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Abstract  
 

Twenty-member real-time convection-allowing storm-scale ensemble forecasts with 

perturbations to model physics, dynamics, initial (IC) and lateral boundary conditions (LBC) 

during the NOAA Hazardous Weather Testbed Spring Experiments provide a unique opportunity 

to study the relative impact of  different sources of perturbation on convection-allowing 

ensemble diversity. In part II of this two part study, systematic similarity/dissimilarity of hourly 

precipitation forecasts among ensemble members from the spring season of 2009 are identified 

using Hierarchical Cluster Analysis (HCA) with a fuzzy Object-based Threat Score (OTS), 

developed in Part I. In addition to precipitation, HCA is also performed on ensemble forecasts 

using the traditional Euclidean distance for wind speed at 10-m and 850 hPa, and temperature at 

500 hPa.  

At early lead time (3 hours, valid 03 UTC) precipitation forecasts cluster primarily by 

data assimilation and model dynamic core, indicating a dominating impact of models, with 

secondary clustering by microphysics. There is an increasing impact of planetary boundary layer 

(PBL) scheme on clustering relative to microphysics scheme at later lead times. Forecasts of 10-

m wind speed cluster primarily by PBL scheme at early lead times, with an increasing impact of 

LBC at later lead times. Forecasts of mid-tropospheric variables cluster primarily by IC at early 

lead time and LBC at later lead times. The radar and mesonet data assimilation (DA) show its 

impact, with members without DA in a distinct cluster, through the 12 hour lead time (valid 12 

UTC) for both precipitation and non-precipitation variables. The implication for optimal 

ensemble design for storm-scale forecasts is also discussed.  
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1.    Introduction  

Early studies on the impact of ensemble perturbations beyond initial and lateral boundary 

conditions (ICs/LBCs) have focused on cumulus-parameterizing (CP) resolution1 or only limited 

sampling of sources of forecast uncertainty (e.g. Arribas et al. 2005; Jankov et al. 2005; Gallus 

and Bresch 2006; Jankov et al. 2007; Kong et al. 2007, Aligo et al. 2007; Clark et al. 2008; 

Weisman et al. 2008; Palmer et al. 2009; Berner et al. 2011; Hacker et al. 2011).  Past studies of 

the impact of ensemble perturbations found short range mesoscale ensembles with cumulus 

parameterization to be sensitive to both model and physics uncertainty, in addition to IC 

uncertainty (Stensrud et al. 2000; Wandishin et al. 2001). Studies have also found that using 

multiple physics schemes and other methods, such as stochastic energy backscatter, to sample 

model uncertainty can improve the ensemble forecasts at CP resolution (Palmer et al. 2009; 

Berner et al. 2011). However, studies based on CP resolution ensembles (Stensrud et al. 2000; 

Hou et al. 2001; Wandishin et al. 2001; Alhamed et al. 2002; Yussouf et al. 2004; Gallus and 

Bresch 2006; Aligo et al. 2007; Palmer et al. 2009; Berner et al. 2011; Hacker et al. 2011) are not 

necessarily applicable to convection-allowing2 ensembles. One difference is that cumulus 

parameterization has been shown to dominate the precipitation forecast uncertainty resulting 

from model physics in the CP ensembles (Jankov et al. 2005) whereas in the convection-

allowing ensemble no cumulus parameterization is applied. Another difference is that growth 

rates of convective-scale perturbations allowed in the convection-allowing forecasts can be 

highly non-linear (Hohenegger and Schar 2007). These results motivate investigation of the 

                                                 
1 CP resolution refers to grid spacing coarser than about 4 km which requires cumulus parameterization schemes to 
account for sub-grid scale vertical redistribution of heat and moisture resulting from moist convection (Molinari and 
Dudek 1992). 
2 Convection-allowing resolution refers to grid spacing less than or equal to 4 km which allows vertical 
redistribution of heat and moisture to be effectively represented by grid-scale convection (Weisman et al. 1997), 
making cumulus parameterization unnecessary. The term convection-resolving is avoided because the convective 
scale details are not necessarily adequately resolved (Bryan et al. 2003; Petch 2006). 
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impact of different sources of ensemble perturbations at convection-allowing resolution. 

Published studies of the impact of different perturbations on ensemble behavior in the context of 

convection-allowing ensemble forecasting on numerous cases over a period of several weeks, 

with perturbations that comprehensively sample uncertainty in the ICs, LBCs, model dynamics 

and multiple physics schemes are scarce.  

 This paper is the second of a two-part series which takes a step toward understanding the 

impacts and importance of the sources of uncertainties in model physics, model dynamics, IC, 

and LBCs for convection-allowing ensemble forecasts. This is done with a Hierarchical Cluster 

Analysis (HCA, Alhamed et al. 2002; Anderberg 1973) of the storm-scale ensemble forecasts 

(SSEFs) for the 2009 National Oceanic and Atmospheric Administration Hazardous Weather 

Testbed (NOAA HWT) Spring Experiment. Some of the key issues for future study of ensemble 

design and post-processing are also briefly inferred from the results of the HCA. Part I (Johnson 

et al 2011a) demonstrated that a new object-oriented measure of the dissimilarity (distance 

measure) of two precipitation forecasts improves automated clustering compared to traditional 

distance measures for a severe weather forecasting application. The improvement results from 

the object-oriented distance being based on attributes of discrete objects rather than a point-wise 

comparison of the forecasts. This paper (Part II) shows composite dendrograms, constructed 

using the new object-oriented HCA, from cases during the entire NOAA HWT 2009 Spring 

Experiment3 to explore systematic similarities and dissimilarities among the ensemble members. 

HCA is also applied here to different lead times and variables beyond precipitation to understand 

the impact of different sources of perturbations as a function of lead times and/or diurnal cycles 

and forecast variables.  

                                                 
3 The 2009 Spring Experiment spans from 30 April 2009 to 5 June 2009. Forecasts were only run during the 
weekdays. A total of 26 forecasts were used in this study after discarding 2 days due to incomplete data and 2 days 
due to negligible precipitation being predicted.  
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Johnson et al. 2011a (Part I) describes in detail the HCA algorithm used in this study. 

HCA consists of initially identifying each forecast as a single-element cluster then iteratively 

merging two clusters together until all forecasts are in the same cluster. HCA has been often used 

to study synoptic and larger scale phenomena such as climate regimes (e.g., Kalkstein et al. 

1987; Cheng and Wallace 1993; Fovell and Fovell 1993; Weber and Kaufmann 1995). A review 

of the use of cluster analysis in geophysical research in general is found in Gong and Richman 

(1995). 

