, −, −, 2008b: A hybrid ETKF-3DVAR data assimilation scheme for the WRF model. Part II: 678 

real observation experiments. Mon. Wea. Rev., 136, 5132-5147. 679 

−, T. M. Hamill, J. S. Whitaker, C. H. Bishop, 2009: A comparison of the hybrid and EnSRF 680 

analysis schemes in the presence of model error due to unresolved scales. Mon. Wea. Rev., 681 

137, 3219-3232. 682 

 683 

Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed 684 

observations. Mon. Wea. Rev., 130, 1913–1924. 685 

 686 

−, −, 2012: Evaluating Methods to Account for System Errors in Ensemble Data Assimilation. 687 

Mon. Wea. Rev., 140, 3078–3089. 688 

 689 

−, −, X. Wei, Y. Song and Z. Toth, 2008: Ensemble data assimilation with the NCEP Global 690 

Forecast System. Mon. Wea. Rev., 136, 463-482. 691 

 692 

Wu, W. S., R. J. Purser, D. F. Parrish, 2002: Three-dimensional variational analysis with 693 

spatially inhomogeneous covariances.   Mon. Wea. Rev., 130, 2905–2916. 694 

 695 

Zhang, M. and F. Zhang, 2012: E4DVar: Coupling an Ensemble Kalman Filter with Four-696 

Dimensional Variational Data Assimilation in a Limited-Area Weather Prediction Model. 697 

Mon. Wea. Rev., 140, 587–600. 698 

 699 



 

32 
 

Zupanski, M., 2005:  Maximum Likelihood Ensemble Filter: Theoretical Aspects. Mon. Wea. 700 

Rev., 133, 1710–1726. 701 

 702 

 703 

 704 

 705 

 706 

 707 

 708 

 709 

 710 

 711 

 712 

 713 

 714 

 715 

 716 

 717 



 

33 
 

Table Captions 718 

Table 1. A list of experiments. 719 

Table 2. Averaged hourly absolute surface pressure tendency during the experiment period.  The 720 

second row is the result before the second hour of the model integration when the DFI is not 721 

applied and the third row is the result after the second hour when the DFI is applied. 722 

 723 
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Figure Captions 737 

Figure 1. Flow charts for the GSI-based EnKF-variational hybrid data assimilation system.  (a) 738 

is for one-way coupled hybrid system and (b) is for two-way coupled hybrid system.   739 

 740 

Figure 2. The root-mean-square fit of the analyses to the rawinsonde observations for 741 

temperature (a) and wind (b) as a function of pressure.  Solid, dash, dotted, dash-dotted lines are 742 

for GSI3DVar, 3DEnsVar1way, 3DEnsVar2way, and Hybrid1way0.5. 743 

 744 

Figure 3. The root-mean-square fit of the forecasts to the rawinsonde observations for 745 

temperature (left column) and wind (right column) as a function of pressure at 24-hour (a,b), 72-746 

hour (c,d) and 120-hour (e, f) forecast lead times for the GSI3DVar, 3DEnsVar1way, 747 

3DEnsVar2way, and  Hybrid1way0.5 experiments.  Line definition is the same as Figure 2. 748 

 749 

Figure 4. The root-mean-square fit of the forecasts to the rawinsonde observations for 750 

temperature (left column) and wind (right column) as a function of pressure at the 72-hour 751 

forecast lead time for the Northern Hemisphere extra-tropics (a,b), tropics (c,d) and Southern 752 

Hemisphere extra-tropics (e,f) for the GSI3DVar, 3DEnsVar1way, 3DEnsVar2way, and  753 

Hybrid1way0.5 experiments.  Line definition is the same as Figure 2. 754 

 755 

 756 

Figure 5. The root-mean-square fit of the temperature (first column), zonal wind (second 757 

column) and specific humidity (third column) forecasts to the ECMWF analyses for Northern 758 

Hemisphere extra-tropics (first row), tropics (second row) and Southern Hemisphere extra-759 
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tropics (third row) at the 72-hour lead time for the GSI3DVar, 3DEnsVar1way, 3DEnsVar2way, 760 

and  Hybrid1way0.5 experiments. Line definition is the same as Figure 2. 761 

 762 

Figure 6. Vertical profiles of the square root of the EnKF first guess ensemble variance plus the 763 

observation error variance (dotted) and the square root of the innovation variance (solid) for (a) 764 

temperature and (b) wind. 765 

 766 

Figure 7. The root-mean-square fit of the forecasts to the rawinsonde observations for 767 

temperature (left column) and wind (right column) as a function of pressure at 24-hour (a,b), 72-768 

hour (c,d) and 120-hour (e, f) forecast lead times.  Thick solid, thick dash, thin solid and thin 769 

dash lines are for the GSI3DVar, GSI3DVar_nbc, 3DEnsVar1way, and 3DEnsVar1way_nbc 770 

experiments respectively.   771 

 772 

Figure 8. The root-mean-square fit of the forecasts to the rawinsonde observations for 773 

temperature (left column) and wind (right column) as a function of pressure at the 120-hour 774 

forecast lead time for the Northern Hemisphere extra-tropics (a,b), tropics (c,d) and Southern 775 

