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Abstract 
 

Convection-allowing ensemble forecasts with perturbations to model physics, dynamics, 

and initial (IC) and lateral boundary conditions (LBC) generated by the Center for the Analysis 

and Prediction of Storms for the NOAA Hazardous Weather Testbed (HWT) Spring Experiments 

provide a unique opportunity to understand the relative impact of different sources of 

perturbation on convection-allowing ensemble diversity.  Such impacts are explored in this two-

part study through an object-oriented Hierarchical Cluster Analysis (HCA) technique. 

In part I, an object-oriented HCA algorithm, where the dissimilarity of precipitation 

forecasts is quantified with a non-traditional Object-based Threat Score (OTS), is developed. The 

advantages of OTS-based HCA relative to HCA using traditional Euclidean distance and 

Neighborhood probability-based Euclidean Distance (NED) as dissimilarity measures are 

illustrated by hourly accumulated precipitation ensemble forecasts during a representative severe 

weather event.  

Clusters based on OTS and NED are more consistent with subjective evaluation than 

clusters based on traditional Euclidean distance because of the sensitivity of Euclidean distance 

to small spatial displacements. OTS improves the clustering further compared to NED. Only 

OTS accounts for important features of precipitation areas, such as shape, size and orientation, 

and OTS is less sensitive than NED to precise spatial location and precipitation amount. OTS is 

further improved by using a fuzzy matching method. Application of OTS-based HCA for 

regional sub-domains is also introduced. Part II uses the HCA method developed in Part I to 

explore systematic clustering of the convection-allowing ensemble during the full 2009 HWT 

Spring Experiment period.  
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1.    Introduction  

Since ensemble forecasting was recognized as a practical way to provide probabilistic 

forecasts (Leith 1974), global-scale medium range ensemble forecasting has undergone dramatic 

advancement (e.g., Toth and Kalnay 1993; Molteni et al. 1996; Houtekamer et al. 1996; Hamill 

et al. 2000; Wang and Bishop 2003, 2005; Wang et al. 2004, 2007; Wei et al. 2008). 

Meso/regional-scale short-range ensemble forecasting has also been studied for over a decade 

(e.g., Du et al. 1997; Stensrud et al. 2000; Hou et al. 2001; Stensrud and Yussouf 2003; Eckel 

and Mass 2005; Clark et al. 2008, 2009; Bowler and Mylne 2009; Berner et al. 2011; Hacker et 

al. 2011).  The extent to which results based on mesoscale ensembles are applicable when 

convective motions are explicitly included is not known. For example, cumulus parameterization 

in mesoscale ensembles has been shown to dominate precipitation forecast uncertainty resulting 

from model physics (Jankov et al. 2005). Additionally, growth rates of convective-scale 

perturbations that may not be resolved at mesoscale resolution can be highly non-linear 

(Hohenegger and Schar 2007).   

Since 2007, the Center for Analysis and Prediction of Storms (CAPS) at the University of 

Oklahoma has run convection-allowing1, or Storm-Scale, Ensemble Forecasts (SSEF) over a 

near-CONUS (CONtinental United States) domain during the  National Oceanic and 

Atmospheric Administration Hazardous Weather Testbed (NOAA HWT) Spring Experiments 

(Xue et al. 2007, 2008, 2009, 2010; Kong et al. 2007, 2008, 2009, 2011). The CAPS Spring 

Experiment data sets provide a unique opportunity to study many scientific issues for 

convection-allowing forecasts, as listed in Xue et al. (2009), and have helped answer many 

                                                 
1 Convection-allowing resolution refers to grid spacing less than or equal to 4 km which allows vertical 
redistribution of heat and moisture to be effectively represented by grid-scale convection (Weisman et al. 1997), 
making cumulus parameterization unnecessary. The term convection-resolving is avoided because the convective 
scale details are not necessarily adequately resolved (Bryan et al. 2003; Petch 2006). 
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questions related to SSEF (Kong et al. 2007, 2008, 2009, 2011; Clark et al. 2009, 2010a, 2010b; 

Coniglio et al. 2010; Kain et al. 2010; Schwartz et al. 2010; Xue et al. 2010).  

The above studies have examined the impacts of convection-allowing resolution, model 

physics, and Initial and Lateral Boundary Condition (IC/LBC) perturbations on spread, skill and 

statistical consistency of non-precipitation variables as well as precipitation forecast bias and 

skill. New post-processing methods for SSEFs have also been shown to improve skill over 

traditional methods (Clark et al. 2009; Schwartz et al. 2010). Yet, many research questions on 

SSEFs still remain to be answered by the data sets.  

This two-part study uses the SSEFs produced during the 2009 Spring Experiment to 

study how the ensemble member forecasts are clustered and to relate the clusters to how the 

ensemble members were generated. This is done with a Hierarchical Cluster Analysis technique 

(HCA, Anderberg 1973; Alhamed et al. 2002). Such study can help to understand the impacts 

and importance of the sources of uncertainty in model physics, model dynamics, and IC/LBCs on 

ensemble diversity for a convection-allowing ensemble, which will be discussed in detail in part 

II. 

A requirement for HCA is a suitable measure of the dissimilarity or “distance” between 

forecasts. For the high resolution precipitation forecasts emphasized in this study traditional 

metrics of measuring the distance between forecasts based on a point-wise comparison, such as 

Equitable Threat Score or Mean Square (or Absolute) Error,  are inappropriate. Traditional 

metrics are inappropriate because of the small horizontal scale of features compared to the 

horizontal scale of acceptable spatial errors (Baldwin et al. 2001). This limitation of point-wise 

metrics is further exaggerated by a double penalty whereby high-amplitude small-scale features 

with small spatial errors are penalized once for missing the correct location and again for 
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forecasting in the incorrect location (Baldwin et al. 2001). As a result, traditional metrics can 

disagree with subjective evaluations (Davis et al. 2006).  

In Part I, an object-oriented HCA method is developed. In this new HCA method, the 

distance between precipitation forecasts is quantified using an object-oriented measure based on 

the Method for Object-based Diagnostic Evaluation (MODE, Davis et al. 2006).  The new 

distance measure allows for improved automated clustering of precipitation forecasts over 

traditional distance measures because the object-oriented distance is not based on a point-wise 

comparison of the forecasts. Instead, distance is based on features of discrete objects within the 

forecasts, which is more appropriate for comparing precipitation fields at high resolution 

(Baldwin et al. 2001; Davis et al. 2006; Gilleland et al. 2009). 

Part I and Part II are organized as follows. This paper (Part I) develops the object-

oriented HCA method and illustrates it with a representative case from 13 May 2009, during the 

2009 NOAA HWT Spring Experiment. Part II (Johnson et al. 2011) uses the new HCA method, 

developed in Part I, to explore systematic clustering of the ensemble members over the entire 

2009 NOAA HWT Spring Experiment. Section 2 of the present paper introduces the forecast and 

observation data, followed by a brief overview of the severe weather case examined in Section 3. 