HCA has also been applied in an ensemble forecasting context on scales ranging from 

seasonal to mesoscale (Brankovic et al. 1990; Palmer et al. 1990; Molteni et al. 1996; Alhamed 

et al. 2002; Nakaegawa and Kanamitsu 2006; Yussouf et al. 2004; Brankovic et al. 2008). These 

studies have examined the inability of a seasonal forecast ensemble to predict the most likely 

regime based on cluster membership (Nakaegawa and Kanamitsu 2006), the performance of 

cluster means relative to overall ensemble mean for a global ensemble (Brankovic et al. 1990; 

Palmer et al. 1990), and the sensitivity of mesoscale ensemble forecasts to model configuration 

(Alhamed et al. 2002; Yussouf et al. 2004). Although few studies have examined ensemble 

behavior through a systematic clustering of forecasts on multiple cases, ensemble cluster analysis 

on individual cases has been applied both operationally and in a research setting (e.g., Tracton 

and Kalnay 1993; Atger 1999; Brankovic et al. 2008). For example, cluster analysis has been 

proposed in operational settings to condense the ensemble data by presenting a manageable 

subset of forecasts using cluster means (Tracton and Kalnay 1993, Toth et al. 1997) or 

performing a classification of the forecasts (Atger 1999). A notable exception to the emphasis on 

individual cases is Yussouf et al. (2004). Yussouf et al. (2004) showed that short range (0-36 

hours), mesoscale (20-48 km grid spacings) forecasts with cumulus parameterization 
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systematically clustered according to models, each of which also had different physics, even 

when similar ICs were used in different clusters. To the authors’ knowledge, HCA has not been 

systematically applied to convection-allowing forecasts for the purpose of understanding the 

impact of ensemble perturbations.   

This study applies an automated clustering method to examine the systematic impact of 

ensemble perturbations in a convection-allowing ensemble. Through the use of an object-

oriented distance measure, an automated approach is possible, making the results more 

reproducible and more easily applied to a large number of cases than manual, subjective 

evaluations. The paper is organized as follows. Section 2 summarizes the 2009 NOAA HWT 

Spring Experiment, storm-scale ensemble design and two methods of summarizing systematic 

ensemble clustering. Section 3 presents the HCA results for hourly accumulated precipitation 

forecasts while section 4 presents the HCA results for other variables. Section 5 is a summary 

and section 6 discusses implications for convection-allowing ensemble design and post-

processing. 

 

2.    Description of 2009 NOAA HWT Spring Experiment ensemble and methods of 

summarizing HCA 

a. 2009 NOAA HWT Spring Experiment 

The HWT is a collaborative effort between the Storm Prediction Center (SPC), National 

Severe Storms Laboratory, and the Norman Oklahoma National Weather Service forecast office 

to facilitate development and transition to operations of new forecast technologies (Weiss et al. 

2009). Since 2000 the HWT has hosted an annual Spring Experiment to provide model 

developers, research scientists, and operational forecasters an opportunity to interact while 
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evaluating and providing feedback on developing technologies in a simulated operational 

forecasting environment (Weiss et al. 2009). For the 2009 NOAA HWT Spring Experiment, the 

Center for Analysis and Prediction of Storms (CAPS) produced an experimental real-time 

convection-allowing ensemble, 5 days a week for 6 weeks, over a near-CONUS (Continental 

United States) domain (Kong et al. 2009; Xue et al. 2009). 

b. Ensemble overview 

The ensemble consists of 20 members, with 10 members from the Weather Research and 

Forecast (WRF) Advanced Research WRF (ARW; Skamarock et al. 2005), 8 members from the 

WRF Non-hydrostatic Mesoscale Model (NMM; Janjic 2003), and 2 members from the CAPS 

Advanced Regional Prediction System (ARPS; Xue et al. 2000, 2001, 2003). Each member has 4 

km horizontal grid spacing and does not use cumulus parameterization.  For WRF ARW and 

WRF NMM, 53 vertical levels are adopted. For ARPS, 43 vertical levels are adopted. Besides 

using multiple models, members are perturbed through the use of different ICs, LBCs, and 

physics as summarized in Table 1. Microphysics perturbations include Thompson (Thompson et 

al. 2008), Ferrier (1994), WRF Single Moment 6 class microphysics (WSM6, Hong et al. 2004), 

and Lin et al. (1983) schemes. Planetary boundary layer (PBL) perturbations include Mellor-

Yamada-Janic (MYJ, Janjic´ 1994),Yonsei University (YSU, Noh et al. 2003), and a diagnostic 

Turbulent Kinetic Energy (TKE)-based scheme (Xue et al. 2000). Land surface perturbations 

include RUC (Rapid Update Cycle, Benjamin et al. 2004) and NOAH (NCEP-Oregon State 

University-Air Force-NWS Office of Hydrology, Ek et al. 2003) land surface models. Shortwave 

radiation scheme perturbations include Goddard Space Flight Center (Tao et al. 2003), Dudhia 

(1989), and Geophysical Fluid Dynamics Laboratory (GFDL, Lacis and Hansen1974) schemes. 
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The control members (labeled CN) obtain ICs from the operational National Centers for 

Environmental Prediction’s North American Model (NCEP NAM) 0000 UTC analysis with 

additional radar and mesoscale observations assimilated using ARPS 3DVAR and cloud analysis 

package (Xue et al. 2003; Gao et al. 2004; Hu et al. 2006). Radial velocity from over 120 radars 

in the Weather Surveillance Radar (WSR)-88D network, as well as surface pressure, horizontal 

wind, potential temperature, and specific humidity from the Oklahoma Mesonet, Surface 

Aviation Observation, and Wind Profiler networks were assimilated by ARPS 3DVAR. The 

ARPS cloud analysis package uses radar reflectivity along with Geostationary Operational 

Environmental Satellite (GOES) visible and infrared channel 4 data to estimate hydrometeor 

species and adjust in-cloud temperature and moisture (Xue et al. 2009). For more details of the 

ARPS cloud analysis, please refer to Hu et al. (2006). One member from each of the three 

models (ARW C0, NMM C0, and ARPS C0) used identical configuration as the corresponding 

control member with the same model (ARW CN, NMMCN and ARPS CN, respectively) except 

without assimilating additional radar and mesonet data. 

  Perturbed ICs were created by adding to the CN IC positive and negative perturbation 

pairs derived from the three-hour forecasts of the NCEP Short-Range Ensemble Forecast (SREF) 

members4 indicated in Table 1. In Table 1 NAMa and NAMf are the direct NCEP-NAM analysis 

and forecast, respectively, while the CN IC has additional radar and mesoscale observations 

assimilated into the NAMa. Perturbations added to CN members to generate the ensemble of ICs, 

and LBCs for the SSEF forecasts are from NCEP SREF (Du et al 2006). SREF members are 

labeled according to model dynamics: nmm (i.e., Nonhydrostatic Mesoscale Model) members 

use WRF-NMM, em (i.e., Eulerian Mass core) members use WRF-ARW, etaKF members use 

Eta model with Kain-Fritsch cumulus parameterization, and etaBMJ use Eta model with Betts-
                                                 
4 NCEP SREF forecasts were initialized at 2100 UTC. 
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Miller-Janjic cumulus parameterization. Further details on the CAPS 2009 ensemble can be 

found in Xue et al. (2009) and Kong et al. (2009).  