Hemisphere extra-tropics (e,f) for the GSI3DVar, GSI3DVar_nbc, 3DEnsVar1way, and 776 

3DEnsVar1way_nbc experiments.  Line definition is the same as Figure 7. 777 

 778 

Figure 9. The mean absolute surface pressure tendency calculated using GFS outputs every 2 779 

minutes up to 9 hours for forecasts initialized from the GSI3DVar, GSI3DVar_nbc, 780 

3DEnsVar1way, 3DEnsVar1way_nbc and EnKF experiments. 781 

 782 
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 783 

Figure 10. Averaged ratios of gradient norms as a function of the iterations in the first and 784 

second outer loops during the variational minimization of the GSI3DVar, 3DEnsVar1way and 785 

Hybrid1way0.5 experiments. 786 

 787 

Figure 11.  The root-mean-square fit of the forecasts to the rawinsonde observations for 788 

temperature (left column) and wind (right column) as a function of pressure at 24-hour (a,b), 72-789 

hour (c,d) and 120-hour (e, f) forecast lead times.  Solid and dash lines are for the 790 

3DEnsVar1way and the EnKF experiments. 791 

 792 

Figure 12. The root-mean-square fit of the forecasts to the rawinsonde observations for 793 

temperature (left column) and wind (right column) as a function of pressure at the 120-hour 794 

forecast lead time for the Northern Hemisphere extra-tropics (a,b), tropics (c,d) and Southern 795 

Hemisphere extra-tropics (e,f) for the 3DEnsVar1way and the EnKF experiments.  Line 796 

definition is the same as Figure 11. 797 

 798 

Figure 13. The root-mean-square fit of the forecasts to the rawinsonde observations for 799 

temperature (a) and wind (b) as a function of pressure at the 120-hour forecast lead time.  Solid 800 

and dash lines are for 3DEnsVar1way_nbc and the EnKF experiments. 801 

 802 

 803 

 804 
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Experiment Description 

GSI3DVar The GSI 3DVar experiment  

3DEnsVar1way The one-way coupled ensemble-variational DA experiment with 0% 
weight on the static covariance and 100% weight on the ensemble 
covariance  

Hybrid1way0.5 The one-way coupled ensemble-variational DA experiment with 50% 
weight on the static covariance and 50% weight on the ensemble 
covariance 

3DEnsVar2way The two-way coupled ensemble-variational DA experiment with 0% 
weight on the static covariance and 100% weight on the ensemble 
covariance 

EnKF The EnKF experiment 

GSI3DVar_nbc Same as “GSI3DVar” except without the use of the tangent linear normal 
mode balance constraint (TLNMC)  

3DEnsVar1way_nbc Same as “3DEnsVar1way” except without the use of the tangent linear 
normal mode balance constraint (TLNMC) 

 805 

Table 1. A list of experiments. 806 

 807 

 808 

 809 

 810 

 811 

 812 
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Unit:  
hPa hr-1 

GSI3DVar GSI3DVar_nbc 3DEnsVar 3DEnsVar_nbc EnKF 

Before DFI 0.548 0.963 0.581 1.071 0.968 

After DFI 0.510 0.536 0.539 0.573 0.546 

Table 2. Averaged hourly absolute surface pressure tendency during the experiment period.  The 813 

second row is the result before the second hour of the model integration when the DFI is not 814 

applied and the third row is the result after the second hour when the DFI is applied. 815 

 816 

 817 

 818 

 819 

 820 

 821 

 822 

 823 

 824 

 825 

 826 

 827 

 828 



 

39 
 

 829 

 830 

 831 

 832 

 833 

 834 

 835 

 836 

 837 

 838 

 839 

 840 

 841 

 842 

 843 

 844 

 845 

 846 

 847 

 848 

 849 

 850 

 851 

 852 

Figure 1. Flow charts for the GSI-based EnKF-variational hybrid data assimilation system.  (a) 853 

is for one-way coupled hybrid system and (b) is for two-way coupled hybrid system.   854 
 855 

 

 

(a) 

(b) 
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 856 

Figure 2. The root-mean-square fit of the analyses to the rawinsonde observations for 857 

temperature (a) and wind (b) as a function of pressure.  Solid, dash, dotted, dash-dotted lines are 858 

for GSI3DVar, 3DEnsVar1way, 3DEnsVar2way, and Hybrid1way0.5. 859 

 860 

 861 
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 862 

Figure 3. The root-mean-square fit of the forecasts to the rawinsonde observations for 863 

temperature (left column) and wind (right column) as a function of pressure at 24-hour (a,b), 72-864 

hour (c,d) and 120-hour (e, f) forecast lead times for the GSI3DVar, 3DEnsVar1way, 865 