The HCA algorithm is described in Section 4, followed by a discussion of bias adjustment in 

Section 5. HCA results using different distance measures are compared in Section 6. Section 7 

shows how the results change when focused on a smaller region and Section 8 presents a 

summary and discussion.  
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2.    Convection-allowing ensemble and verification data 

Recent advances in computational resources have allowed the CAPS to produce 

experimental real-time SSEF for several weeks for the NOAA HWT Spring Experiment over a 

near-CONUS domain at a convection-allowing resolution. During the spring of 2009, the 

ensemble consisted of 20 members, with 10 members from the Weather Research and Forecast 

(WRF) Advanced Research WRF (ARW; Skamarock et al. 2005), 8 members from the WRF 

Non-hydrostatic Mesoscale Model (NMM; Janjic 2003), and 2 members from the CAPS 

Advanced Regional Prediction System (ARPS; Xue et al. 2000, 2001, 2003).  The grid spacing is 

4 km and none of the forecasts use cumulus parameterization. A more detailed description of the 

ensemble configuration can be found in Xue et al. (2009). The data set consists of 28 sets of 

forecasts run out to 30 hours, initialized at 00 UTC of weekdays from 30 April 2009 to 5 June 

2009 after discarding 2 days due to incomplete data.  Each member is labeled according to its 

model core and IC perturbation (e.g., ARW N1, NMM N2, etc.). The details of how ensemble 

members were generated are listed in Table 1. 

Quantitative Precipitation Estimates (QPE) from the National Severe Storm Laboratory 

(NSSL) Q2 product are used for verification of precipitation forecasts and referred to as the 

observations. The NSSL QPE is interpolated from a 1 km grid to the same 4 km grid as the 

model forecasts for direct comparison.  The QPE is obtained from radar estimates as described in 

Zhang et al. (2005). Data are only examined over a sub-domain within the full forecast grid (Fig. 

1) to reduce the impact of lateral boundary conditions. 
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3.    Description of Case 

We selected a case from 13 May 2009 to introduce a new HCA framework because a 

significant severe weather outbreak occurred over a large area. Intense convection developed in 

the afternoon along a cold front extending from western Oklahoma to northwest Wisconsin 

where surface dewpoints were in the middle and upper 60's F and strong winds aloft were 

indicated by a strong 500 hPa height gradient (Fig. 2). Several tornado and severe hail reports 

between 23 UTC 13 May and 01 UTC 14 May are found in the Storm Prediction Center (SPC) 

storm log (http://www.spc.noaa.gov). Forecasts initialized at 00 UTC 13 May 2009, valid at 00 

UTC 14 May 2009, are the focus of much of this paper and are shown in Fig. 3 for reference 

throughout the paper. 

The 13 May 2009 case is used, together with expected scales and features of interest for 

forecasting intense precipitation, to tune the configuration of some MODE parameters. Results 

are also compared to several other cases with minimal additional tuning to verify that the 

parameters perform well on other cases with diverse forecast scenarios (e.g., 2 May 2009 and 2 

June 2009). These other cases are not shown because the discussion of the 13 May 2009 case is 

representative of the other cases as well. 

 

4.    Method of Clustering 

This section first describes the HCA algorithm and the traditional measures of distance 

that are used to cluster ensemble forecasts. A newly defined HCA using a non-traditional object 

oriented distance measure is then introduced. 
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a. Hierarchical Clustering Analysis (HCA) algorithm 

HCA is a method of identifying potentially important relationships in a complex data set 

in order to facilitate hypothesis development (Jain and Dubes 1988; Gong and Richman 1995). 

HCA consists of initially identifying each forecast as a single-element cluster then iteratively 

merging two clusters into one until all forecasts are in the same cluster (e.g., Alhamed et al. 

2002). HCA is selected for the present study because it requires no a priori assumptions about 

how many clusters exist (Jain and Dubes 1988), efficient and widely used algorithms (e.g., Ward 

1963) are available, and primary clusters as well as secondary sub-clusters can be simultaneously 

identified (Fovell and Fovell 1993).  

Ward’s method (Ward 1963; Jain and Dubes 1988) is selected as the specific objective 

clustering algorithm because initial results showed better agreement with a manual clustering of 

forecasts based on our subjective evaluations (hereafter referred to as subjective clustering) 

compared to other potential methods. In Ward’s algorithm, the distance between (i.e., 

dissimilarity of) single-forecast clusters is quantified with the squared Euclidean distance. The 

distance between multiple-forecast clusters is quantified as the increase of the Error Sum of 

Squares (ESS; Ward 1963) that would result from merging them into a single cluster. The two 

clusters with the smallest distance between them are merged at each step. For convenience, we 

define a new quantity, called variability, in this paper, in place of the ESS.  The variability is 

defined as 

1 1

2
,( )

N N

ij
i j

ESS d i j variability
N = =

∝ ≠ ≡∑∑
        (1) 

where N is the number of forecasts in the cluster, i and j are the index of each forecast in the 

cluster in turn, and dij is the distance between forecasts i and j. It can be shown that the 
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variability is proportional to the ESS when the distance between individual forecasts in the 

cluster, dij, is the squared Euclidean distance. 

 Hierarchical clustering is visualized graphically as a dendrogram (e.g., Fig. 4) with the 

ensemble of forecasts along the bottom horizontal axis. The merging of forecasts and clusters is 

depicted as two solid lines joining into one as the clustering proceeds from the bottom to the top 

of the dendrogram. The vertical axis is a cumulative measure of variability, summed over all 

clusters at that level. The distance between merged clusters is the increase of variability resulting 

from the merge. Therefore, the difference in the vertical axis values, yi – yi-1, is the distance 

between the clusters merged at the ith iteration. In the dendrogram, lower level clusters contain 

more similar forecasts than higher level clusters. 

b. Traditional and neighborhood probability Euclidean distance measure for HCA 

Traditional distance measures are commonly defined in terms of a point-wise comparison 

of two fields. The standard measure for Ward’s algorithm is squared Euclidean Distance (ED) 

which is defined between two forecasts, i and j, of a variable, x, at K grid points, where the index 

k refers to each grid point in turn: 

2

1

( )
K

k k
ij i j

k

ED x x
=

= −∑                                 (2) 

Thus the traditional implementation of Ward’s algorithm uses dij = EDij in Eq. 1. 

A neighborhood method (Ebert 2008) is applied to the forecasts before computing the ED 

with the goal of reducing the impact of small spatial differences, and the corresponding double 

penalty, on ED. This provides a baseline for comparison to an object-oriented distance defined in 

section 3c.The neighborhood probability method used in the present study follows that of 

Schwartz et al. (2010) (see also Theis et al. 2005). To apply the neighborhood probability 
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method, each field of 1 hour accumulated precipitation is converted to a probability field. The 

resulting value at each point is defined as the percentage of grid points within a radius of 30 km 

that have hourly accumulated precipitation greater than 10 mm. The ED between these 

neighborhood probability fields (Neighborhood squared Euclidean Distance, NED) is used as a 

distance measure between forecasts. A threshold of 10 mm is chosen to emphasize heavy rainfall 

events. The threshold is applied over a radius of 30 km which is equal to 7.5 times the model 

grid spacing. Such parameter settings provide good balance between smoothing of features on 

unpredictable scales and retaining the larger scale structures, most consistent with a subjective 

interpretation of the forecasts (e.g., Fig. 5).  

 

c. Object-Oriented distance measure based on MODE 

MODE identifies objects in a gridded field by first smoothing the raw forecast into a 

convolved field. A threshold is then applied so that each contiguous area in the convolved field 

that exceeds a user-specified threshold defines the area of an object (Davis et al. 2006). User-

specified attributes describing each object, such as shape, size or other properties of interest, are 

then calculated. In the new HCA framework, instead of using ED, the distance between two 

precipitation forecasts is determined by comparing the attributes of objects in the two fields.  

Thus the forecasts are no longer a set of spatial locations with a forecast value associated with 

each grid point, but are a smaller set of objects with several attributes associated with each 

object. Advantages of MODE include its easy adaptability to specific applications and the fact 

that it is maintained and made freely available by the National Center for Atmospheric Research 

as part of their Model Evaluation Tools package2. 