 The results presented in sections 3 and 4 emphasize physics perturbations associated with 

microphysics and PBL scheme. The other physics perturbations do not have a strong enough 

signal in the HCA results to confidently make any additional inferences about the ensemble 

design (not shown). 

 

c. Composite dendrograms 

Hierarchical clustering is displayed graphically as a dendrogram, showing the step by 

step merging of clusters. Each forecast is initially a one-element cluster, listed along the bottom 

of the dendrogram. The distance between (i.e., dissimilarity of) single-forecast clusters is 

traditionally quantified with the squared Euclidean distance. The distance between multiple-

forecast clusters is quantified as the increase in variability, which quantifies the diversity of the 

cluster, that would result from merging them into a single cluster. The two clusters with smallest 

distance between them are merged at each step. The merging of forecasts and clusters is depicted 

as two solid lines joining into one as the clustering proceeds from the bottom to the top of the 

dendrogram. The vertical axis is a cumulative measure of variability, summed over all clusters at 

that level. The difference in vertical axis values, yi – yi-1, is therefore the distance between the 

clusters merged at the ith iteration. Lower level clusters contain more similar forecasts than 

higher level clusters. For a more detailed description of the clustering algorithm and 

dendrograms, please refer to Part 1 section 4a.  

For each forecast, a separate dendrogram is generated. After creating dendrograms for all 

forecasts, they are composited into a single dendrogram so that we can analyze systematic 
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clustering of ensemble members over the Spring Experiment period. To create the composites, a 

normalized distance, dN , between ensemble members is defined by subtracting the smallest 

distance between any two members at the same lead time on the same day, dmin, and dividing by 

the range of distances among all 20 members. The range is defined as the maximum distance 

minus the minimum distance, dmax-dmin. Mathematically, for an un-normalized distance, d, 

 
min

max min
N

d d
d

d d
−

=
− .

 (1) 

The normalized distance between each pair of members is then averaged over all 

forecasts and used as a composite distance measure. The composite distances are used for HCA 

using the modified Ward’s algorithm described in Part I. The effect of the normalization is to 

give equal consideration to each forecast even though forecast to forecast variation in the 

distribution of distances is present. The composite dendrograms are intended to focus on 

systematic forecast similarities, rather than forecast similarities on any given forecast.  

For the precipitation forecasts the distance measure, d, is the fuzzy Object-based Threat 

Score (OTS; defined in Part 1) while for non-precipitation forecasts the distance measure is the 

traditional squared Euclidean Distance (ED). As described in Part 1, the Method for Object-

based Diagnostic Evaluation (MODE; Davis et al. 2006; Johnson et al. 2011a) is a features-based 

algorithm for identifying and comparing objects in a gridded precipitation field. MODE is used 

to calculate the fuzzy OTS. For the precipitation forecasts, forecasts with multiple members 

having no object identified by the MODE algorithm are excluded due to the difficulty of defining 

a distance between such forecasts. We excluded 2 of 26 days at 3 hour lead time and 6 of 26 days 

at 12 hour lead time.  
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Composite dendrograms are also created for forecasts of 10-m wind speed, 850 hPa wind 

speed, and 500 hPa temperature. Squared Euclidean distance is used as a distance measure for 

these non-precipitation fields, consistent with the traditional application of Ward’s algorithm 

(Anderberg 1973). Each non-precipitation forecast is first normalized to have zero mean and unit 

variance, by subtracting from each value the domain average of that forecast and dividing by the 

domain average standard deviation, as in Alhamed et al. (2002). Non-precipitation composite 

distances are computed using the average normalized ED.  

d. Relative merging height 

Results from the composite dendrograms are also shown using an alternative summary 

measure based on the fraction of total height (hereafter, merging height) on a dendrogram where 

some characteristic of the clusters first appears.  

For each forecast from each member, the merging height where another member with 

different ICs, LBCs, PBL scheme, model, or microphysics scheme, joins the same cluster as that 

member is calculated.  The merging height that a member without radar and mesoscale data 

assimilation (i.e., a member labeled C0) joins the same cluster as a member with radar and 

mesoscale data assimilation is also calculated. The median merging height from the distribution 

of all members over all forecasts is used to summarize the relative importance of the different 

types of ensemble perturbations on ensemble diversity.   

A lower median merging height for a given type of perturbation (e.g., PBL scheme 

perturbation) is interpreted as the forecast having a lower sensitivity to that type of perturbation. 

This is because low merging height indicates that members with that perturbation in common 

(e.g., members with YSU) are relatively less distinct from members with a different perturbation 

(e.g. members with MYJ). Likewise, higher values of median merging height indicate an 
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increased sensitivity of the forecast to that type of perturbation since members with different 

perturbations (e.g., YSU members vs. MYJ members) are more likely to remain in different 

clusters until closer to the top of the dendrogram and are therefore relatively more distinct from 

each other. 

Tests using hypothetical dendrograms show that composite dendrograms reflect the 

perturbation type that produces more complete and cleaner separation of members. In contrast, 

the median merging heights reflect the perturbation type that more frequently produces clusters 

based on that type of perturbation, even if clusters based on that type of perturbation are not 

cleanly separated.  

 

3.    HCA for hourly accumulated precipitation 

In this section the fuzzy OTS (Object-based Threat Score; defined in Part I) composite 

dendrograms of forecasts of hourly accumulated precipitation at lead times of 3, 12, and 24 hours 

(valid at 03 UTC, 12 UTC and 00 UTC respectively) are presented  in subsection a. Subsection b 

presents results using the median merging height.   

a. Results of Composite Dendrograms 

The composite dendrogram at 3 hour lead time (Fig. 1a) shows that the primary 

distinction between members is the assimilation of radar and mesoscale data. The C0 members 

that did not assimilate the radar and mesonet data form a distinct cluster. The remaining 

members cluster primarily by model dynamic cores with one cluster of all the NMM members 

and another cluster of all the ARW members. ARPS CN is also included in the ARW cluster. 
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Within the two main ARW and NMM clusters, all members with common microphysics scheme 

also cluster together.  

The composite dendrogram at 12 hour lead time (Fig. 1b) also shows the WRF members 

clustered by model dynamic core. The C0 members again form a distinct cluster, but its 

dissimilarity from the other members is less than at 3 hour lead time. At 12 hour lead time the C0 

cluster merges with the ARW cluster before the NMM cluster merges with the ARW cluster. At 

12 hour lead time there is not a clear sub-clustering by either microphysics scheme or PBL 

scheme.  