3DEnsVar2way, and  Hybrid1way0.5 experiments.  Line definition is the same as Figure 2. 866 

 867 

 868 
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 869 

Figure 4. The root-mean-square fit of the forecasts to the rawinsonde observations for 870 

temperature (left column) and wind (right column) as a function of pressure at the 72-hour 871 

forecast lead time for the Northern Hemisphere extra-tropics (a,b), tropics (c,d) and Southern 872 

Hemisphere extra-tropics (e,f) for the GSI3DVar, 3DEnsVar1way, 3DEnsVar2way, and  873 

Hybrid1way0.5 experiments.  Line definition is the same as Figure 2. 874 

 875 
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 876 

 877 

 878 

Figure 5. The root-mean-square fit of the temperature (first column), zonal wind (second 879 

column) and specific humidity (third column) forecasts to the ECMWF analyses for Northern 880 

Hemisphere extra-tropics (first row), tropics (second row) and Southern Hemisphere extra-881 

tropics (third row) at the 72-hour lead time for the GSI3DVar, 3DEnsVar1way, 3DEnsVar2way, 882 

and  Hybrid1way0.5 experiments. Line definition is the same as Figure 2. 883 

 884 

 885 
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 886 

 887 

 888 

 889 

 890 

 891 

 892 

 893 

 894 

 895 

 896 

Figure 6. Vertical profiles of the square root of the EnKF first guess ensemble variance plus the 897 

observation error variance (dotted) and the square root of the innovation variance (solid) for (a) 898 

temperature and (b) wind. 899 
 900 

 901 

 902 

 903 
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 904 

Figure 7. The root-mean-square fit of the forecasts to the rawinsonde observations for 905 

temperature (left column) and wind (right column) as a function of pressure at 24-hour (a,b), 72-906 

hour (c,d) and 120-hour (e, f) forecast lead times.  Thick solid, thick dash, thin solid and thin 907 

dash lines are for the GSI3DVar, GSI3DVar_nbc, 3DEnsVar1way, and 3DEnsVar1way_nbc 908 

experiments respectively.   909 
 910 
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 911 

Figure 8. The root-mean-square fit of the forecasts to the rawinsonde observations for 912 

temperature (left column) and wind (right column) as a function of pressure at the 120-hour 913 

forecast lead time for the Northern Hemisphere extra-tropics (a,b), tropics (c,d) and Southern 914 

Hemisphere extra-tropics (e,f) for the GSI3DVar, GSI3DVar_nbc, 3DEnsVar1way, and 915 

3DEnsVar1way_nbc experiments.  Line definition is the same as Figure 7. 916 
 917 
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 918 

 919 

 920 

 921 

 922 

 923 

Figure 9. The mean absolute surface pressure tendency calculated using GFS outputs every 2 924 

minutes up to 9 hours for forecasts initialized from the GSI3DVar, GSI3DVar_nbc, 925 

3DEnsVar1way, 3DEnsVar1way_nbc and EnKF experiments. 926 
 927 

 928 

 929 

 930 

 931 

 932 

 933 
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 934 

Figure 10. Averaged ratios of gradient norms as a function of the iterations in the first and 935 

second outer loops during the variational minimization of the GSI3DVar, 3DEnsVar1way and 936 

Hybrid1way0.5 experiments. 937 
 938 

 939 

 940 

 941 

 942 
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 943 

Figure 11.  The root-mean-square fit of the forecasts to the rawinsonde observations for 944 

temperature (left column) and wind (right column) as a function of pressure at 24-hour (a,b), 72-945 

hour (c,d) and 120-hour (e, f) forecast lead times.  Solid and dash lines are for the 946 

3DEnsVar1way and the EnKF experiments. 947 

 948 

 949 
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 950 

Figure 12. The root-mean-square fit of the forecasts to the rawinsonde observations for 951 

temperature (left column) and wind (right column) as a function of pressure at the 120-hour 952 

forecast lead time for the Northern Hemisphere extra-tropics (a,b), tropics (c,d) and Southern 953 

Hemisphere extra-tropics (e,f) for the 3DEnsVar1way and the EnKF experiments.  Line 954 

definition is the same as Figure 11. 955 

 956 
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 957 

 958 

 959 

 960 

Figure 13. The root-mean-square fit of the forecasts to the rawinsonde observations for 961 

temperature (a) and wind (b) as a function of pressure at the 120-hour forecast lead time.  Solid 962 

and dash lines are for 3DEnsVar1way_nbc and the EnKF experiments. 963 

 964 