                                                 
2 Available for download at http://www.dtcenter.org/met/users/ 
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As in the matching between a verification field and a forecast field that MODE is 

originally applied to, tunable parameters must be predefined.  In our application of MODE for 

HCA, those tunable parameters are selected based on features and scales of interest, including 

the location, structure and organization of intense precipitation on meso- and storm-scales. 

Subjective evaluation of the quality of the HCA results also played a role in parameter selection.  

The parameters were tuned to give subjectively reasonable matching of objects on several 

independent cases with a variety of weather scenarios in addition to the 13 May 2009 case 

emphasized in this paper.  For a detailed description of the parameters involved and how they 

were chosen in this study, please refer to Davis et al. (2009) and appendix A of this paper. 

The object-oriented distance measure used to quantify distance between forecasts for the 

HCA, referred to here as the Object-based Threat Score (OTS), is a modification of the 

traditional Threat Score for use with the MODE algorithm. The OTS is defined as a weighted 

sum of the area of corresponding objects in both fields divided by the total area of all objects in 

both fields (see Davis et al. 2006 and appendix A for matching algorithm and interest functions): 

                    
1

1
( )

P
p p p

ij i j
pi j

OTS w a a
A A =

 
= + 

+  
∑  ,                      (3) 

where Ai is the total area of objects in field i, Aj is the total area of objects in field j, P is the 

number of pairs of corresponding objects which have area of p
ia  and p

ja , and wp
 is the weight 

applied to object pair p. As defined in Appendix A, Eq. A1, the degree of similarity between a 

pair of objects is defined by a quantity called “total interest” which has a value between 0 and 1.  

Given an object in one field, the corresponding object in the opposing field is defined as the 

object with the highest total interest value. In practice, the corresponding object pairs are 

assigned as follows. First, the total interests between all possible pairs of objects from the 
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opposing fields, i and j, are calculated and sorted from highest to lowest. Then, the objects of the 

first pair (i.e., with highest total interest) are considered to correspond to each other and all other 

pairs containing one of those two objects are removed from the list. The process is then repeated 

with the next pair remaining in the sorted list until the list is empty. This process ensures that 

each object can correspond to at most one object in the opposing field. Thus min( , )i jP M M= , 

where Mi and Mj are the number of objects in field i and j, respectively.  

OTS can be considered in a binary or a fuzzy context. In a binary context wp = 1 if the 

total interest between corresponding objects is greater than a matching threshold and wp= 0 

otherwise. The matching threshold in the binary context is defined as 0.6 based on good 

agreement of the resulting clusters with the subjective clustering. The effectiveness of the 

matching threshold depends on the choice of attributes and interest functions comprising the total 

interest. Several thresholds were tried (including 0.7 used in Davis et al. 2009) and we found a 

threshold of 0.6 provided better clustering results in our study. In a fuzzy context, wp is equal to 

the total interest for that pair of corresponding objects, and thus varies continuously between 0 

and 1.  We call it “fuzzy” because unlike the binary case, there is not a clear distinction between 

similar and dissimilar. Binary OTS equal to 1 occurs when all objects in both fields are 

sufficiently similar to a unique object in the opposing field to be considered a match and both 

fields contain the same number of objects. Conversely, binary OTS equal to 0 occurs when none 

of the objects in either field are sufficiently similar to be considered a match to an object in the 

opposing field. In contrast, fuzzy OTS is only equal to 1 when the two fields are identical and 

approaches 0 as the interest between every possible pair of objects approaches zero.  When used 

as a distance measure for HCA, OTS is first subtracted from 1.  
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  The binary OTS (i.e., wp is either 1 or 0) has been referred to previously as the Area 

Weighted Critical Success Index (AWCSI; Weiss et al. 2009) and the “fraction of rain area 

within matched objects” (Davis et al. 2009, their table 4). To the author’s knowledge, it has not 

previously been applied in a fuzzy context. Davis et al. (2009) note the limitations of using a 

binary decision to determine matched objects and define a Median of Maximum Interest (MMI) 

to measure the distance between forecasts and observations based on the distribution of (fuzzy) 

total interest values. Our initial results suggest that the MMI is less suitable than the fuzzy OTS 

for the present application (not shown). The OTS terminology is used here for brevity and 

because “area weighted” is implied by analogy to the traditional Threat Score which can be 

interpreted as the intersection area divided by the union area.  

d. Applicability of distance defined by the OTS in HCA 

Ward’s algorithm for HCA merges the two clusters at each step that result in the smallest 

increase of variability as defined in Eq. 1, with dij = EDij.  In the object-oriented framework the 

forecasts are not represented as a gridded field of values so EDij is undefined. We therefore 

define an object-oriented measure of variability by replacing the ED with the OTS so that now dij 

= OTSij in Eq. 1. This modification of Ward’s algorithm is referred to as object-oriented HCA. 

Appendix B demonstrates that object-oriented variability is a reasonable measure of within 

cluster variability in sub-section Ba. Sub-section Bb demonstrates that the traditional algorithm 

for implementing Ward’s algorithm applies to object-oriented variability. 
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5.    Bias adjustment for HCA 

A commonly occurring characteristic of precipitation forecasts at convection-allowing 

resolution is a large positive bias that can depend on the physics configuration (Schwartz et al. 

2010). HCA of ensemble forecasts of precipitation amount, and therefore the amplitude bias, are 

of interest to many users such as hydrological prediction centers. However, in this study we 

focus on the location, structure and organization of the precipitation forecasts from the 

perspective of operational forecasters at the SPC (as described in appendix A).  In order to 

minimize the impact of amplitude bias and focus on other aspects of the forecasts, the forecasts 

are adjusted for known biases before they are clustered. Object attributes related to the intensity 

of rain rate and intensity distribution within objects are also not included in the determination of 

the object-oriented distance to be consistent with this focus. 

For the NED-based HCA, the neighborhood probability forecasts are adjusted to account 

for bias by tuning a different precipitation threshold for each member. This threshold is 

determined based on the total area within the verification domain (Fig. 1) that the neighborhood 

probability exceeds 0.25, averaged over all days at the same 24 hour forecast range. The bias-

adjusted threshold for each member is tuned so this average area is within 5% of that of the 

observations using a 10 mm threshold for the observations. Results are not sensitive to a range of 

the neighborhood probability chosen (0.25-0.35, not shown).   

For the OTS-based HCA, the forecasts are adjusted to account for bias in a similar 

manner, using a method based on the determination of thresholds in Skok et al. (2009). Skok et 

al. (2009) used MODE thresholds to ensure that the total area of objects is consistent with the 

total area of rainfall exceeding a threshold of interest on average. In contrast to the method in 

Skok et al. (2009), the goal here is to ensure that the total area of MODE objects from forecasts 
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in each ensemble member is consistent with the total area of MODE objects from the 

observations on average. A MODE threshold of 6.5 mm results in a total area of objects, 

averaged over 26 days, nearly twice as large in the NMM control forecasts as in the ARW 

control forecasts, and nearly three times as large in the NMM control forecasts as in the observed 

fields (Table 2). Even among members with the same model there are differences as large as a 

factor of 2 between the average total area of MODE objects for different members (Table 2). 