The composite dendrogram at 24 hour lead time (Fig. 1c) has three primary clusters of 

members with common model dynamic core (ARW, NMM and ARPS). The NMM cluster has 

two distinct sub-clusters, one containing all the NMM members with MYJ PBL scheme and 

another containing all the NMM members with YSU PBL scheme. The ARW cluster does not 

have sub-clusters with a common physics configuration as distinctly as the NMM members.   

In summary, the composite dendrograms indicate that systematic clustering of the object-

oriented precipitation forecasts is determined by the model dynamic core more than the physics 

schemes. There is further sub-clustering based on the microphysics schemes at early lead time 

and an increasing impact of the PBL scheme relative to microphysics scheme at later lead times. 

The microphysics schemes have the most direct effect on precipitation in the initial hours, 

especially for the precipitation initialized through radar data assimilation. In contrast, the 24 hour 

forecast is around the time of peak afternoon precipitation associated with the diurnal cycle (see, 

e.g., Clark et al. 2009). At such time the development of the convective boundary layer has 

strong effect on convective initiation and subsequent evolution (e.g., Zhang and Zheng 2004; 
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Xue and Martin 2006). The composite dendrogram also indicates a decreasing impact of radar 

and mesonet data assimilation with increasing forecast lead time.  

These automated HCA results related to microphysics and PBL schemes are also 

consistent with manual subjective findings of Weisman et al. (2008) with limited cases.  Previous 

studies also show that the impact of radar and mesoscale data assimilation on precipitation 

forecasts usually lasts for less than 12 hours (Kong et al. 2009; Xue et al. 2009; Kain et al. 2011), 

consistent with these composite dendrograms. The sensitivity to model core is also consistent 

with previous studies at CP resolution (e.g., Yussouf et al. 2004, Gallus and Bresch 2006).   

 

b. Results of median merging height 

The median merging heights (Fig. 2) for hourly precipitation forecasts show trends that 

are consistent with the composite dendrograms (Fig. 1). Recall that higher values of median 

merging height indicate an increased impact of a type of perturbation on ensemble spread. There 

are four specific systematic trends illustrated in Fig. 2 that are now discussed. 

The first trend is that the dynamic cores have a larger impact than the physics at all lead 

times. The second trend is an increasing relative impact of the PBL scheme perturbation with 

increasing lead time. At 3 hour lead time radar data has the largest impact and the microphysics 

scheme has a larger impact than the PBL scheme. As forecast time increases, the impact of the 

PBL scheme increases more than the other types of perturbations and becomes more dominant 

than the microphysics scheme with increasing lead time. The increasing relative impact of the 

PBL scheme perturbation is consistent with composite dendrograms showing increasingly strong 

sub-clustering by the PBL scheme, relative to the microphysics scheme, at 3, 12 and 24 hour lead 

times (Fig. 1). When median merging heights are plotted for only the members with the ARW 
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and NMM model separately, both models show the PBL scheme becomes increasingly more 

important with time (not shown). The increasing trend is more pronounced when only 

considering the NMM members than only the ARW members (not shown). This difference is 

consistent with the composite dendrogram showing more distinct sub-clusters by the PBL 

scheme in the NMM members than the ARW members at 24 hour lead time (Fig. 1c). The 

increasing impact of the PBL scheme with forecast time is due to its increased influence on the 

mesoscale environment that supports precipitation systems. At the longer forecast ranges these 

are often newly initiated systems that did not exist at the initial time. While microphysics should 

continue to influence the precipitation forecasts, the precipitation systems themselves have to be 

supported by the mesoscale environment in the first place. 

The third trend is a diurnal cycle in the impact of the model, PBL and microphysics 

perturbations (Fig. 2). The median merging height for all of these perturbation types has a peak 

at 24 hour lead time, which corresponds with the afternoon maximum in the diurnal convective 

cycle.  

The fourth trend illustrated by the median merging heights is the decreasing relative 

impact of radar and mesoscale data assimilation with increasing forecast time (Fig. 2). This trend 

is consistent with composite dendrograms which show distinct clusters of members with and 

without radar and mesonet data assimilation at 3 and 12 hour lead time (Fig. 1a and 1b) but not at 

24 hour lead time (Fig. 1c). Median merging heights further reveal that the impact of 

assimilating radar and mesonet data on forecasts is greater than the model and physics 

perturbations at early lead time and then becomes less important than the model and physics 

perturbations at later lead times. This trend is consistent with previous studies (Xue et al. 2009; 

Kong et al. 2009; Kain et al. 2011).  
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In summary, the results of median merging heights show more impact of the model 

dynamic cores than the physics throughout the forecast time, an increasing impact of the PBL 

scheme with increasing forecast time, a diurnal cycle in the impact of the models and physics on 

the forecasts, and decreasing impact with time of radar assimilation. These results are consistent 

with the composite dendrograms, and with physical understanding. The sensitivity of HCA 

results to the choice of clustering algorithm is examined by comparing the median merging 

heights using the Unweighted Pair Group Method clustering Algorithm (UPGMA; Jain and 

Dubes 19885) to the results described in this section. In general, the results from UPGMA (Fig. 

3) are consistent with those from Ward’s algorithm.   

 

c. Regional HCA 

A composite dendrogram is also created based on regional HCA which follows the 

method described in Part I section 7. Regional sub-domains are of interest because of the 

localized nature of severe weather forecasts. Here, the 00 UTC verification time (i.e., 24 hour 

lead time) is emphasized for consistency with the HWT Spring Experiment, which focused on 

day 1 severe weather forecasts (e.g., Schwartz et al. 2009) and the diurnal maximum of 

convective instability. The approximate center of regions where widespread intense convection 

(evaluated subjectively) was either forecast by multiple ensemble members or observed were 

considered potential regions of interest. This resulted in 49 different regions to be clustered since 

some forecasts contained multiple non-overlapping regions of interest. Of the subjectively 

selected 49 potential regions, regions in which more than 3 ensemble members did not have any 

                                                 
5 UPGMA defines the distance between two clusters as the average distance between each possible pair of members 
from the two clusters. This contrasts with Ward’s algorithm which defines the distance between clusters as the 
increase in variability resulting from merging those two clusters. 
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forecast objects identified by the MODE algorithm were removed from consideration. This is 

because in such instances, maximum distance of 1.0 are often obtained due to forecasting of no 

object, which contributed more noise than signal to the overall results. Also eliminated were 

regions where no severe weather was recorded in the SPC storm reports log within about 300 km 

of the center of the region within an hour before or after the forecast valid time. These were 

removed because the focus of this study is on intense convection, such as that of interest to the 

SPC (reasons for this focus are also discussed in Part I Appendix B). These objective criteria 

reduced the 49 potential regions, identified using subjective criteria, to 34 regions.  