Qualitatively similar results were found in Davis et al. (2009) for a threshold of 3 mm hr-1 using 

a different set of forecasts. The thresholds are therefore adjusted for each member until the 

average area for each member is within 5% of the observation average (Table 2). An observation 

threshold for MODE of 6.5 mm is chosen to be lower than the 10 mm threshold used for the 

NED. While MODE objects subjectively appear more reasonable on many cases (not shown) 

with the lower 6.5 mm threshold,10 mm creates NED fields that look more similar to the raw 

fields than with 6.5 mm (Fig. 5). This is consistent with the fact that the MODE thresholds are 

applied to a convolved field while the NED thresholds are applied to raw fields. Compared to 

clusters without bias adjustment (not shown), bias-adjusted clustering is more consistent with 

subjective clustering.  The bias adjustment methods adopted are intended for a diagnostic 

understanding of ensemble clustering.  Further work is needed for real-time applications of bias-

adjusted clustering where the bias can be estimated from the latest months preceding the current 

forecast. 

 

6.    Understanding differences in HCA with ED, NED, and OTS from a case study 

Clusters of 24 hour forecasts of 1 hour accumulated precipitation, initialized at 00 UTC 

13 May 2009, are created using ED, NED, binary OTS, and fuzzy OTS as distance measures and 
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subjectively evaluated in this section. The ED and NED distance measures are sensitive to 

effects of small spatial differences but not the structure of forecast features. In contrast, the 

object-oriented measures are able to appropriately cluster forecasts that are spatially close but do 

not quite coincide in location, particularly when features have similar structure. The OTS is also 

found to create more reasonable clusters when considered in a fuzzy, rather than binary, context. 

The results in this section are representative of other independent cases that were examined (not 

shown) and demonstrate the effectiveness of object-oriented HCA for clustering high resolution 

ensemble precipitation forecasts.  

 

a. Comparison of ED to NED for the HCA 

Clustering based on ED (i.e., ED HCA) is first compared to clustering based on NED 

(i.e., NED HCA). Figure 4 shows the dendrogram for the ED HCA, valid at 00 UTC 14 May 

2009 (see Fig. 3 for the corresponding ensemble forecasts). The only clusters that subjectively 

make sense occur where large precipitation maxima are precisely co-located in those members 

only. For example, NMM N2, NMM P4 and ARW N1 are clustered together which makes sense 

because only those forecasts show an east to west oriented rainfall maximum in northern Illinois 

and a thin east-northeast to west-southwest oriented band of weaker precipitation across northern 

Missouri.   

The ED HCA can be sensitive to small placement differences of otherwise similar 

features. For example, NMM CN and NMM C0 are not clustered together even though they look 

very similar subjectively. Both have a maximum along the northern Missouri/Illinois border with 

a thin band extending to the Oklahoma/Kansas border, along with smaller isolated maxima in 

western Oklahoma and along the Illinois/Indiana border. However, the ED HCA did not cluster 
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them together because of the dominating influence of small spatial differences in the high 

amplitude maxima near the Missouri/Illinois border, in spite of their similar structure (Fig. 3). 

The ED HCA can also be sensitive to the amount of precipitation which can result in 

subjectively unrealistic clusters. High-amplitude, small-scale, features are rarely located at 

precisely the same grid point. When using the ED HCA, such features are thus typically 

compared to grid points without precipitation in the opposing field, rather than being compared 

to a corresponding feature. Thus, the ED is largely determined by the amplitude of such features.  

This effect is further magnified by the double penalty. Therefore two forecasts with a lot of 

precipitation tend to have a larger ED than two forecasts with little precipitation. The smaller ED 

between forecasts with low precipitation causes the cluster of forecasts that have dissimilar 

structure of forecast features but less precipitation than the other forecasts (ARW N2, NMMP1, 

and ARW P1). The sensitivity to amplitude can create unrealistic clusters even for co-located 

features.  For example, for our application, we emphasize interpreting the forecasts in terms of 

convective mode and organization. Although amplitude differences between these co-located 

features are relatively unimportant in our application, they are still emphasized by the ED HCA. 

In contrast to ED, NED makes use of nearby grid points and acts as a type of smoothing 

which relaxes the strict spatial sensitivity of ED (Ebert 2008). The NED HCA (Fig. 6) therefore 

results in improvement over the ED HCA. For example, the ED HCA clusters ARW P1 with 

ARW N2 and NMMP1 due to the relatively small amount of forecast precipitation shared by 

these members (Fig. 4). In contrast, the NED HCA clusters ARW P1 with ARW CN which is 

subjectively more reasonable because ARW P1 and ARW CN both show weaker disorganized 

showers over a broad area in Illinois and Missouri.  Furthermore, unlike the ED HCA which 

clusters ARW P2 with NMM N4 and OBS that subjectively look different, the NED HCA 
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clusters ARW P2 with NMM N2 and NMM P4. This is another example of subjectively more 

reasonable clustering by the NED HCA than the ED HCA because these three members forecast 

the heavy precipitation to be focused mainly in north-central Illinois. 

The NED HCA clusters subjectively appear more reasonable than the ED HCA clusters 

but they are far from perfect. For example, NMM CN and NMM CO are subjectively similar in 

terms of structure. However, like the ED HCA, this is not reflected in the NED HCA (Fig. 6). 

The NED HCA also suffers the same problems as the ED HCA due to sensitivity to precipitation 

amount rather than storm structure.  For example, neither NMM N4 nor NMM P1 is subjectively 

similar to ARW N2.  However, they cluster at a low level in the NED HCA (Fig. 6) because 

these three members have low precipitation relative to the other forecasts. The relatively low 

precipitation in these forecasts reduces the double penalty induced by small spatial errors. 

Although the sensitivity to the overall precipitation amount by the ED HCA and the NED HCA 

can be ameliorated by using a normalization such as standardized anomalies before clustering 

(Alhamed et al. 2002), the object-oriented distance measure as shown in the next sub-section, is 

more flexible and effective in clustering the forecasts in terms of the structure and mode of the 

features. The difference is that the object-oriented distance is based on a comparison of object 

attributes rather than a point-wise comparison. Normalization only accounts for domain total 

precipitation amount and not small spatial errors that still dominate high-resolution precipitation 

forecasts. 

b. Comparison of the NED HCA to the OTS HCA 

The OTS-based HCA (i.e., OTS HCA) further improved the clustering.  This is a result of 

two main advantages of the OTS HCA over the NED HCA. First, the OTS HCA is sensitive to 
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the structure of features (i.e., size, shape, and orientation). Second, the OTS HCA is less 

sensitive than the NED HCA to precise spatial location and precipitation amount.  

One advantage of the OTS HCA, relative to the NED HCA, is the ability to take into 

account structural similarity of features, regardless of their spatial location. For example, the ED 

and NED HCA (Fig. 4 and Fig. 6, respectively) show cophenetic proximity3 between NMM CN 

and NMM C0 of 0.89 and 0.75, respectively. This implies a lack of relative similarity between 

these forecasts which is not consistent with the subjective analysis of these members in the 

previous subsection. In contrast, the OTS HCA (Fig. 7) shows cophenetic proximity between 

NMM CN and NMM C0 of 0.15 which is more consistent with their structural similarity.  

A second advantage of the OTS HCA, relative to the NED HCA, is a reduced sensitivity 

of the OTS HCA to precise spatial location and precipitation amount. This reduced sensitivity is 

due to the OTS being based on a comparison of object attributes rather than a point-wise 

comparison of precipitation values. Furthermore, since the OTS is defined by user-selected 

tunable parameters, amplitude differences between particular features can be ignored or limited 

through the choice of object attributes and interest functions. This improves the resulting HCA 

because subjective clustering for this application is concerned with storm structure and 

approximate location but not necessarily precipitation amount. For example, neither NMM N4 

nor NMM P1 is subjectively similar to ARW N2. However, they cluster at a low level in the 

NED HCA because of the low overall precipitation amount (Fig. 6). In comparison, ARW N2 

has a relatively large OTS distance to NMM P1 and NMM N4 and therefore they cluster at 

relatively high level in the OTS HCA (Fig. 7) which is subjectively more reasonable. The result 

                                                 
3 Cophenetic proximity (Jain and Dubes 1988) is the height on the dendrogram where two members first merge into 
the same cluster, as a fraction of total dendrogram height. It is an indication of the dissimilarity of the members 
relative to the dissimilarity to other members in the hierarchical clustering. 
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is a cophenetic proximity between ARW N2 and NMMP1 (NMM N4) of 0.73 (1.0) in the OTS 

HCA (Fig. 7) instead of 0.08 (0.13) in the NED HCA (Fig. 6).  