Figure 4 shows that for the regional HCA composite, the primary clustering is again 

based on models. In addition, the cluster of NMM members is again sub-clustered based on the 

PBL scheme. This composite dendrogram using regional domains is therefore consistent with the 

full-domain composite (Fig. 1c).  

 

4.    HCA for 10-m wind speed and mid-tropospheric variables 

HCA for non-precipitation variables of 10-m wind speed, 850 hPa wind speed and 500 

hPa temperature is performed using the traditional implementation of Ward’s algorithm. 

Composite dendrograms for the non-precipitation variables are discussed in subsection 4a. The 

results based on median merging heights are discussed in subsection 4b.  

 

a. Results of Composite dendrograms 

1) 10-METER WIND SPEED 
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At 3 hour lead time the 10-m wind speed composite dendrogram shows primary clusters 

based on the PBL scheme and radar and mesonet data assimilation (i.e., an MYJ cluster, a YSU 

cluster, and a C0 members cluster) (Fig. 5a) 6. Secondary clustering is dependent on the PBL 

scheme that the primary clustering is based on. The MYJ cluster has sub-clusters determined by 

the model dynamic core (i.e., ARW and NMM sub-clusters). In contrast, for the YSU cluster, the 

sub-clusters do not show distinct clusters based on models. For example, the two pairs with 

common IC and LBC perturbation (i.e., sub-clusters of ARWP2 with NMMP2 and ARWP4 with 

NMMP4) are paired together even though they use different models. Fig. 5a indicates stronger 

impact of the PBL scheme than the dynamic core on the 10-m wind forecast during the early 

forecast hours. 

At 24 hour lead time the impact of the PBL scheme on the diversity of 10-m wind speed 

forecasts has diminished compared to the impact of the LBC perturbation (Fig. 5b). Unlike at 

earlier lead times when primary clusters are based on the PBL scheme, at 24 hour lead time they 

are clustered primarily by their LBCs.  From left to right, the 4 members in the first group, the 3 

members in the second group, the 7 members in the third group, and the 4 members in the fourth 

group share the same NAM forecasts (NAMf in Table 1), the same ARW-member SREF 

forecasts (emN1), the same ETA-member SREF forecasts (etaKFN1 and etaBMJN1), and the 

same NMM-member SREF forecasts (nmmN1), respectively, for their LBCs. The secondary 

clusters at 24 hour lead time (Fig. 5b) also suggest a stronger influence of the synoptic scale IC 

perturbations from SREF at later lead time than at early lead time since members with common 

IC are also sub-clustered. The impact of radar and mesonet data assimilation at 24 hour lead time 

                                                 
6 The two ARPS members are excluded from the 10-m wind speed dendrograms because 10-m wind was not 
generated as an output variable in ARPS during the 2009 Spring Experiment. 
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is minimal since the CN and C0 members cluster together at a low level before merging with any 

other members.  

 

2) MID-TROPOSPHERIC VARIABLES 

Mid-tropospheric variables such as 500 hPa temperature tend to cluster according to the 

IC at early lead time and the LBC at later lead times (e.g., Fig 6a,b). This clustering indicates a 

stronger relative impact of the IC and LBC perturbations for mid-tropospheric variables than for 

near-surface wind speed and precipitation. Temperature forecasts at 500 hPa are representative of 

the other mid-tropospheric variables such as 850 hPa wind speed. 

At 3 hour lead time (Fig. 6a), the primary distinction between members, even for non-

precipitation mid-tropospheric variables, is the assimilation of radar and mesonet data. At this 

time the C0 members form a distinct cluster. This separate cluster is also seen at the 12 hour lead 

time (not shown). The remaining members tend to cluster based on the ICs. Many pairs of 

members with the same IC (e.g., P4, N3, N4, P1, and P2) cluster together immediately but none 

of these pairs then merge together based on common LBC. Recall that the ensemble ICs in 2009 

were obtained by adding SREF perturbations to the control analysis. This is done in practice by 

adding and subtracting half the difference between paired SREF 3-hour forecasts (valid at the 

initial time 00 UTC) to the control analysis. For example, the ARW N1 analysis is obtained by 

subtracting from the ARW CN analysis the difference between the SREF em P1 and SREF em 

N1 forecasts, divided by 2. The resulting perturbations to u and v wind components, potential 

temperature, and specific humidity are rescaled to have a root mean square value of 1 m/s, 0.5 K, 

and 0.02 g/kg, respectively.  
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By the 24 hour forecast time the primary clustering is based on the LBCs. All members 

using NAM forecast as LBC (ARW CN, ARW C0, NMM CN, NMM C0, ARPS CN, ARPS C0) 

are in a cluster while all members using SREF em N1 forecast as LBC (ARW N1, ARW P1, 

NMM P1) are in a cluster and so on. Within the primary clusters, members that also have the 

same ICs (e.g., ARW P2, NMM P2) form sub-clusters. The composite HCA also revealed that 

clustering based on the LBCs begins earlier at 500 hPa than at 850 hPa (not shown). The primary 

clusters in the 24 hour composite suggest a stronger impact of the LBC perturbation than the 

other types of perturbation for the mid-tropospheric variables at this lead time. 

Temperature perturbations from the control forecast at 500 hPa were examined in several 

forecasts to better understand the primary clustering based on LBC late in the forecasts (Fig. 6b). 

As a representative example, Figure 7 shows the anomalies of ARW N3, ARW P3 and NMM N3 

from the ARW CN control forecast, initialized at 00 UTC 1 May 2009, for 500 hPa temperature 

over the entire forecast domain. While the control member, ARW CN, obtains LBCs from NAM 

forecasts, the members ARW N3, ARW P3 and NMM N3 obtain their LBCs from the forecasts 

of SREF member etaKF N1. ARW N3 and NMM N3 also have the same ICs while ARW N3 and 

ARW P3 have IC perturbations of opposite sign as discussed above. The members also have 

different physics configuration as shown in Table 1.  

The anomalies resulting from the IC perturbations are still apparent after 3 hours of 

forecast time while anomalies arising from the LBCs are just beginning to enter the domain (Fig. 

7a,b,c). Areas that were inside the domain at the initial time (Northern Plains, Southern Plains 

and Northern Great Lakes) have anti-correlated anomalies of opposite sign between ARW N3 

and ARW P3 (Fig. 7ab) but correlated anomalies of the same sign between ARW N3 and NMM 

N3 (Fig. 7ac). However, the anomalies (relative to ARW CN) entering the domain from the 
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LBCs in strong westerly flow (flow pattern is not shown) have both similar shape and similar 

sign. The similarity between members with common ICs at the 3 hour lead time, ARW N3 and 

NMM N3 in this example, causes the clustering of such members at the three hour lead time for 

the mid-tropospheric variables. 

After 12 hours of forecast time the anomalies originating from the LBCs already 

dominate the anomalies of all three members (relative to ARWCN) as the LBCs begin to spread 

across the interior domain (Fig 7d,e,f). All three members have a large scale cold anomaly of 

more than 5 degrees C over the northern Rockies, where the flow originated from the western 

boundary, and a large scale warm anomaly of several degrees C over the northern plains, where 

the flow originated from the northern boundary. This example further confirms the eventual 

primary clustering of members based on the LBC forecasts as shown by the 24 hour composite 

dendrogram (Fig. 6b).  

 

b. Results of median merging height 

The impact of different types of perturbations on non-precipitation forecast diversity, as a 

function of forecast time, is examined in terms of median merging height (Fig. 8). This sub-

section describes the relative impacts of the different types of perturbation, the change in relative 

impact at different lead times, the relative impact of the same perturbation type for different 

variables, and the relative impact of IC versus LBC perturbation with increasing lead times.  

The relative impacts of different types of perturbation implied by median merging heights 

are generally consistent with those implied previously by the composite dendrograms. At early 

lead times, the 10-m wind speed merging heights indicate the greatest impact is from the PBL 

scheme. However, the 850 hPa wind speed and 500 hPa temperature merging heights indicate the 
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greatest impact is from radar data assimilation (Fig. 8). At later lead time the relative impact of 

the PBL scheme, microphysics scheme and model is not clear from the composite dendrograms 

(Fig. 5b and 6b). However, the merging heights for both 10-m wind speed and the mid-

tropospheric variables indicate a greater impact of the PBL scheme than the microphysics and 

model (Fig. 8).  

In terms of the variation of the impact of different perturbations with forecast lead time, 

the impact of the PBL scheme decreases at later lead times for 10-m wind speed (Fig. 8a). The 

impact of the microphysics scheme and model for 10-m wind speed and the impact of the 

microphysics scheme, PBL scheme and model for the mid-tropospheric variables all have a peak 

at the 24 hour lead time, valid at 00 UTC around which time the maximum convective activity 

occurs.  The impact of radar data assimilation decreases with lead time for all of the non-

precipitation variables (Fig. 8). 

The relative impacts of a given perturbation type for the different forecast variables are 

also consistent with the composite dendrograms. The impact of both the physics and model 

perturbations is larger for 10-m wind speed than for the other non-precipitation variables (Fig. 8). 

The impact of model perturbations for all non-precipitation variables is smaller than that for 

precipitation (Fig. 2). Results are again similar when using UPGMA as a clustering algorithm 

(not shown). 

 The impact of IC and LBC perturbation is examined in a similar manner as that used for 

the model and physics perturbations and is summarized for both precipitation and non-

precipitation variables in Fig. 9. Figure 9 shows the median merging height where members with 

different IC merge together along with the median merging height where members with different 

LBC merge together, for precipitation and 10-m wind speed. Divergence of these two lines 
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indicates an increasing impact of the LBC relative to the IC. Figure 9 shows such divergence 

begins around the 12 hour lead time for 10-m wind speed. This agrees with the timing of the first 

appearance of clusters with common LBC noted in the composite HCA results. Similar 

divergence with increasing lead time is observed for the mid-tropospheric variables (not shown). 

Also noteworthy in Figure 9 is the later onset and smaller amount of divergence of the IC and 

LBC merging heights, as well as generally smaller values, for precipitation compared to the non-

precipitation variables. These differences indicate less impact of the IC and LBC perturbations 

for precipitation variables than the non-precipitation variables. Also, unlike the mid-tropospheric 

variables, the LBCs do not dominate the hourly accumulated precipitation forecasts at 24 hour 

lead time, the peak of the diurnal cycle, which suggests that the 24 hour precipitation features are 

mostly locally forced (e.g., Weckworth and Parsons 2006). 

The results in this section using median merging height are, in general, consistent with 

the results from the composite dendrograms, except the relative impact of the PBL scheme and 

LBC perturbation for 10-m wind speed forecasts at 24 hour forecast time. The composite 

dendrogram indicates greater impact of the LBC than the PBL scheme at 24 hour forecast time, 

with clean separations of members based on the LBC (Fig 5b). However, the median merging 

height of the PBL scheme is higher than or comparable to that of the LBC at the 24 hour forecast 

time (Figs 8a and 9). Examinations of the dendrograms of all forecasts show that this is because 

both the PBL scheme and LBC are important (not shown).  Forecasts dominated by the LBC 

typically have cleaner and more distinct clusters than forecasts dominated by the PBL scheme, 

but the PBL scheme dominated forecasts occur more frequently (19 out of 28 forecasts) than the 

LBC dominated forecasts. As discussed in section 2, the dominance of the LBC is therefore 

reflected by the composite dendrogram and that of the PBL scheme is reflected by the median 
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merging height. Subjective examination revealed that the forecasts dominated by the LBC 

correspond to synoptic scale disturbances entering the domain from the lateral boundaries during 

the forecast period. This occurred relatively infrequently during the second half of the 2009 

Spring Experiment due to a strong blocking pattern. 

 

5.    Summary 

This paper is the second of a two-part study seeking a better understanding of the impacts 

and relative importance of different sources of uncertainty on forecast diversity within a 

convection-allowing ensemble system produced by the CAPS for the 2009 NOAA HWT Spring 

Experiment. In this paper, an object-oriented HCA is used to identify clusters of forecasts with a 

focus on the structure, organization and location of intense convection. Traditional HCA is used 

to identify clusters for non-precipitation variables.  The systematic impacts of perturbations are 

summarized with composite dendrograms and median merging heights of members sharing 

different perturbations. 

The composite dendrograms show that at 3 hour lead time (valid 03 UTC) hourly 

accumulated precipitation forecasts cluster primarily by assimilation of radar and mesoscale data. 

Additional sub-clustering then corresponds to common model dynamics followed by common 

microphysics schemes. At 24 hour lead time (valid at 00 UTC) the clustering is primarily by the 

model dynamics with secondary clustering by the PBL scheme for the NMM members. At 12 

hour lead time (valid at 12 UTC) there is primary clustering based on both the model dynamics 

and radar and mesoscale data assimilation. Members without assimilation of additional radar and 

mesonet data form a distinct cluster from members assimilating radar and mesonet data for the 

first 12 hours of the forecasts. 
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Median merging height results are consistent with the results of composite dendrograms. 

Median merging heights for precipitation forecasts further reveal that the model has a larger 

impact than the physics at all lead times, the microphysics scheme has a larger impact than the 

PBL scheme at 3 hour lead time, and the PBL scheme has an increasing impact with time that 

eventually outweighs the impact of the microphysics scheme. The impacts of the model and 

physics perturbations also follow a diurnal cycle with a maximum during the afternoon when 

convective activity is often greatest. The impact of radar and mesoscale data assimilation 

decreases with time and becomes smaller than the model and physics perturbations after the 

12~18 hour lead times. The impact of the IC and LBC perturbations, as used in the current 

ensemble system, did not show up clearly for the precipitation forecasts, relative to the impacts 

of other perturbations.  