 

c.) Comparison of binary and fuzzy OTS for HCA 

Both the binary OTS HCA and the fuzzy OTS HCA have the advantages over the NED 

HCA that are discussed in the previous subsection. However the fuzzy OTS HCA has two 

additional advantages over the binary OTS HCA because the fuzzy OTS does not require a 

matching threshold. 

 The first advantage of the fuzzy OTS HCA, relative to the binary OTS HCA, is that it 

avoids a discontinuity in the distance calculation among a large group of forecasts. This is 

illustrated in Fig. 8 showing forecasts from ARW N3, NMM N3 and NMM P4. Both the binary 

and fuzzy distances between NMM N3 and NMM P4 are quite low, indicating similar forecasts, 

largely because the total interest between the large object in northern Illinois in both forecasts is 

0.81. NMM N3 and ARW N3 have similarly small distances between them so it is reasonable to 

expect that NMM P4 and ARW N3 are similar. However, NMM P4 has the maximum possible 

binary OTS distance to ARW N3 of 1.0. In contrast, the fuzzy OTS distance between NMM P4 

and ARW N3 is only 0.234 (0.219) larger than the fuzzy OTS distance between NMM P4 and 

NMM N3 (ARW N3). The difference in the binary OTS distance is due to the total interest 

between the large objects in northern Illinois being 0.57 between ARW N3 and NMM P4. Since 

this is just below the matching threshold of 0.6 there is a large and discontinuous difference in 

the binary OTS while the difference in the fuzzy OTS is gradual and continuous. In general, 

there is sometimes a large subjective difference between two forecasts that has little impact on 

the binary OTS distance to a third forecast. Other times a small subjective difference between 
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two forecasts has a large impact on the binary OTS distance to a third forecast. This does not 

occur for the fuzzy OTS because there is no matching threshold. 

The second advantage of the fuzzy OTS is that it is conceptually more robust than the 

binary OTS since it can discriminate marginal matches and non-matches from very good 

matches and completely spurious objects, respectively. In contrast, the binary OTS will give 2 

forecasts (A and B) an equal distance of 0.0 to a third forecast (C) if all objects in A and B match 

all objects in C, even if the objects in A are subjectively much more similar to the objects in C 

than are the objects in B. In such a case the fuzzy distance between A and C would be smaller 

than the fuzzy distance between B and C while the binary distance for both would be the same. 

This limitation of binary OTS HCA cannot be avoided by raising the matching threshold because 

then the limitation would be that all unmatched objects are treated equally. Figure 8 also 

illustrates this second advantage since the binary OTS distance between ARW N3 and NMM P4 

gives no weight to the large object in northern Illinois, even though the total interest is close to 

the matching threshold. In contrast, the fuzzy OTS distance gives partial weight to this object for 

almost being a match. 

 

7.    Regional OTS HCA 

Although the OTS HCA can be applied to the full verification domain (Fig. 1) to mimic 

subjective impressions of overall similarity among ensemble members, for certain practical 

applications a local or regional OTS HCA may be more appropriate. For example, on the 13 May 

2009 case the fact that the forecasts from ARW N2 and NMM P2 are entirely different in the 

Mississippi and Ohio River Valley region is irrelevant when evaluating the potential for, and/or 
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organization of, convection in the Southern Plains. Therefore this section demonstrates a method 

to apply the object-oriented HCA to a particular geographic region. 

 The 13 May 2009 case can be divided into two regional forecasting problems (Fig. 9). 

The first problem is forecasting the mode and organization of convection in the Midwest. The 

second problem is forecasting the potential for convection in the Southern Plains and the 

southward extent of convection along the cold front. For this example we choose two center 

points so the regions within 600 km of the center point encompass most of the precipitation 

forecast by all members in the Midwest and Southern Plains with minimal overlap. Objects with 

a centroid more than 600 km from the center point are excluded from the calculation of the OTS. 

A sharp distance threshold would make the results very sensitive to small spatial differences in 

objects with a centroid close to the edge of the region. Therefore full weight is only given to the 

area of objects with a centroid less than 300 km from the center point. Otherwise, a factor, 

decreasing linearly from 1.0 at 300 km distance to 0.0 at 600 km distance, is multiplied by the 

area of objects before performing calculations of OTS4.  

The fuzzy OTS dendrogram for the Southern Plains region (Fig. 10) demonstrates the 

effectiveness of regional OTS HCA. The majority of clusters in the northern region are 

unchanged from the full domain OTS HCA in this case, and therefore not shown. The majority 

of precipitation on this case was forecast in the northern region so the results in section 7 are 

already dominated by this region. In the southern region (Fig. 10), members NMM N4 and 

NMM P4 are clustered with close cophenetic proximity of less than 0.05 while the same 

members have the most distant possible cophenetic proximity of 1.0 in the full domain OTS 

HCA (Fig. 7). This change makes sense when focusing on the southern region because both 

                                                 
4 A localization based on decreasing weight with increasing distance from a point of interest is conceptually similar 
to localization used in data assimilation (e.g., Janjic et al. 2011) 
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members have a thin line of convection in southeast Kansas and a small isolated cell in western 

Oklahoma. Other clusters that form at a low dendrogram height in Fig.10 are also more 

representative of subjective impressions over the Southern Plains than the clusters from the full 

domain OTS HCA (Fig. 7) where the same members do not merge until much higher on the 

dendrogram (e.g., cluster of ARWP1, ARW P2, and NMM P1, or cluster of ARW CN and ARW 

P3). Similarly, members with little subjective similarity in the Southern Plains (e.g., ARW C0 vs. 

ARPS CN) that have close cophenetic proximity in the full domain OTS HCA (Fig. 7) have 

much more distant cophenetic proximity in the regional OTS HCA (Fig. 10). 

 

8.    Summary and Discussion 

This paper is the first of a two-part study which seeks a systematic understanding of the 

impacts and relative importance of different sources of uncertainty within the 2009 CAPS Spring 

Experiment convection-allowing ensemble through an automated Hierarchical Clustering 

Analysis (HCA). Instead of using the traditional squared Euclidian distance (ED), an Object-

based Threat Score (OTS) is defined in a fuzzy context and used to quantify dissimilarity of 

precipitation forecasts in the HCA. The fuzzy OTS is defined as the sum of the area of all paired 

objects from two fields, weighted by a fuzzy value between 0 and 1 representing their degree of 

similarity, divided by the total area of all objects in the two fields. The objects are identified 

using MODE where each member is tuned to use a different convolved threshold for object 

identification in order to account for different forecast biases in each member. The fuzzy OTS is 

then used to quantify the dissimilarity among ensemble members to conduct an HCA on 

convection-allowing hourly accumulated precipitation forecasts over a large verification domain 

as well as smaller regional domains. The effectiveness of the fuzzy OTS HCA is illustrated by 
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comparison to the ED HCA, the NED (Neighborhood Euclidian Distance) HCA, and the binary 

OTS HCA during a severe weather event on 13 May 2009. 