For the non-precipitation variables, the composite clusters reveal that forecasts of 10-m 

wind speed initially (3 hour lead time) cluster primarily by the PBL scheme, with secondary 

clustering by the model in the MYJ PBL scheme cluster. Eventually (by 24 hour lead time) the 

clustering is primarily by the LBCs. Forecasts of the mid-tropospheric variables (850 hPa wind 

speed and 500 hPa temperature) initially cluster by the ICs, and eventually cluster by the LBCs. 

Radar data assimilation initially results in separate composite clusters even for the non-

precipitation variables. 

The HCA results from median merging heights are generally consistent with the HCA 

results from composite dendrograms for the non-precipitation variables as well. For 10-m wind 

speed and the mid-tropospheric variables, the median merging heights indicate a greater impact 

of the PBL scheme than the model and microphysics scheme at all lead times. The relative 

impact of the PBL scheme for 10-m wind speed decreases at later lead times as the LBCs’ 
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impact increases. For the mid-tropospheric variables the median merging heights indicate that 

the impact of the model and physics peak at 24 hour lead time when the maximum convective 

activity occurs. For all of the non-precipitation variables, the impact of radar assimilation 

decreases with forecast time. 

The median merging heights also provide a quantitative comparison of the relative impact 

of different perturbation types among the different forecast variables. For example, the model 

and physics perturbations have a larger impact on 10-m wind speed than the mid-tropospheric 

variables. Finally, there is less impact of the IC and LBC perturbations on precipitation forecasts 

than the non-precipitation forecasts.  

More work is needed to further diagnose the physical reasons causing the ensemble to cluster 

as it does. 

 

6.    Discussion: implication for ensemble design, verification and post-processing 

In this study a newly developed object-oriented HCA is applied to a convection-allowing 

ensemble during the 2009 NOAA HWT Spring Experiment. The results of the HCA can have 

several implications for future research on how to optimally design and appropriately verify, 

calibrate, and post-process a convection-allowing ensemble. The following only serves to discuss 

such implication elucidated from the clustering analysis results.  Detailed and systematic studies 

are needed to answer these questions.  Studies on quantitatively verifying different sub-groups of 

the ensemble members are on-going and are planned to be reported in future papers (Johnson et 

al. 2011b).   
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a. Ensemble design 

Our results suggest that the optimal design of the CAPS 2009 convection-allowing 

ensemble should depend on the intended use of the ensemble. In this study we focus on the 

structure and organization of features in hourly accumulated precipitation forecasts by using an 

object-oriented framework. The HCA results imply that for next day (i.e., 24 hours) forecasts of 

intense convection, particular attention should be paid to the models and PBL schemes. At earlier 

lead times, for example for 3 hour forecasts, in addition to the models, more attention should be 

paid to the microphysics schemes and radar data assimilation.  

Users interested in short term forecasts of near surface variables such as 10-m wind speed 

may find greatest improvements to ensemble design by optimizing the PBL scheme perturbations 

while the LBC perturbation strategy may be more relevant at later lead times. Users interested in 

upper level variables may benefit most from an increased emphasis on the LBC perturbations for 

longer lead time and the IC perturbations at short lead time. Attention should also be paid to the 

interaction between the model and physics perturbations as Figs. 1b and 5a suggest that 

sensitivity to the physics schemes can depend on the model dynamics and vice versa. Even for a 

specific user and a particular modeling system, the effectiveness of the ensemble design can also 

depend on the large scale flow regime (not shown). Thus, cautions are warranted when 

extrapolating the results of this study to other applications, seasons and configurations. However, 

it is worth noting that a composite OTS-HCA of the 2010 CAPS ensemble (Xue et al. 2010), 

which was configured differently than the 2009 CAPS ensemble, showed the same primary 

clustering of precipitation forecasts by the model dynamics (not shown). 

Another consideration for storm-scale ensemble design is the horizontal scale of both IC 

and LBC perturbations. The IC/LBC ensembles in this study were generated by simply 
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downscaling from coarser resolution SREF forecasts. More work is needed to explore how to 

optimally design the IC and LBC perturbations that include all scales of uncertainty.  

Future research should also further identify and quantify the added value of radar data 

and mesonet observation assimilation. In a composite sense there is a distinct cluster of the 

members without radar assimilation for at least 12 hours. The impact of assimilating the 

observations is also likely dependent on the data assimilation method adopted (e.g., Wang et al. 

2008ab). 

b. Post-processing, calibration and verification 

The presence of systematic clusters of ensemble members violates the assumption that 

each member’s forecast is a random (i.e., independent and equally likely) sample of the 

distribution of possible future states of the atmosphere (Leith 1974). This has implications for 

appropriate post-processing techniques since methods such as interpreting the percentage of 

members forecasting an event as the forecast probability are not strictly appropriate. This also 

implies a need for calibration since different clusters of members can have different systematic 

behaviors. Such systematic differences should be accounted for before combining the clusters 

into a single combined Probability Density Function of the ensemble forecast. Future research 

should seek appropriate post-processing and calibration methods in the presence of unequally 

likely and/or non-independent members for the purpose of explicit prediction of intense 

convection and its characteristics. 

 Forecast verification can be interpreted as quantifying the distance between a forecast and 

a verification field instead of two forecast fields. Therefore this study is of general relevance as a 

contribution to understanding the ways that object-oriented methods can be applied to 

convection-allowing forecasts. This study demonstrates advantages of using object-oriented 
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methods to measure similarity/dissimilarity of fine resolution precipitation forecasts. By 

construction, the object-oriented method in general is not able to identify a correct null forecast, 

which should be kept in mind while interpreting verification results. Future research should 

explore the use of object-oriented products and verification methods in a probabilistic framework 

to provide additional insight into convection-allowing ensemble performance.  
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List of Figures 

FIG. 1. Composite dendrogram of forecasts for hourly accumulated precipitation over the 

verification domain at (a) 3 hour lead time, (b) 12 hour lead time, and (c) 24 hour lead 

time. Please see Table 1 for the symbols denoting different PBL and microphysics 

schemes and fonts denoting different models. 

FIG. 2. Median height on dendrogram (as ratio of total height) that each member’s forecast of 

hourly accumulated precipitation merged into the same cluster as a member with a 

different PBL scheme (dash), Microphysics scheme(dotted), model (solid), or radar data 

assimilation (dash-dotted) option as a function of forecast lead time. 

FIG. 3. Same as Figure 2, except using UPGMA instead of the modified Ward’s algorithm. 