The Fuzzy OTS HCA results in clusters that are more consistent with subjective 

clustering than the ED HCA, the NED HCA, and the binary OTS HCA. The ED HCA is the least 

effective on the representative case of 13 May 2009. Only features with similarity at a precise 

grid-point are clustered with the ED HCA while the similarity is otherwise determined by the 

precipitation amount, as expected from previous studies noting the impact of the double penalty 

(e.g., Baldwin et al. 2001). The NED HCA shows some improvement by relaxing the strict grid-

point precision required of the ED HCA. The bias adjusted NED HCA shows even further 

improvement by removing the impact of systematic differences in precipitation amount. 

However, the bias adjusted NED HCA is still sensitive primarily to the location of precipitation 

features as well as the precipitation amount. The Binary OTS HCA improves the clustering 

further to be more consistent with the subjective clustering due to its capability to explicitly 

account for the size, shape, and orientation of precipitation areas. The Fuzzy OTS HCA is the 

most effective clustering method because it retains the positive qualities of the binary OTS HCA 

without suffering from the discontinuity issue in the clustering that was caused by the use of a 

pre-specified matching threshold in the binary OTS.  

Compared to the binary OTS HCA, there are at least two advantages of the fuzzy OTS 

HCA arising from the absence of a matching threshold. One advantage is that large, 

discontinuous changes in the fuzzy OTS do not occur for small changes in the forecast. Another 

advantage is that all matched (and unmatched) objects are not treated equally allowing better and 

worse matches to be discriminated with the fuzzy OTS.   
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By demonstrating a relatively effective method of clustering convection-allowing 

precipitation forecasts, this paper provides a framework for a more systematic examination of the 

ensemble clustering tendencies. This is undertaken in Part II with a goal of understanding the 

impacts and importance of different ensemble perturbations in the 2009 CAPS Spring 

Experiment ensemble to inform future researchers and designers of convection-allowing 

ensembles. 
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Appendix A. MODE configuration 

While the MODE algorithm closely follows the description in Davis et al. (2009), there 

are numerous tunable parameters to be specified. The minimum object area is specified at 16 grid 

points (4��� � ����. A smoothing radius of 4 grid-points is also applied to the raw forecasts to 

smooth features on unresolved scales. The attributes used to describe objects and their associated 

weights and confidence values are shown in Table A1. The degree of similarity between 

attributes of different objects (i.e., interest value) is quantified using interest functions shown in 

Figure A1. 

The ensemble in this particular study was developed and used in the context of real time 

forecasting of severe weather so the forecasts are subjectively interpreted from the perspective of 

operational forecasters at the Storm Prediction Center (SPC). The SPC forecasters typically use 

convection-allowing model guidance for predicting the location and timing of convective 

initiation, storm modes, and the potential for evolution into a larger scale system (Weiss et al. 

2004; Coniglio et al. 2010). Thus the precise amplitude and location of forecast features are of 

only secondary relevance to this study relative to the structure, organization and approximate 

location of intense convection. The flexibility of the object-oriented approach allows us to focus 

on this specific application although different users might emphasize different features. 

The emphasis of this study on the structure, organization and approximate location of 

intense convection not only motivates our use of object-oriented distance measures, but also 

guides our choice of the object attributes (Table A1) of area, centroid location, orientation angle, 

and aspect ratio. Area is selected to represent the amount of upscale organization of convective 

systems. Orientation angle and aspect ratio are selected to represent convective mode (e.g. linear 

or cellular). Centroid location is selected because approximate location is also important. 
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Approximate, rather than precise, location is emphasized by assigning objects with up to 40 km 

centroid distance an interest value of 1.0 (Fig. A1). A linear form of all interest functions is 

chosen for simplicity in lieu of established guidelines otherwise. The x-intercept in Figures A1c 

and A1d was selected to be consistent with subjective impressions of how well the total interest 

(Eqn. A1) described the degree of similarity over a large number of different object pairs. 

A total interest, I, is defined for the rth object pair is a weighted sum of the interest values 

of each of the S object attributes, denoted by s index (Davis et al. 2009): 

1

1

S

s s sr
s

r S

s s
s

c w F
I

c w

=

=

=
∑

∑
   (A1) 

 

In Eqn. A1, c is the confidence in an attribute, w is the weight assigned to an attribute, and F is 

the interest value of the attribute for the object pair (e.g., Fig. A1).  Since the interest values of 

each attribute are defined between 0 and 1 and the effective weight applied to each interest value 

summed over all attributes is equal to 1, the only constraint on c and w is that they are non-

negative. The total interest, I, is a value between 0 and 1. 

In Table A1, confidence for angle difference follows Davis et al. (2009) to give less 

weight to angle difference when objects are not linear, while confidences for angle difference 

and aspect ratio difference are also multiplied by the product of area ratio (AR) and centroid 

distance interest (CDI). Thus the effective weights become half location and half size for objects 

that are far apart or very different in area and become one third location, one third size, and one 

third structure (aspect ratio and angle) for objects of similar size in similar locations. This was 

done because as size or location becomes less similar there is less confidence that the objects 
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represent the same feature so it is less relevant whether they have similar structure. The default 

confidence for centroid distance, equal to the area ratio, is used resulting in small weight to 

centroid distance interest when the area ratio is very small. The confidence value for area ratio is 

a function of centroid distance (CD) so that objects that are extremely far apart (i.e., CDI of 0.0) 

but happen to have similar size (i.e., AR about 1) have a near zero interest (rather than 0.5) since 

those objects do not correspond to each other.  

 

Appendix B. Non-Euclidean distance measure in Ward’s algorithm 

a. Correspondence between object-oriented variability and ensemble spread 

Object-oriented variability, as defined in Eq. 1 with dij=OTSij, is intended to provide an 

automated comparison of spread in different groups of forecasts in a way that mimics how a 

subjective analyst would compare them manually. In this way it is consistent with the intended 

use of MODE as a way to mimic a subjective analysis (Davis et al. 2009). For example, consider 

the three clusters of three members in Figure B1 from the 13 May 2009 North region which have 

object-oriented variability for columns (a), (b) and (c) of 1.36, 1.11, and 0.66 respectively5. The 

cluster in column (a) subjectively appears to have a lot of spread since it includes forecasts both 

with and without an object in east-central Illinois while the forecasts in Missouri range from a 

single linear object, to several small objects, to nothing at all. The cluster in column (b) has less 

spread subjectively because all the forecasts have a large rain area although they have large 

differences in placement. The forecasts in column (c) have the least spread subjectively because 

                                                 
5 Note that dij=OTSij in Eq. 1 is here based on a regional subdomain centered over western Illinois. The regional 
emphasis is achieved when calculating the OTS (Eq. 3) by giving full weight to objects within 300 km of the 
region’s center and linearly decreasing the weight given to the area of each object between 300 and 600 km from the 
center. This is reflected in Fig. B1 by not showing objects located more than 600 km from the center of the region 
(Fig. 9b) and using lighter shading for partially-weighted objects between 300 and 600 km from the center. 
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they all have a large object in northern Illinois and have similar placement and structure of 

objects in Missouri. In other words, higher variability corresponds to larger subjective 

impressions of spread.  Most other cases that were subjectively examined exhibited the same 

correspondence between object-oriented variability and subjective impressions of spread. 