FIG. 4. Composite dendrogram of forecasts of hourly accumulated precipitation over 34 cases of 

regional sub-domains at 24 hour lead time. 

FIG. 5. Dendrogram composited from 28 forecasts of 10-m wind speed over the entire 

verification domain at (a) 3 hr lead time and (b) 24 hr lead time.  

FIG. 6. Dendrogram composited from season-long forecasts of 500 hPa temperature over the 

entire verification domain at (a) 3hr lead time and (b) 24 hr lead time. 

FIG. 7. 500 hPa temperature forecasts initialized 00 UTC 1 May 2009, as anomalies from the 

ARW CN forecast, for (a) ARW N3 at 3 hour lead time, (b) ARW P3 at 3 hour lead time, 

(c) NMM N3 at 3 hour lead time, (d) ARW N3 at 12 hour lead time, (e) ARW P3 at 12 

hour lead time, and (f) NMM N3 at 12 hour lead time. 

FIG. 8. Same as Figure 2, except for (a) 10-m Wind Speed, (b) 850 hPa Wind Speed, and (c) 500 

hPa temperature.  
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FIG. 9. Median merging height that a member joins a cluster with another member using different 

Initial Condition and Lateral Boundary Condition (IC) or different Lateral Boundary 

Condition (LBC) for 10-m wind speed and precipitation as a function of forecast lead 

time.  
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TABLE 1. Details of ensemble configuration with columns showing the members, Initial 
Conditions (ICs), Lateral Boundary Conditions (LBCs), whether radar data is assimilated (R), 
and which Microphysics scheme (MP; Thompson, Ferrier (Ferr.), WRF Single Moment 6-class 
(WSM6), or Lin microphysics), Planetary Boundary Layer scheme (PBL; Mellor-Yamada-Janjic 
(MYJ), Yonsei University (YSU) or Turbulent Kinetic Energy (TKE)-based scheme), Shortwave 
radiation scheme (SW; Goddard, Dudhia  or Geophysical Fluid Dynamics Laboratory 
scheme(GFDL)), and Land Surface Model (LSM; Rapid Update Cycle (RUC) or NCEP-Oregon 
State University-Air Force-NWS Office of Hydrology (NOAH)) was used with each member. 
Symbols identifying MP (@, $, and # for Thompson, Ferrier, and WSM6, respectively) and PBL 
(^ and & for MYJ and YSU, respectively) schemes in other figures are also included in the 
brackets. Fonts distinguishing different models are the same as used in other figures where bold 
indicates an ARW member and italic indicates an NMM member. IC and LBC acronymns are 
defined in section 2b. 
 
Member IC LBC R MP PBL SW LSM 
ARW CN CN NAMf Y Thom. (@) MYJ (^) Goddard Noah 
ARW C0 NAMa NAMf N Thom. (@) MYJ (^) Goddard Noah 
ARW N1 CN – em em N1 Y Ferr. ($) YSU (&) Goddard Noah 
ARW N2 CN – nmm nmm N1 Y Thom. (@) MYJ (^) Dudhia RUC 
ARW N3 CN - etaKF etaKF N1 Y Thom. (@) YSU (&) Dudhia Noah 
ARW N4 CN - etaBMJ etaBMJ N1 Y WSM6 (#) MYJ (^) Goddard Noah 
ARW P1 CN + em em N1 Y WSM6 (#) MYJ (^) Dudhia Noah 
ARW P2 CN + nmm nmm N1 Y WSM6 (#) YSU (&) Dudhia Noah 
ARW P3 CN + etaKF etaKF N1 Y Ferr. ($) MYJ (^) Dudhia Noah 
ARW P4 CN + etaBMJ etaBMJ N1 Y Thom. (@) YSU (&) Goddard RUC 
NMM CN CN NAMf Y Ferr. ($) MYJ (^) GFDL Noah 
NMM C0 NAMa NAMf N Ferr. ($) MYJ (^) GFDL Noah 
NMM N2 CN - nmm nmm N1 Y Ferr. ($) YSU (&) Dudhia Noah 
NMM N3 CN - etaKF etaKF N1 Y WSM6 (#) YSU (&) Dudhia Noah 
NMM N4 CN - etaBMJ etaBMJ N1 Y WSM6 (#) MYJ (^) Dudhia RUC 
NMM P1 CN + em em N1 Y WSM6 (#) MYJ (^) GFDL RUC 
NMM P2 CN + nmm nmm N1 Y Thom. (@) YSU (&) GFDL RUC 
NMM P4 CN + etaBMJ etaBMJ N1 Y Ferr. ($) YSU (&) Dudhia RUC 
ARPS CN CN NAMf Y Lin TKE 2-layer Noah 
ARPS C0 NAMa NAMf N Lin TKE 2-layer Noah 
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FIG. 1. Composite dendrogram of forecasts for hourly accumulated precipitation over the 
verification domain at (a) 3 hour lead time, (b) 12 hour lead time, and (c) 24 hour lead time. 
Please see Table 1 for the symbols denoting different PBL and microphysics schemes and fonts 
denoting different models. 
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FIG. 2. Median height on dendrogram (as ratio of total height) that each member’s forecast of 
hourly accumulated precipitation merged into the same cluster as a member with a different PBL 
scheme (dash), Microphysics scheme(dotted), model (solid), or radar data assimilation (dash-
dotted) option as a function of forecast lead time. 
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FIG. 3. Same as Figure 2, except using UPGMA instead of the modified Ward’s algorithm. 
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FIG. 4. Composite dendrogram of forecasts of hourly accumulated precipitation over 34 cases of 
regional sub-domains at 24 hour lead time. 
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FIG. 5. Dendrogram composited from 28 forecasts of 10-m wind speed over the entire 
verification domain at (a) 3 hr lead time and (b) 24 hr lead time.  
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FIG. 6. Dendrogram composited from season-long forecasts of 500 hPa temperature over the 
entire verification domain at (a) 3hr lead time and (b) 24 hr lead time.  
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FIG. 7. 500 hPa temperature forecasts initialized 00 UTC 1 May 2009, as anomalies from the 
ARW CN forecast, for (a) ARW N3 at 3 hour lead time, (b) ARW P3 at 3 hour lead time, (c) 
NMM N3 at 3 hour lead time, (d) ARW N3 at 12 hour lead time, (e) ARW P3 at 12 hour lead 
time, and (f) NMM N3 at 12 hour lead time.  
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FIG. 8. Same as Figure 2, except for (a) 10-m Wind Speed, (b) 850 hPa Wind Speed, and (c) 500 
hPa temperature.  
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FIG. 9. Median merging height that a member joins a cluster with another member using different 
Initial Condition and Lateral Boundary Condition (IC) or different Lateral Boundary Condition 
(LBC) for 10-m wind speed and precipitation as a function of forecast lead time. 
 

 

 