 

b.) Implementation of object-oriented HCA 

Object-oriented HCA can be implemented with the same algorithm commonly used for 

the traditional Ward’s algorithm. Ward’s algorithm is commonly implemented by defining the 

distance, Dij, between clusters i and j, where j is the new cluster resulting from merging clusters k 

and l from the previous step, as follows (Anderberg 1973; Jain and Dubes, 1988):   

k i l i i
ij ik il kl

k l i k l i k l i

N N N N N
D D D D

N N N N N N N N N
     + +

= + −     
+ + + + + +     

  ,    (B1) 

where Ni, Nj, Nk are the number of elements in clusters i, j, and k respectively. Note that the 

distance between clusters of multiple forecasts, Dij, and the distance between individual 

forecasts, dij, are only equal for clusters of size N=1. The advantage of Eq. B1 is that it is 

efficient for large data sets because the variability (Eq. 1) does not have to be calculated for each 

possible merge of 2 clusters. Anderberg (1973) shows that, for the special case where dij=EDij in 

Eq. 16, merging the two clusters with the smallest Dij is equivalent to merging the two clusters 

associated with the smallest increase of variability.   

                                                 
6 Anderberg (1973) uses Error Sum of Squares (ESS) instead of variability. The two can be shown to be proportional 
making the clustering result equivalent.  
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We now show that the above equivalence is true for any distance measure, dij, between 

the individual forecasts. In other words we will show that Dij in Eq. B1 can also be defined as the 

variability of the new cluster minus the variability of each of the old clusters: 

1 1 1 1 1 1

2 2 2ij ij j ji iN N N NN N

ij mn mn mn
m n m n m nij i j

D d d d
N N N= = = = = =

= − −∑∑ ∑∑ ∑∑   (B2) 

where dmn is the distance between the individual forecasts m and n. 

The equivalence of (B1)  and (B2) can be proved if the following is true: 

0k i l i i
ij ik il kl

k l i k l i k l i

N N N N N
D D D D

N N N N N N N N N
     + +

− − + =     
+ + + + + +        

(B3) 

with each  of Dij, Dik, Dil, and Dkl  in (B3) being  defined by (B2). Noting that Nj=Nk+Nl and 

Nij=Ni+Nk+Nl , and substituting (B2) into the left hand side of (B3), the left hand side becomes 
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If we then expand the 4th and 7th terms using the summation identity, 
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1 1 1 1 1 1 1 1

2
a b a b a a b b a bN N N N N N N N N N

mn mn mn mn
m n m n m n m n

d d d d
+ +

= = = = = = = =

= + +∑ ∑ ∑∑ ∑∑ ∑∑ , 

We can collect like terms, many of which cancel after using ij i jN N N= +  and j k lN N N= + . 

After dividing both sides of A7 by 2/Nij, the left hand side of (B3) becomes: 

1 1 1 1 1 1 1 1 1 1

2 2
ij ij j ji i i k i lN N N NN N N N N N

mn mn mn mn mn
m n m n m n m n m n

d d d d d
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1 1 1 1 1 1 1 1

2
ij ij j j ji i iN N N N NN N N

mn mn mn mn
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0=  

Therefore equations (B1) and (B2) are equivalent. 
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FIG. 1. Outer box is the model domain and inner box is the analysis domain used in the present 

study. 

FIG. 2. (a) Surface analysis valid on 00 UTC 14 May 2009 from Hydrometeorological Prediction 

Center (HPC) (http://www.hpc.ncep.noaa.gov/html/sfc_archive.shtml) and (b) North 

American Regional Reanalysis of 500 hPa geopotential height at 00 UTC 14 May 2009 

(obtained from NOMADS online archive, Rutledge et al 2006). 

FIG. 3. 24 hour forecasts of 1 hour accumulated precipitation (mm) valid 00 UTC 14 May 2009 

for ensemble members (a) ARWCN, (b) ARWC0, (c) ARWN1, (d) ARWN2, (e) 

ARWN3, (f) ARWN4, (g) ARWP1, (h) ARWP2, (i) ARWP3, (j) ARW P4, (k) NMMCN, 

(l) NMMCO, (m) NMMN2, (n) NMMN3, (o) NMMN4, (p) NMMP1, (q) NMMP2, (r) 

NMMP4, (s) ARPSCN, (t) ARPSC0 and (u) observations (OBS).  

FIG. 4. Dendrogram of raw forecasts of 1 hour accumulated precipitation valid 00 UTC 14 May 

2009, using ED as distance measure. 

FIG. 5. Forecast from NMM P4 member, valid 00 UTC 14 May 2009 showing (a) raw forecast 

with same color scale as Figure 3, (b) Neighborhood probability field with radius of 30 

km and threshold of 10 mm, and (c) Neighborhood probability field with radius of 30 km 

and threshold of 6.5 mm. 

FIG. 6. Dendrogram of forecasts of 1 hour accumulated precipitation valid 00 UTC 14 May 2009, 

using bias-adjusted NED as distance measure. 

FIG. 7. Dendrogram of forecasts of 1 hour accumulated precipitation valid 00 UTC 14 May 2009, 

using bias-adjusted fuzzy OTS as distance measure. 
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FIG. 8. MODE objects and OTS distances for 1 hour accumulated precipitation forecasts valid 00 

UTC 14 May 2009 for (a) ARW N3, (b) NMM N3, and (c) NMM P4. 

FIG. 9. Regions selected for clustering of forecasts valid 00 UTC 14 May 2009. Center of region 

is white dot and shaded area is the region within 600 km of the center. (a) north region 

and (b) south region. 

FIG. 10. Dendrogram of 1 hour accumulated precipitation forecasts valid 00 UTC 14 May 2009 

using fuzzy OTS as distance measure and focusing on southern region.  

FIG. A1. Functions mapping attribute value to interest value for (a) area ratio, (b) centroid 

distance, (c) aspect ratio difference, and (d) angle difference. 

FIG. B1: MODE objects in forecasts valid at 00 UTC 14 May 2009 for (a) NMM N4, NMM P1 

and ARW N2 (top to bottom), (b) ARW P3, ARPS C0, and NMM P2 (top to bottom), 

and (c) NMM N3, NMM P4, and ARW P2 (top to bottom). The variability of each 

column, defined by Eq. 1 with dij=OTSij, is given at the top of the column. Objects 

within 300 km of center of North Region (defined in fig 9a) are shaded black and objects 

centered between 300km and 600km of center of North Region, making a partial 

contribution to OTS, are shaded gray. 
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TABLE 1. Details of ensemble configuration with columns showing the members, Initial 
Conditions (ICs), Lateral Boundary Conditions (LBCs), whether radar data is assimilated (R), 
and which Microphysics scheme (MP; Thompson (Thom., Thompson et al. 2008), Ferrier (Ferr., 
1994),WRF Single Moment 6-class (WSM6, Hong et al. 2004), or Lin (Lin et al. 1983) 
microphysics), Planetary Boundary Layer scheme (PBL; Mellor-Yamada-Janjic (MYJ, Janjic´ 
1994), Yonsei University (YSU, Noh et al. 2003) or Turbulent Kinetic Energy(TKE)-based (Xue 
et al. 2000) scheme), Shortwave radiation scheme (SW; Goddard (Tao et al. 2003), Dudhia 
(1989) or Geophysical Fluid Dynamics Laboratory (GFDL, Lacis and Hansen 1974) scheme), 
and Land Surface Model (LSM; Rapid Update Cycle (RUC, Benjamin et al. 2004) or NOAH 
((NCEP-Oregon State University-Air Force-NWS Office of Hydrology, Ek et al. 2003))) was 
used with each member. NAMa and NAMf are the direct NCEP-NAM analysis and forecast, 
respectively, while the CN IC has additional radar and mesoscale observations assimilated into 
the NAMa. Perturbations added to CN members to generate the ensemble of ICs, and LBCs for 
the SSEF forecasts are from NCEP SREF (Du et al 2006). SREF members are labeled according 
to model dynamics: nmm members use WRF-NMM, em members use WRF-ARW (i.e., Eulerian 
Mass core), etaKF members use Eta model with Kain-Fritsch cumulus parameterization, and 
etaBMJ use Eta model with Betts-Miller-Janjic cumulus parameterization. 
 

Member IC LBC R MP PBL SW LSM 
ARW CN CN NAMf Y Thom.  MYJ  Goddard Noah 
ARW C0 NAMa NAMf N Thom.  MYJ  Goddard Noah 
ARW N1 CN – em em N1 Y Ferr.  YSU  Goddard Noah 
ARW N2 CN – nmm nmm N1 Y Thom.  MYJ  Dudhia RUC 
ARW N3 CN - etaKF etaKF N1 Y Thom.  YSU  Dudhia Noah 
ARW N4 CN - etaBMJ etaBMJ N1 Y WSM6  MYJ Goddard Noah 
ARW P1 CN + em em N1 Y WSM6  MYJ  Dudhia Noah 
ARW P2 CN + nmm nmm N1 Y WSM6  YSU  Dudhia Noah 
ARW P3 CN + etaKF etaKF N1 Y Ferr.  MYJ  Dudhia Noah 
ARW P4 CN + etaBMJ etaBMJ N1 Y Thom.  YSU  Goddard RUC 
NMM CN CN NAMf Y Ferr.  MYJ  GFDL Noah 
NMM C0 NAMa NAMf N Ferr. MYJ  GFDL Noah 
NMM N2 CN - nmm nmm N1 Y Ferr.  YSU  Dudhia Noah 
NMM N3 CN - etaKF etaKF N1 Y WSM6  YSU  Dudhia Noah 
NMM N4 CN - etaBMJ etaBMJ N1 Y WSM6  MYJ  Dudhia RUC 
NMM P1 CN + em em N1 Y WSM6  MYJ  GFDL RUC 
NMM P2 CN + nmm nmm N1 Y Thom.  YSU  GFDL RUC 
NMM P4 CN + etaBMJ etaBMJ N1 Y Ferr.  YSU  Dudhia RUC 
ARPS CN CN NAMf Y Lin TKE 2-layer Noah 
ARPS C0 NAMa NAMf N Lin TKE 2-layer Noah 
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TABLE 2. Total area (number of gridpoints) of all objects in verification domain, averaged over 
26 days, for each ensemble member. First column is for using 6.5 mm threshold for all members. 
Second column is for using different thresholds as shown in the third column for the purpose of 
bias adjustment.   
 
Member 6.5 mm threshold 

area 
Bias-adjusted 
threshold area 

Bias-adjusted 
threshold 

ARWCN 3178 2064 8.5 
ARWC0 3014 1983 8.5 
ARWN1 3770 2110 9.0 
ARWN2 2070 2070 6.5 
ARWN3 2175 2050 6.75 
ARWN4 3972 2011 10.0 
ARWP1 2538 2033 7.5 
ARWP2 2403 2143 7.0 
ARWP3 3549 2053 9.0 
ARWP4 2964 2000 8.5 

NMMCN 5859 2006 14.0 
NMMC0 5711 1985 14.0 
NMMN2 3862 2013 10.5 
NMMN3 3747 2045 10.5 
NMMN4 5041 2012 13.0 
NMMP1 5453 2027 14.0 
NMMP2 3471 2143 9.5 
NMMP4 3739 2049 10.25 
ARPSCN 3289 2044 9.0 
ARPSC0 3135 1991 8.8 

OBS 2055 2055 6.5 
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TABLE A1. Attributes and parameter values used for MODE fuzzy matching algorithm (CD 
denotes Centoid Distance, CDI denotes Centroid Distance Interest, AR denotes Area Ratio, T 
denotes aspect ratio) 
 
Attribute Weight Confidence 

Centroid Distance 2.0 AR 
Area Ratio 2.0 1.0 if CD ≤ 160 km 

1 – [(CD – 160) / 640] if 160 km < CD < 800 km  
0.0 if CD ≥ 800 km 

Aspect Ratio Difference 1.0 CDI * AR 
Orientation Angle 
Difference 

1.0 CDI * AR * �	
 � �
 

Where a,b are ����
�

����
���� for the two objects being 

compared 
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FIG. 1. Outer box is the model domain and inner box is the analysis domain used in the present 

study. 

  



 

47 
 

 

FIG. 2. (a) Surface analysis valid on 00 UTC 14 May 2009 from Hydrometeorological Prediction 
Center (HPC) (http://www.hpc.ncep.noaa.gov/html/sfc_archive.shtml) and (b) North American 
Regional Reanalysis of 500 hPa geopotential height at 00 UTC 14 May 2009 (obtained from 
NOMADS online archive, Rutledge et al 2006). 
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FIG. 3. 24 hour forecasts of 1 hour accumulated precipitation (mm) valid 00 UTC 14 May 2009 
for ensemble members (a) ARWCN, (b) ARWC0, (c) ARWN1, (d) ARWN2, (e) ARWN3, (f) 
ARWN4, (g) ARWP1, (h) ARWP2, (i) ARWP3, (j) ARW P4, (k) NMMCN, (l) NMMCO, (m) 
NMMN2, (n) NMMN3, (o) NMMN4, (p) NMMP1, (q) NMMP2, (r) NMMP4, (s) ARPSCN, (t) 
ARPSC0 and (u) observations (OBS). 
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FIG. 4. Dendrogram of raw forecasts of 1 hour accumulated precipitation valid 00 UTC 14 May 
2009, using ED as distance measure. 
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FIG. 5. Forecast from NMM P4 member, valid at 00 UTC 14 May 2009 showing (a) raw forecast 
with same color scale as Figure 3, (b) Neighborhood probability field with radius of 30 km and 
threshold of 10 mm, and (c) Neighborhood probability field with radius of 30 km and threshold 
of 6.5 mm. 
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FIG. 6. Dendrogram of forecasts of 1 hour accumulated precipitation valid 00 UTC 14 May 2009, 
using bias-adjusted NED as distance measure. 
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FIG. 7. Dendrogram of forecasts of 1 hour accumulated precipitation valid 00 UTC 14 May 2009, 
using bias-adjusted fuzzy OTS as distance measure. 
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FIG. 8. MODE objects and OTS distances for 1 hour accumulated precipitation forecasts valid 00 
UTC 14 May 2009 for (a) ARW N3, (b) NMM N3, and (c) NMM P4. 
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FIG. 9. Regions selected for clustering of forecasts valid 00 UTC 14 May 2009. Center of region 
is white dot and shaded area is the region within 600 km of the center. (a) north region and (b) 
south region. 
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FIG. 10. Dendrogram of 1 hour accumulated precipitation forecasts valid 00 UTC 14 May 2009 
using fuzzy OTS as distance measure and focusing on southern region. 
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FIG. A1. Functions mapping attribute value to interest value for (a) area ratio, (b) centroid 
distance, (c) aspect ratio difference, and (d) angle difference. 
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FIG. B1: MODE objects in forecasts valid at 00 UTC 14 May 2009 for (a) NMM N4, NMM P1 
and ARW N2 (top to bottom), (b) ARW P3, ARPS C0, and NMM P2 (top to bottom), and (c) 
NMM N3, NMM P4, and ARW P2 (top to bottom). The variability of each column, defined by 
Eq. 1 with dij=OTSij, is given at the top of the column. Objects within 300 km of center of North 
Region (defined in fig 9a) are shaded black and objects centered between 300km and 600km of 
center of North Region, making a partial contribution to OTS, are shaded gray. 
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